地铁隧道施工监控方案
- 格式:doc
- 大小:1.18 MB
- 文档页数:29
2024年地铁综合监控系统设计方案一、综合监控系统的概述地铁综合监控系统是指对地铁车站、车辆以及隧道等区域进行实时监控、视频录像、报警与控制等功能的综合系统。
该系统通过高清摄像机、传感器、网络传输设备、服务器以及各类控制设备等组成,可以实时监控和管理地铁运营情况,保障地铁安全运营和乘客出行的舒适性。
二、系统设计方案1. 摄像监控系统地铁综合监控系统的核心部分是摄像监控系统,该系统由高清摄像机、图像传输设备、图像处理与存储设备等组成。
摄像监控系统将安装在车站、车辆和隧道等关键区域,通过网络传输方式将实时视频信号传输至中央监控中心,以提供远程监控和视频回放功能。
2. 传感器技术应用除了摄像监控系统外,综合监控系统还应用传感器技术进行综合监测。
例如,通过温度传感器、烟雾传感器和气体传感器等,可以实时监测车站、车辆和隧道内的环境情况,发现异常情况时可以及时报警并采取相应的措施。
3. 中央监控中心中央监控中心是综合监控系统的核心控制中心,用于接收和处理来自各个摄像监控点和传感器的数据。
中央监控中心应配备高效的数据传输和处理设备,能够实时监测和掌握地铁运营情况,并及时做出反应。
4. 视频数据存储及备份综合监控系统需要大量存储和备份视频数据,以便后期调取和分析。
为了满足持续运营的需求,应考虑采用高容量、高可靠性的存储设备,并实施定期的数据备份策略,以避免数据丢失和系统故障。
5. 车站和车辆的报警系统为了提高地铁安全运营的能力,综合监控系统应配备车站和车辆的报警系统。
该系统通过紧急按钮和语音通信设备等,使乘客可以在紧急情况下及时与中央监控中心联系,寻求帮助和指导。
6. 数据分析与决策支持综合监控系统还应具备数据分析和决策支持功能。
通过对大量的历史和实时数据进行分析和挖掘,可以帮助地铁管理部门更好地了解运营状况,优化运营调度,提高地铁运营效率和服务质量。
三、技术保障1. 网络通信技术综合监控系统需要一个快速稳定的网络通信环境,以确保实时监控和数据传输的需求。
如何进行隧道工程施工测量与监控隧道工程是一项复杂而关键的建筑工程,其施工测量与监控是确保项目质量和安全的重要环节。
本文将介绍如何进行隧道工程施工测量与监控,以帮助读者全面了解该过程。
1. 测量前的准备工作在开始施工测量之前,必须进行一系列准备工作。
首先,需要制定详细的施工测量方案,包括测量方法、仪器设备选择和布置等。
其次,需要确定测量控制的基准点,以确保测量结果的准确性和可靠性。
同时,还需要对测量现场进行调查和踏勘,了解地形地貌、地质构造等因素,以便合理确定测量方案。
2. 施工测量的内容和方法隧道工程施工测量包括纵向测量、横断面测量、隧道轴线测量和管片安装测量等。
其中,纵向测量主要是对隧道的纵向坡度、纵断面的几何尺寸进行测量;横断面测量主要是对隧道断面的几何形状进行测量;隧道轴线测量主要是测量隧道的轴线位置和曲线半径等参数;管片安装测量主要是对管片的安装位置、水平度和垂直度进行测量。
在进行测量时,可以采用传统的测量方法,如全站仪和测量尺等,也可以使用现代化的激光测量仪器、GNSS定位系统等。
3. 测量数据的处理和分析在进行施工测量后,需要对测量数据进行处理和分析。
首先,需要对测量数据进行检查和校正,确保数据的准确性和可靠性。
其次,需要对测量数据进行处理,计算出相应的测量结果,如隧道的几何尺寸、轴线位置等。
最后,需要对测量结果进行分析,与设计要求进行比对,以确定施工的合格性和进展情况。
4. 施工监控的方法和技术为了保证隧道工程的安全和质量,需要进行施工监控。
施工监控主要包括沉降监测、应力监测和变形监测等。
沉降监测是通过测量隧道或周围地面的沉降量,来判断隧道开挖对地表的影响;应力监测是通过测量隧道内部的应力变化,来评估隧道结构的稳定性;变形监测是通过测量隧道断面的变形量,来确定隧道的形变情况。
为了实现施工监控,可以采用传统的监测方法,如人工测量和离散点监测等,也可以使用现代化的监测技术,如全站仪监测、激光扫描监测和遥感监测等。
XX地铁XX号线XXX站~XXX站区间盾构法隧道施工监测方案编写:审核:日期:监测单位:目录一、工程沿线环境概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3二、监测依据‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4三、监测目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5四、监测项目‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5五、监测点的布设与埋置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5六、监测控制网布设及各项监测项目的监测方法‥‥‥‥‥‥‥15七、监测频率及监测报警值‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17八、仪器设备‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18九、监测质量保证措施‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19盾构法隧道施工监测方案一、工程沿线环境概况1、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK16+067.9~右DK17+1.7m(左DK17+67.2m),右线全长933.8m,左线全长1002.268m。