车辆主动悬挂最优预见控制模型
- 格式:pdf
- 大小:243.98 KB
- 文档页数:6
浅析汽车底盘主动悬架控制方法随着汽车技术的不断发展,汽车底盘主动悬架系统已经逐渐成为了一种常见的装备。
这种系统可以根据车辆当前的驾驶状态和路况来主动调节悬架硬度,提升行车舒适性和稳定性。
在本文中,我们将对汽车底盘主动悬架控制方法进行一个浅析。
一、主动悬架原理主动悬架是指车辆悬挂系统具备主动调节功能,通过传感器感知车身运动状态,再根据实时数据调节悬架系统的工作参数,实现对车身姿态和路面适应性的主动调节。
主动悬架主要包括主动减振和主动悬架控制两部分。
主动减振通过控制减振器的阻尼力来调节车辆的悬挂硬度;主动悬架控制则通过控制空气悬挂元件或电磁阻尼器来实现对车辆悬挂的主动调节。
二、主动悬架控制方法1. 传统悬架控制传统的悬架系统主要通过设置不同的弹簧和减振器来实现对车辆悬挂系统的调节。
这种悬架系统在工作过程中需要依靠车辆的行驶速度和路面情况来进行调节,无法实现主动的悬架控制。
因此在高速行驶和复杂路况下,传统悬架系统的性能会受到一定的限制。
主动悬架控制方法则是通过悬架系统内置的传感器和控制单元,实时感知车辆的运动状态和路面情况,并根据这些数据来主动调节悬架系统的工作参数。
目前主动悬架系统主要采用以下几种控制方法:(1)电子控制电子控制是主动悬架系统的核心技术之一,通过悬挂系统内置的控制单元收集和处理来自传感器的数据,并根据预设的悬架调节算法来控制悬挂系统的工作状态。
在电子控制技术的支持下,主动悬架系统可以根据车辆当前的行驶状态和路况主动调节悬架硬度,提升行车舒适性和稳定性。
(2)气动控制为了实现对悬架系统的精准控制,主动悬架系统还需要配备一套高效的控制算法。
主动悬架控制算法的设计主要考虑以下几点:姿态控制是主动悬架系统的重要功能之一,通过感知车辆的侧倾角和纵向加速度来调节悬架系统的工作状态,提升车辆的稳定性和操控性。
(2)路面适应(3)悬挂硬度调节主动悬架系统在汽车领域具有广泛的应用前景,目前已经成为了豪华车和高端车型的标配。
文/江苏 高惠民车载视觉感知预瞄下的主动悬架随着家用汽车的普及率逐年提高,人们由最初的追求家用汽车较好的基本性能指标(动力性、安全性和经济性等)以及提供的方便与快捷,逐步上升到追求家用汽车自身优良的行驶性能和运动特性(舒适性、平顺性和操稳性)。
与此同时,由国内外车辆研究机构的相关报告和汽车公司研发和生产的一些新型车辆可知,先进的车辆悬架系统(主动悬架、半主动悬架等)可以有效改善车辆各项行驶性能,是车辆底盘智能化发展的一个重要方向。
一、悬架系统的组成和功能车辆悬架系统是车身(簧载质量m s )和车轮(非簧载质量m t )之间传递一切力和力矩的连接装置的总称,它用于连接车体与车轮,能够将路面对于车轮的垂向作用力、纵向作用力和侧向作用力以及这些作用力传递到车身,缓冲和衰减行驶中产生的车身振动与冲击,以保证车辆能平顺的行驶。
虽然汽车悬架都拥有各种不完全相同的结构形式,但一般都由弹性元件、减振器和导向机构这三大部分构成。
弹性元件主要有钢板弹簧、空气弹簧、螺旋弹簧、橡胶弹簧、油气弹簧以及扭杆弹簧等形式,而现代车辆悬架系统中采用较多的是螺旋弹簧和扭杆弹簧,个别高级轿车会应用空气弹簧。
车辆行驶中,悬架系统中的弹性元件受到冲击产生振动,为了衰减振动,在悬架系统中安装与弹性元件并联的减振器。