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站南端头始发,以直线推进开始,过渡至直缓,再到缓圆、圆缓、缓直、直缓、缓圆、圆缓、缓直到XXX站。
隧道沿线均在市区主要道路干线及商业、居民区建筑物下;盾构自XXX 站始发后,沿XX路向南推进约290米后(即在左KD16+790m处)进入楼房集中区,楼房集中区域长约690m(楼房集中区内房屋简介见P7~P8之表1);隧道沿线地下设施较为复杂,主要为雨水、污水管线及自来水管等。
2、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK17+292.7~右DK17+747.455m,右线全长454.755m(左线全长475.757m)。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站北端头始发,向北推进约40m后进入XX路与XX路的十字交叉路口,推进约140m后进入楼房集中区域下方,隧道沿线上方主要为交通繁忙的十字路口及众多的建筑物(建筑物集中区内房屋简介见P9~P10之表2);沿线地下设施复杂,主要为雨水、污水管线等。
地铁隧道监控量测施工方案1. 背景隧道监控量测是地铁建设中的重要环节,旨在确保隧道的安全性和稳定性。
本方案将介绍地铁隧道监控量测施工的方法和步骤。
2. 施工步骤2.1 安装监控系统在隧道内部安装监控系统,包括摄像机、传感器和数据采集设备。
监控系统应能监测隧道内的温度、湿度、位移等情况,并能实时传输数据。
2.2 校准设备在施工前,需要确保监控系统的准确性和可靠性。
对于传感器和摄像机,需要进行校准,以获得准确的监测数据。
2.3 数据采集与分析监控系统将实时采集隧道的数据,并进行分析和处理。
通过对数据的分析,可以评估隧道的安全性,及时发现潜在风险,并采取相应的措施。
2.4 报告生成与反馈根据监测数据生成报告,将监测情况以图表和文字形式呈现。
报告应包括监测结果、分析和建议,以及针对潜在风险的措施。
报告应定期提交给相关部门,并根据需要进行更新和修订。
3. 安全措施在施工过程中,需要采取有效的安全措施,确保施工人员和设备的安全。
施工人员应接受相关培训,并遵守相关的安全规定和操作程序。
4. 项目管理为了保证施工顺利进行,需要建立有效的项目管理制度。
包括施工计划的制定和执行、进度控制、质量管理等方面的工作。
5. 沟通与配合隧道监控量测施工涉及多个部门和单位的配合,需要建立良好的沟通机制。
各部门之间应保持密切联系,及时共享信息和解决问题。
6. 风险评估与管理在施工过程中,应对潜在的风险进行评估和管理。
根据监测数据和施工情况,及时调整施工计划和措施,以降低风险和确保施工质量。
7. 结束工作隧道监控量测施工结束后,需要对施工过程进行总结和评估。
评估结果应反馈给相关部门,以及时改进和提升施工质量。
以上是地铁隧道监控量测施工方案的简要介绍,具体的施工细节和注意事项可以根据实际情况进行调整和完善。
为了保证施工质量和安全性,我们建议在施工过程中充分利用现有技术和经验,并遵循相关法规和标准。
隧道施工监控量测项目和方法一、监控量测的内容隧道监控量测的项目应根据工程特点、规模大小和设计要求综合选定。
量测项目可分为必测项目A和选测项目B两大类。
隧道施工过程中应进行洞内、外观察,洞内观察可分开挖工作面观察和已施工地段观察两部分。
浅埋暗挖法各种监控量测项目的简介见表10-1。
(1)洞内观察:开挖工作面观察应在每次开挖后进行。
观察中发现围岩条件恶化时,应立即采取相应处理措施;观察后应及时绘制开挖工作面地质素描图、填写开挖工作面地质状态记录表和施工阶段围岩级别判定卡。
对已施工地段的观察每天至少应进行1次,主要观察围岩、喷射混凝土、锚杆和钢架等的工作状态。
(2)洞外观察重点应在洞口段、岩溶发育区段地表和洞身埋置深度较浅地段,其观察内容应包括地表开裂、地表沉陷、边坡及仰坡稳定状态、地表水渗透情况、地表植被变化等。
表10-1 隧道现场监控量测项目注:b—隧道开挖宽度;h—隧道埋深。
二、监控量测的方法(一)目测观察1.目的在地下工程施工中,开挖前的地质勘探工作很难提供非常准确的地质资料,所以在施工过程中对开挖面附近围岩的性质、状态进行目测。
另外,对开挖后初期支护稳定状态进行目测,也是监控量测中的重要项目。
2.目测观察的内容开挖后对无支护围岩的目测内容包括:(1)围岩类型及分布特征、结构面位置和产状、节理裂隙发育程度和几何特性、节理裂隙的填充物的性质和状态等。
(2)开挖工作面的围岩稳定状态,顶板有无剥落掉块现象。
(3)是否有涌水、涌水量大小、涌水位置、地下水的物理性质(颜色、气味、色度等)。
开挖后对已支护段的目测内容包括:(1)有无锚杆被拉断或垫板陷入围岩内部的现象。
(2)喷射混凝土是否产生裂隙或剥离,要特别注意喷射混凝土是否发生剪切破坏。
(3)钢拱架有无被压屈现象。
(4)是否有底鼓现象。
3.目测结果如果发现异常现象,要详细记录发现的时间、距开挖工作面的距离以及附近监控量测点的各项监控量测数据,及时综合观察测量数据并分析原因,采取相应措施。
#### 一、工程概况本工程为XX市地铁XX号线某区间隧道,全长约1.2公里,采用盾构法施工。
地下水位高,地质条件复杂,周边环境敏感。
为确保施工安全、质量和环境保护,特制定本专项施工方案。
#### 二、监测目的与意义1. 监测目的:- 确保盾构施工过程中,隧道结构及周围环境安全稳定。
- 及时发现和处理施工过程中可能出现的异常情况。
- 为后续施工提供数据支持,优化施工方案。
2. 监测意义:- 提高施工安全性,降低事故风险。
- 确保工程质量,提高施工效率。
- 保护周边环境,减少施工对周边居民的影响。
#### 三、监测内容1. 隧道结构监测:- 隧道内部位移监测。
- 隧道内部裂缝监测。
- 隧道衬砌厚度监测。
2. 周围环境监测:- 地面沉降监测。
- 地下水监测。
- 地下管线监测。
3. 施工过程监测:- 盾构掘进参数监测。
- 土压平衡监测。
- 注浆压力监测。
#### 四、监测方法1. 监测设备:- 高精度全站仪。
- 电子水准仪。
- 激光测距仪。
- 数字水准仪。
- 土压力传感器。
- 液压传感器。
2. 监测方法:- 采用埋设传感器的方式,实时监测隧道结构及周围环境。
- 定期进行地面沉降、地下管线监测。
- 监测数据通过无线传输,实时上传至监控中心。
#### 五、监测频率1. 隧道结构监测:每日监测一次。
2. 周围环境监测:每3天监测一次。
3. 施工过程监测:每班次监测一次。
#### 六、数据处理与分析1. 数据处理:- 对监测数据进行实时处理,确保数据准确性。
- 对历史数据进行统计分析,找出规律。
2. 数据分析:- 分析隧道结构及周围环境的变化趋势。
- 评估施工过程中可能出现的问题。
#### 七、监测控制标准1. 隧道结构监测:- 隧道内部位移不超过规范要求。
- 隧道内部裂缝宽度不超过规范要求。
- 隧道衬砌厚度符合设计要求。
2. 周围环境监测:- 地面沉降不超过规范要求。
- 地下水稳定。
- 地下管线无异常。
#### 八、监测人员组织与管理1. 组织机构:- 成立监测小组,负责监测工作的组织实施。
隧道监测方案1. 引言隧道作为重要的交通设施,对于现代城市交通起着至关重要的作用。
然而,隧道的安全性和可靠性始终是人们关注的焦点。
为了确保隧道的正常运营和及时发现潜在的安全隐患,制定一套科学合理的隧道监测方案势在必行。
2. 隧道监测概述隧道监测是指通过各种监测手段和技术手段对隧道状况进行实时监测、分析和评估的过程。
通过监测隧道结构、环境参数等相关数据,可以及时掌握隧道的变化情况,发现问题,采取相应措施,确保隧道运营的安全与顺畅。
3. 隧道监测方案的设计原则制定隧道监测方案应遵循以下原则:3.1 全面性监测方案应全面考虑隧道结构、环境参数、安全设备等各个方面的监测需求,确保监测的全面性和准确性。
3.2 及时性监测方案应采用实时监测手段,能够及时获取监测数据,并做出相应的处理和决策。
3.3 可靠性监测方案应采用可靠的监测设备和技术手段,确保监测数据的准确性和可信度。
3.4 灵活性监测方案应具备一定的灵活性,能够根据实际情况进行调整和改进,以满足不同阶段和不同需要的监测要求。
4. 隧道监测内容和方法隧道监测的内容主要包括以下几个方面:4.1 结构监测通过监测隧道结构的变形、应力等参数,评估隧道的结构安全性和稳定性。
常用的监测方法包括位移传感器、测点应变仪等。
4.2 环境参数监测通过监测隧道内部的温度、湿度、烟雾等参数,及时发现火灾和环境污染等问题,采取相应的措施。
常用的监测方法包括温湿度传感器、烟雾探测器等。
4.3 通风监测隧道通风是保证隧道空气流通和人员安全的重要措施。
通过监测通风设备和通风系统工况参数,保持隧道内的正常通风状态。
常用的监测方法包括风速仪、压力传感器等。
4.4 视频监控通过设置视频监控设备,对隧道的交通流量、车辆和人员行为进行实时监测,发现交通事故和违规行为,以及及时调度应急资源。
常用的监测技术包括视频摄像机、图像处理软件等。
5. 隧道监测数据的处理和分析监测数据的处理和分析是隧道监测方案中不可缺少的一环。
地铁施工视频监控实施方案一、背景介绍。
地铁施工是一个复杂的工程,涉及到许多安全风险和监控难点。
为了保障施工过程中的安全和监控效果,需要制定一套科学合理的视频监控实施方案。
二、监控范围。
地铁施工涉及到的监控范围主要包括施工现场、施工设备、施工人员等。
施工现场的监控范围需要覆盖整个施工区域,包括隧道、站台、轨道等;施工设备的监控范围需要覆盖到各种施工机械和设备;施工人员的监控范围需要覆盖到所有进入施工现场的工作人员。
三、监控设备。