液力减振器是汽车悬架系统中采用较多的减振器类型,其工作原理是车轮(或车桥)与车身(或车架)间受振动出现相对运动时,减振器内的活塞相应的做上下移动,减振器腔内的液压油液不停的从一个腔经过不同的孔隙流入另一个腔中。
此时孔壁与液压油液之间的摩擦和液压油液分子之间的内摩擦对振动形成阻尼力,使车辆振动产生的能量转换成油液热能,最后经减振器外壳吸收,随之散发到大气中。
高惠民(本刊编委会委员)曾任江苏省常州外汽丰田汽车销售服务有限公司技术总监,江苏技术师范学院、常州机电职业技术学院汽车工程运用系专家委员,高级技师。
车轮相对于车身(或车架)跳动时,车轮(尤其指转向轮)的运动轨迹要符合一定的规律或要求,否则车辆的操作稳定性和其他行驶性能会受到影响。
汽车悬挂系统的主动控制研究【摘要】汽车悬挂系统是汽车重要的组成部分,对行车安全和舒适性起着至关重要的作用。
随着科技的进步,主动控制技术在汽车悬挂系统中的应用也逐渐受到关注。
本文从现状分析入手,介绍了汽车悬挂系统的发展历程和主动控制技术的应用。
接着详细探讨了基于传感器和控制算法的汽车悬挂系统主动控制方法,并通过案例分析展示了其实际效果。
展望了主动控制技术在汽车悬挂系统中的应用前景,并提出了未来研究方向。
本文旨在为汽车悬挂系统的主动控制研究提供参考,促进相关技术的发展与应用。
【关键词】汽车悬挂系统、主动控制、传感器、控制算法、研究案例分析、应用前景、未来研究方向、总结1. 引言1.1 背景介绍汽车悬挂系统是车辆中至关重要的一个部分,它直接影响着行驶的舒适性、稳定性和安全性。
随着汽车科技的不断发展,传统的被动悬挂系统已经不能满足人们对行驶质量的需求。
越来越多的汽车制造商开始研究和开发主动悬挂系统,以提高汽车的操控性能和舒适度。
传统的被动悬挂系统只能根据路面的不平整程度对汽车进行阻尼调节,无法根据车辆的实际情况进行有效的调整。
而主动悬挂系统则可以通过实时监测车辆的动态参数,根据行驶状态和路况进行主动调控,从而使车辆在行驶过程中保持最佳的悬挂状态。
主动悬挂系统的研究和应用已经取得了一定的成果,但在实际应用中仍存在一些挑战和问题,如成本高昂、能耗大等。
对汽车悬挂系统的主动控制研究具有重要的理论和实践意义,有助于提高汽车的行驶性能和安全性,同时也可以为未来的汽车智能化发展提供重要参考。
1.2 研究意义汽车悬挂系统是汽车重要的组成部分,直接影响到车辆的行驶稳定性、舒适性和安全性。
随着科技的发展,主动控制技术在汽车悬挂系统中得到了广泛应用,可以实现对悬挂系统的实时调节和控制,提高车辆的操控性能。
研究汽车悬挂系统的主动控制具有重要的意义。
通过研究主动控制技术在汽车悬挂系统中的应用,可以提高车辆的行驶稳定性。
主动控制技术能够根据路面情况和驾驶需求自动调节悬挂系统,使车辆在高速行驶、急转弯等场景下更加稳定,减少侧倾和飘逸现象,提高乘车舒适度。