为了实现全面监控,需要在地铁施工现场安装各种监控设备,包括摄像头、红外线监测器、烟雾探测器等。
摄像头需要安装在施工现场的关键位置,以实现全方位监控;红外线监测器和烟雾探测器则可以及时监测到异常情况并发出警报。
四、监控系统。
为了实现对地铁施工现场的实时监控,需要建立一个完善的监控系统。
监控系统需要包括监控中心和监控设备两部分。
监控中心可以实时接收监控画面,并对监控画面进行录像和存储;监控设备则是实现监控的具体设备,包括摄像头、监控软件、监控主机等。
五、监控管理。
为了保证监控系统的正常运行,需要建立健全的监控管理制度。
监控管理需要包括监控设备的日常维护和保养、监控系统的定期检查和维修、监控人员的培训和考核等方面。
只有做好监控管理工作,才能保证监控系统的长期稳定运行。
六、监控效果。
通过以上的实施方案,可以实现对地铁施工现场的全面监控。
监控系统可以实时监测施工现场的情况,及时发现问题并采取相应的措施。
这样可以最大限度地保障施工现场的安全,保证施工工程的顺利进行。
七、总结。
地铁施工视频监控实施方案是一个复杂而重要的工作,需要充分考虑各种因素,制定科学合理的方案。
只有通过科学的监控实施方案,才能保证地铁施工的安全顺利进行。
希望通过我们的努力,可以为地铁施工的安全监控做出贡献。
南京地铁二号线汉中站基坑和区间隧道施工监测方案南京水利科学研究院二〇〇六年八月一、汉中门车站基坑施工监测方案1.1工程概况汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。
车站总长度为:161.50米,车站标准段宽度:20.90米。
顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。
车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。
车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。
车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。
汉中门站地形平坦,本场地南侧为汉中门广场。
车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。
根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。
车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。
地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。
东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。
围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。
1.2工程地质条件和周边环境情况1.2.1.地形、地貌、地质汉中门站拟建场区隶属于I级阶地地貌单元。
地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。
地铁施工监控方案一、引言地铁项目是城市基础设施建设的重要组成部分,在施工阶段需要进行监控以确保施工进度和施工质量的有效管理。
本文档旨在提出一种地铁施工监控方案,通过合理的建设监控系统,从而提高施工效率,并保障施工人员的安全。
二、监控方案概述该地铁施工监控方案旨在通过安装监控设备和利用技术手段,全面监测施工现场,包括施工过程、施工人员、设备及材料的使用情况,以及安全状况等重要信息。
监控系统将实时采集和记录相关数据,并通过网络传输,供相关管理人员进行监控和分析,以便及时发现问题并采取应对措施。
三、监控设备选择及布置1. 摄像监控设备摄像机是地铁施工监控系统中最基本的设备之一。
在选择摄像机时,应考虑其分辨率、防水性能、夜视功能等因素,并根据实际需求确定拍摄角度和范围。
•建议选择高清摄像机,以便清晰记录施工过程中的细节。
•摄像机应具有防水和防尘功能,以适应复杂施工环境。
•夜视功能有助于在低光环境下进行监控。
2. 摄像监控位置布置摄像监控设备的布置应考虑施工现场的具体情况,以确保能够全面监控。
•对于关键施工部位,应安装多个摄像机,以多角度全方位监控。
•对于较大的施工现场,建议采用布线摄像机,以保障监控信号的稳定传输。
四、监控系统建设1. 视频信号传输与存储监控系统的视频信号传输与存储是监控方案中必不可少的一部分,关系到数据的稳定性和可靠性。
•建议采用数字视频传输技术,如IP摄像机能够提供更稳定高质量的视频信号传输。
•视频信号存储可以选择采用硬盘录像机(DVR)或网络录像机(NVR),具体选择应根据施工规模和存储需求而定。
2. 远程监控远程监控使管理人员能够随时随地通过网络访问监控系统,实时了解施工现场的情况。
•建议使用支持云存储和远程监控的监控设备,以方便管理人员远程查看监控画面。
•对于重要的决策者和管理人员,可安装移动设备应用程序,以便实时监控和接收告警信息。
五、施工现场监控管理施工现场监控管理是地铁施工监控方案中的重要环节,涉及监控数据的处理、分析和应对措施。
隧道施工监控量测管理实施细则第一章总则第一条为加强隧道工程施工管理,切实开展好监控量测工作,实现信息化管理施工,确保隧道工程结构、周边环境及建(构)筑物的安全,并根据《铁路隧道监控量测技术规程》、《铁路隧道工程施工安全技术规程》和原铁道部《关于进一步明确软弱围岩及不良地质铁路隧道设计施工有关技术规定的通知》、《关于进一步加强铁路隧道设计施工安全管理工作的通知》以及城市轨道其它行业相关标准、规定,特制定本细则。
第二条本细则适用于项目经理部承建的公路、铁路等山岭隧道工程、城市轨道交通工程施工。
第二章管理机构、职责第三条监控量测是施工技术管理的重要组成部分,凡从事公路、铁路等山岭隧道工程、城市轨道交通工程施工的项目经理部,必须组建专门的监控量测队负责施工监控量测工作,必须将监控量测工作纳入关键工序进行管理。
总工程师负责直接领导本单位的监控量测管理工作,工程管理部负责本单位具体的监控量测日常管理工作。
若因项目经理部资源不足或建设单位要求等其它原因不能自行组建监控量测队,可委托第三方组建,第三方监控量测队亦应在项目经理部总工程师的直接领导下开展工作,监控量测队的组建、工作内容、职责与分工应符合本实施细则的相关要求。
第四条项目经理部职责(一)负责组织项目监控量测工作,对项目监控量测工作负全面管理责任。
(二)负责制定项目监控量测管理办法或实施细则,并监督实施。
(三)负责项目监控量测大纲的编制,并组织审核;负责隧道监控量测方案的审批。
(四)负责监督监控量测工作的开展情况。
(五)组织和参加监控量测预(报)警处理会,监督做好处理措施的落实。
(六)协调解决监控量测工作中遇到的问题。
第五条监控量测队职责(一)负责项目监控量测的实施工作,并接受项目经理部第三方监测单位及监理的监督和管理。
(二)严格按照国家和地方法律、法规、部门规章、规范性文件等的规定,建立合理、合法、合规的满足施工要求的监控量测体系,配足工作人员和仪器设备,健全管理制度。
地铁工程监控量测技术方案地铁工程的建设在城市的发展和交通的便捷性方面起到了重要的作用。
在地铁建设过程中,工程监控量测技术是非常重要的环节,它能够帮助工程人员在建设过程中掌握建设进度和工程质量,以及安全性。
监控量测的目的地铁工程建设的环境十分的复杂,建设过程中存在着许多的问题,如地下水位、土层变形、地震等。
因此,为确保建设过程中的安全性和工程质量,需要对工程进行全方位的监控量测,包括地下及地上建筑物,以及涉水、涉铁路、道路等地形地貌特征。
监控量测的目的主要有以下几个方面:1.确保工程安全性2.监控工程进度3.检测施工工艺和材料4.优化设计和提高工程质量监控技术方案目前,地铁工程监控量测技术主要包括物理测量、遥感测量和数字模拟技术。
下面分别对这些技术进行介绍。
物理测量物理测量主要通过测量工程中的物理量来了解工程的状态,包括变形量、内应力、温度等。
物理测量技术依靠传感器对工程变化的监测和记录,常用的传感器有位移传感器、应变计、压力变送器等。
物理测量是一种非常实用的监控技术,但是需要在测量过程中进行大量的现场设置和调试,同时现场测量数据的处理也比较繁琐,因此需要有专门的技术人员处理。
遥感测量遥感测量指的是通过卫星遥感、无人机、机器人等远程手段实现地铁工程的监测,具有非接触式、快速、全局性的特点。
遥感技术主要包括激光遥感、雷达遥感、红外遥感以及计算机视觉等技术。
通过遥感技术可以非常迅速地获取大量的地理空间数据,进一步了解地下工程的情况,同时也可以避免物理测量中比较危险的现场作业,降低了监控难度,是一种比较好的监控方法。
数字模拟技术数字模拟技术是利用计算机模拟工程环境中的各种力学变化和现象,用数学方法分析和推测地铁工程的地下空间变化、土体损伤、管道压缩等很多问题。
数字模拟技术依靠计算机对工程的模拟和模型分析,从不同方面来监控工程,通常使用有限元法、随机有限元法等技术。
数字模拟技术具有数据获取方便、处理复杂性强、自动监测的优点,能够实现全局监测地铁工程的状态,并提供较为准确的分析结果,因此也是一种不错的监控技术。
地铁工程施工现场监控量测管理办法1 总则1.1 为了加强城市轨道交通工程监测管理,保障城市轨道交通工程安全质量,制定本办法。
1.2 工程监测是指施工过程中,通过采用一定的测量测试仪器、设备,对施工影响范围内的岩土体、地下水和周边环境及工程围(支)护结构等的变化情况(如变形、应力等)进行经常性地量测和巡视观察,并及时反馈监测成果的活动。
1.3 城市轨道交通工程监测包括施工监测及第三方监测。
1.4 城市轨道交通工程监测管理除应遵循本办法外,还应符合国家、行业及天津市现行相关工程建设标准的规定。
1.5 在进行监测的同时,应对现场进行安全巡视。
1.6 本办法仅适用于公司所建设管理的地铁工程和枢纽工程。
2 监测技术管理与预警要求2.1 城市轨道交通工程监测项目主要包括工程围(支)护结构的变形、应力,工程周边环境的位移、倾斜、开裂,岩土体位移、土压力变化,地下水位的动态变化等。
2.2 城市轨道交通工程监测项目及其控制指标应当在施工图设计文件中说明。
监测项目的控制标准及警戒值执行现行相关规范标准及监测图纸中的高标准,其中工程周边环境的监测项目及其控制指标应当经专家论证后确定。
2.3 城市轨道交通工程监测方案,应当根据勘察报告、设计文件、施工方案、周边环境调查报告、风险评估报告及工程实际情况编制。
其主要内容应包括:a)工程概况;b)建设场地岩土工程条件及基坑周边环境状况;c)监测目的和依据;d)监测内容及项目;e)基准点、监测点的布设与保护;f)监测方法及精度;g)监测期和监测频率;h)监测报警及异常情况下的监测措施;i)监测数据处理与信息反馈;j)监测人员的配备;k)监测仪器设备及检定要求;l)作业安全及其他管理制度。
2.4 当基坑工程设计或施工有重大变更时,监测单位应及时调整监测方案。
2.5 工程监测的基准点应布置在工程施工影响范围之外的稳定区域,并保证其埋设稳固、可靠。
工程围(支)护结构监测点应在围(支)护结构施工过程中及时布设;工程周边环境监测点与岩土体、地下水监测点应在围护结构施工之前埋设。
隧道监控量实施方案隧道监控是隧道运营管理中的重要环节,对于隧道的安全运行和紧急事件的处理起着至关重要的作用。
为了有效监控隧道运行情况,提高隧道运行的安全性和效率,制定和实施科学的隧道监控量实施方案至关重要。
一、隧道监控量实施的目的。
隧道监控量实施的目的是为了全面了解隧道内部的运行情况,及时发现和处理隧道内部的异常情况,保障隧道的安全运行。
通过监控隧道的交通流量、气象情况、视频监控等手段,及时掌握隧道内部的运行情况,确保隧道的安全畅通。
二、隧道监控量实施的内容。
1.交通流量监控,通过安装车辆检测器和车牌识别设备,实时监测隧道内的车辆流量情况,及时掌握隧道的交通流量情况,为隧道的交通管理提供数据支持。
2.气象监控,安装气象监测设备,实时监测隧道内的气象情况,包括温度、湿度、风速等情况,及时预警并采取相应措施,确保隧道内部的气象环境符合安全要求。
3.视频监控,设置视频监控设备,全天候对隧道内部进行监控,及时发现隧道内部的异常情况,如车辆故障、交通事故等,为紧急事件的处理提供重要的信息支持。
4.火灾监控,安装火灾监测设备,实时监测隧道内部的火灾情况,及时报警并采取相应措施,确保隧道内部的火灾安全。
三、隧道监控量实施的要求。
1.科学性,隧道监控量实施方案应当科学合理,充分考虑隧道的实际情况和需求,确保监控手段和设备的选择和布局科学有效。
2.全面性,隧道监控量实施方案应当全面覆盖隧道内部的各个方面,包括交通流量、气象情况、视频监控、火灾监控等多个方面,确保对隧道的全面监控。
3.实时性,隧道监控量实施方案应当具有实时监控和数据传输的能力,能够及时获取隧道内部的运行情况,并能够迅速响应和处理紧急事件。
四、隧道监控量实施的建议。
1.合理布局,根据隧道的实际情况和特点,合理布局监控设备,确保监控范围全面覆盖,监控效果良好。
2.设备选型,选择性能稳定、可靠性高的监控设备,确保监控设备的稳定性和可靠性,减少监控设备的故障率。
隧道监控工程方案隧道是连接城市交通要道的重要设施,隧道的安全运营对于城市的交通畅通和人民的生活安全至关重要。
隧道监控工程是保障隧道安全运营的重要一环,通过实时监控隧道内部情况,及时发现并处理可能的安全隐患,保障隧道及周边区域的安全运营。
本文将对隧道监控工程方案进行详细探讨,包括监控设备的选型、安装位置、实时监控系统的建设、应急处理方案等。
一、隧道监控设备的选型1. 摄像头:隧道内部的情况非常复杂,需要选择高清晰度、夜视能力强、防水防尘的摄像头。
在隧道内部的不同位置需要安装不同类型的摄像头,如固定摄像头、云台摄像头、红外摄像头等,以便全面监控隧道内的情况。
2. 火灾监测系统:采用可燃气体探测器、光电式烟感探测器等设备,及时监测隧道内的火灾情况,对可能发生的火灾进行预警处理。
3. 污染探测系统:采用化学气体传感器、粉尘监测仪等设备,监测隧道内的空气污染情况,及时发现并处理可能的污染情况。
4. LED照明系统:配备LED全彩还原画质镜头,提供清晰、真实的图像视角。
5. 监控中心设备:包括监控主机、视频存储服务器、视频分析服务器等设备,提供隧道内部情况的实时监控和视频存储。
二、监控设备的安装位置1. 摄像头的安装位置:摄像头的安装位置需要考虑到隧道的整体结构及交通情况,在隧道口、隧道内部不同位置、隧道出口等位置都需要安装摄像头,以全面监控隧道内的情况。
2. 火灾监测系统、污染探测系统的安装位置:需要在隧道内部设置多个监测点,以全面监测隧道内的火灾、污染情况。
3. LED照明系统的安装位置:LED照明系统需要根据隧道内部的情况灵活设置,以达到最佳的照明效果。
4. 监控中心设备的安装位置:监控中心设备需要集中设置在隧道控制中心,以便监控人员实时观看隧道内部情况,并进行实时处理。
三、隧道监控系统的建设1. 视频监控系统:通过安装摄像头和LED照明系统,对隧道内部的情况进行实时监控,并将监控画面传输至监控中心,便于监控人员进行监控和应急处理。
地铁隧道施工监控系统设计方案目录第一章技术方案设计 (3)一、概述 (3)二、用户需求分析 (4)三、设计依据 (5)四、设计原则: (6)五、总体设计 (7)5.1前端部分 (8)5.2传输部分 (10)5.3中心控制部分 (11)5.4网络分控系统设计说明 (12)5.5视频显示和记录设计说明 (12)5.6报警部分(可选) (13)六、监控系统原理及分控拓朴图 (14)七、光纤数字监控系统的特点 (15)八、系统功能 (17)九、主要设备介绍 (18)9.1超低照度彩色摄像机 (18)9.2超低照度彩色摄像机 (18)9.3四数字视频光端机 (19)9.4室外防护罩 (22)9.5嵌入式数字硬盘录像机 (22)9.6主控键盘 (25)十、系统配置清单 (27)10.1地面工地监控系统 (27)10.2分段隧道施工监控系统 (29)第一章技术方案设计一、概述目前,地铁隧道井下作业因为在地下,地形复杂,环境恶劣,如瓦斯爆炸、地下渗水等事故经常发生。
利用远程视频监控系统,地面监控值班人员可以直接对井下工作面情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,对于存在的隐患能够迅速做出处理,避免可能发生的事故。
也能为事后分析事故提供有关的第一手图像资料。
因此远程视频监控系统是现代隧道施工安全生产监控系统的重要组成部分。
同时,地面工地的安全生产及安全防范也是地铁施工安防系统的重要组成部份,因此,本设计方案包含了隧道施工远程监控及地面工地监控两部份。
另外,因为此地铁工程为双向复线,且同时施工,故需要设计两隧道施工点的远程监控系统。
为便于统一管理及资源共享,将二系统构成一个统一的监控平台。
随着科学技术的发展,基于光纤传输及应用为基础的监控系统的系列产品的推出,为诸如地铁隧道施工等远程监控提供了全新的观念和更广阔的空间,实现了远程实时监控、远程遥控摄像机的功能。
光端机产品的出现即在各个行业得到了广泛应用。
所以在地铁隧道安全生产监控系统中光纤加数字硬盘录像监控系统将取代传统模拟监控是一种必然的趋势。
光纤数字监控系统拥有强大的管理功能、良好的兼容性、方便的可扩展性、优越的性价比、超强的抗干扰性、图像数据双向传输功能等众多优点,完全能够替代传统模拟监控系统,此系统已在众多领域中得到应用。
其中包括电力系统的变电站及高速公路收费站、医院高等病房、学校、工厂、地铁隧道、跨地区的企业集团等等。
二、用户需求分析井下采掘点(监控点)是动态的,并随着生产推进不断改变;要求系统扩展(增减监控点)、安装、维护方便,且能远距离传输;系统监控图像清晰,能够在环境恶劣的条件下稳定、可靠的工作;监控图像可在施工区局域网中传输;普通的闭路电视监控系统,采用的是传统模拟视频信号,具有很大的局限性:首先,有线模拟视频信号的传输对距离十分敏感,当传输距离大于500米时,信号容易产生衰耗、畸变、群延时,并且易受干扰,使图像质量下降,当用于井下复杂的工作现场时,图像质量下降的更加明显;其次,传统模拟视频监控无法联网,只能以点对点的方式监视现场,并且使得布线工程量极大,不便于系统的扩展、维护和升级;最后,传统模拟视频信号数据的存储会耗费大量的存储介质(如录像带),查询取证时十分烦琐。
因受上述原因的限制,传统监控系统只适合在短距离、无干扰、监控点数少的范围内使用。
当在监控点灵活分布,传输距离远、并现场存在干扰源的场合不适宜使用。
而本项目中的隧道井下施工监控点刚好属于此情况,首先,监控点分布比较灵活,每个点要求能随时移动,尤其是最前端的摄像点,必须随着挖掘机的不断推进而随机前移;其次,传输距离比较长,达5至6公里,远远超出传统监控500米的极限传输距离;最后,因为施工环境在地下,湿度与温度等都不同于地面,环境恶劣,尤其是挖掘机、启重机等大功率设备的开关,周围电磁干扰非常严重。
公司根据我国目前工业电视监控市场的需求,结合我国地铁隧道监控领域的现状与发展方向,采用光电转换、光电集成等CATV成熟的技术,将图像、声音、控制集于一身光纤数字监控系统,体现了图像采集、传输、监控、记录、管理为一体化、集成化等一系列高新技术。
综上所述,本地铁隧道安全生产监控系统中的地面工地监控系统采用传统的模拟传输数字存储(含回放)监控系统;而隧道施工远程监控系统则采用光纤传输数字存储(含回放)监控系统。
为便于管理,两系统共用一套数字存储(含回放)系统。
三、设计依据工程方案的制定、设计,依照国家有关文件、标准和规定,主要有:●《中华人民共和国安全行业标准》GA/T75-PT●《民用闭路电视系统工程技术规范》GBJ42-1981●《民用建筑电器设计标准》GB/T50314●《安全防范工程程序与要求》GA/G75-94●《视频安防监控系统技术要求》GAT367-2001●《工业企业通信接地设计规范》及有关行业标准四、设计原则:进行设计时将本着“先进性、科学性、稳定性、经济性、扩展性”相统一的原则进行设计。
●先进性:充分考虑到电子时代,科学技术迅猛发展的趋势,在技术上着眼超前。
采用单片机、频分复用、光电转换等先进科学技术研发的光纤数字传输系统,可用“一根”光纤双向宽频传输一路或几十路甚至几百路监控和控制信号达几百公里,并且预留广播、报警系统传输空间。
此系统无论在国内还是国外都是非常先进的监控传输系统解决平台。
●科学性:设计时充分考虑到监控系统应用场所的复杂多样性,对大中型监控系统不仅需要远距离传输监控信号,而且应有非常强的抗高压、电磁干扰能力进行严格科学论证和考察。
本方案所采用光纤光纤共缆传输系统不仅适用于煤矿、电厂、工地等电磁环境复杂场合具有非常强抗电磁干扰能力,可远传几十甚至几百公里。
●稳定性:安全防范及可视化管理系统建设目的是保证人民的生命财产不受侵犯或通过此系统进行严格的监视管理,其稳定性是架设系统要考虑的首当其冲的问题。
光纤数字电视监控传输系统是基于成熟稳定的光纤传输技术工作的,而光纤技术在我国应用已经有二、三十年的历史了,其稳定可靠性不容置疑。
●经济性:对于建设监控项目来说,性能优越、技术先进是首要考虑的问题,经济性也忽略不得。
我们在设计时充分考虑到这一层面,既使系统架设先进简易又不失经济可靠。
十几路甚至几百路监控信号采用“一根”光缆传输不仅可以大大减少施工材料和施工费用、缩短工期,而且还减少了系统维护费用,提高了系统的稳定性和抗干扰能力。
扩展性:扩展性强弱也是衡量一个系统性能的重要指标,尤其是应用于象隧道施工这样的随着施工进度不断推进而不断改变摄像点位置的移动式监控系统,扩展性更是系统集成成功与否的关键,光纤数字监控系统则完全能满足用户的需求,在一条光纤上可随时增加监控点,最多一条光缆能容纳几百路监控信号,具体可根据两端的转换设备容量而定,传输的距离更远,可达几十甚至几百公里。
在本方案中,隧道施工远程监控系统前端监控点到监控中心的传输方式采用光纤传输方式来传输,;而地面工地监控系统前端监控点到监控中心的传输方式采用复合同轴电缆传输方式来传输,主控设备采用嵌入式数字硬盘录像系统。
此外,通过指挥中心的局域网,指挥中心领导、调度室、安检科等在办公室联网电脑上也可随时了解现场的工作和设备运行情况(通过系统授权)。
五、总体设计光纤数字监控系统以功能要求的不同共分为前端摄像部分、光电转换部分、中心控制部分、网络分控部分、视频显示和记录部分、报警输出部分(注:本方案仅为可选项);而同轴数字监控系统的功能与光纤数字监控系统基本相同,只是传输媒介是同轴电缆,没有光电转换设备,应用场所稍有不同而已。
因此下面着重介绍光纤数字监控系统。
5.1前端部分隧道施工远程监控系统前端摄像机将现场图像(含声音及报警等信号)经过转换变为光信号,经过光端收发机传送到监控中心,同时反向接收监控中心发送过来的控制电信号并转换为电信号。
前端光端机设备安装在监视现场的活动式设备箱内,它包括光端机、摄像机变压器、摄像机(含云台、解码码器、护罩、支架)等;而地面工地监控系统前端则只包括摄像机(含云台、解码码器、护罩、支架)。
1、系统前端设计本监控系统前端分为地面临时工地和地下隧道施工现场两部分,地面工地设置4个监控点(隧道入口、办公室前活动区各设置一台摄像机,材料堆放及加工场设置二台摄像机)。
为保证工地全天候安全,摄像机全部采用松下WV-CP244彩色摄像机,它具有0.6LUX低照度,这样即使现场环境光照度很低,也能保证现场的摄像要求,其中办公室前活动区的摄像机带全方位室外云台,便于监控中心区域的周边;而隧道施工现场各个监控点由于距离监控中心(设在地面工地二楼办公室)较远,同时考虑井下电磁干扰源较多,为保证图像传输的质量,该系统采用光纤传输的方式,每个监控点配备视频单模光端机(含反向数据)转换设备,它的作用是将摄像机的电信号转换成光信号进行低损耗传输,将前端每个监控点的信号传输到监控中心,同时也将每路监控点的控制信号由监控中心反向传输到前端摄像机。
考虑到隧道现场温度、湿度、亮度等特殊环境及监控点需灵活配置的要求,选用松下WV-CP474超级动态彩色彩色摄像机。
也能保证施工现场24小时即使是在极低亮度的条件下的摄像要求。
根据施工要求,挖掘现场设置二台WV-CP474(配全方位室外云台及电动自动变焦镜头);B段隧道挖掘现场设置二台WV-CP474(配全方位室外云台及电动自动变焦镜头)。
2、前端设备安装连接图1)、隧道施工监控2)、地面工地监控3、前端设备配电设计前端设备的用电,考虑到施工现场的用电安全,全部监控点前端设备均产用交流24V供电,对于隧道远程监控系统,由于距离监控中心很远,同时供电位置需随时移动,因此采用井下就近取电比较合适,接入摄像点最近的220V照明电源,经过移动式设备箱内的变压器转变为24V交流电,供终端摄像机和云台使用;而地面监控系统由于监控点离中心机房较近,为便于集中管理,采用集中供电更加合理,先将220V市电在监控中心经变压器转变为24V交流电,然后集中供给前端摄像和云台等设备使用,既方便以安全。
5.2传输部分1、光纤传输由于隧道总长为5公里,隧道施工监控点采用光纤方式进行传输,随着隧道施工进度的不断推进,除了最前端挖掘位置始终设置二台移动式摄像机(指安装立杆附设备箱可移动)外,考虑到隧道内铺设光纤的方便及沿途可能随时增设监控点的应用需求,我们采取分段铺设的方式,从监控中心开始,沿隧道约每公里拉一条铠装室外光纤,终端设备一个带三角支架的活动设备箱,端接光纤接线盒固定在设备箱内,下段光纤及该移动监控点的光端机通过光纤跳线连接,光端机放在带滑轮的移动设备箱内(电源变压器也设在里面),每路摄像机信号通过光端机将电信号转换成光信号传输,在远端机房的另一端安装光接收机进行光信号转换,这种方式可以将监控信号传到几百公里以上并且图质量不受任何损失。