《现代控制理论及其应用》课程小论文基于Matlab的汽车主动悬架控制器设计与仿真学院:机械工程学院班级:XXXX(XX)姓名:X X X2015年6月3号河北工业大学目录1、研究背景 (3)2、仿真系统模型的建立 (4)2.1被动悬架模型的建立 (4)2.2主动悬架模型的建立 (6)3、LQG控制器设计 (7)4、仿真输出与分析 (8)4.1仿真的输出 (8)4.2仿真结果分析 (11)5、总结 (11)附录:MATLAB程序源代码 (12)(一)主动悬架车辆模型 (12)(二)被动悬架车辆模型 (14)(三)均方根函数 (15)1、研究背景汽车悬架系统由弹性元件、导向元件和减振器组成,是车身与车轴之间连接的所有组合体零件的总称,也是车架(或承载式车身)与车桥(或车轮)之间一切力传递装置的总称,其主要功能是使车轮与地面有很好的附着性,使车轮动载变化较小,以保证车辆有良好的安全性,缓和路面不平的冲击,使汽车行驶平顺,乘坐舒适,在车轮跳动时,使车轮定位参数变化较小,保证车辆具有良好的操纵稳定性。
(a)被动悬架系统(b)半主动悬架系统(c)主动悬架系统图1 悬架系统汽车的悬架种类从控制力学的角度大致可以分为被动悬架、半主动悬架、主动悬架3种(如图1所示)。
目前,大部分汽车使用被动悬架,这种悬架在路面不平或汽车转弯时,都会受到冲击,从而引起变形,这时弹簧起到了减缓冲击的作用,同时弹簧释放能量时,产生振动。
为了衰减这种振动,在悬架上采用了减振器,这种悬架作用是外力引起的,所以称为被动悬架。
半主动悬架由可控的阻尼及弹性元件组成,悬架的参数在一定范围内可以任意调节。
主动悬架是在控制环节中安装了能够产生上下移动力的装置,执行元件针对外力的作用产生一个力来主动控制车身的移动和车轮受到的载荷,即路面的反作用力。
随着电控技术的发展,微处理器在车辆中的应用已经日趋普遍,再加上作动器、可调减振器和变刚度弹簧等重大技术的突破,使人们更加注对主动悬架系统的研究。
1 绪论随着社会的发展和文明的进步,汽车作为一种交通工具,已成为人们出行的主要选择,汽车乘坐的安全性、舒适性已成为世人关注的焦点。
汽车作为高速客运载体,其运行品质的好坏直接影响到人的生命安全,因此,与乘坐安全性、舒适性密切相关的轿车动力学性能的研究就显得非常重要。
悬架系统汽车的一个重要组成部分,它连接车身与车轮,主要由弹簧、减震器和导向机构三部分组成。
它能缓冲和吸收来自车轮的振动,传递车轮与地面的驱动力与制动力,还能在汽车转向时承受来自车身的侧倾力,在汽车启动和制动时抑制车身的俯仰和点头。
悬架系统是提高车辆平顺性和操作稳定性、减少动载荷引起零部件损坏的关键。
一个好的悬架系统不仅要能改善汽车的舒适性,同时也要保证汽车行驶的安全性,而提高汽车的舒适性必须限制汽车车身的加速度,这就需要悬架有足够的变形吸收来自路面的作用力。
然而为了保证汽车的安全性,悬架的变形必须限定在一个很小的范围内,为了改善悬架性能必须协调舒适性和操作稳定性之间的矛盾,而这个矛盾只有采用这折衷的控制策略才能合理的解决。
因此,研究汽车振动、设计新型汽车悬架系统、将振动控制在最低水平是提高现代汽车性能的重要措施[1][2]。
1.1 车辆悬架系统的分类及发展按工作原理不同,悬架可分为被动悬架(Passive Suspension)、半主动悬架(Semi-Active Suspension)和主动悬架(Active Suspension)三种,如图1.1所示[3]。
(a)被动悬架 (b)全主动悬架 (c)半主动悬架图 1.1 悬架的分类图1.1中Mu为非簧载质,Ms为簧载质量,Ks为悬架刚度,Kt为轮胎刚度;C1为被动悬架阻尼,C2为半主动悬架可变阻尼,F为主动悬架作动力。
目前我国车辆主要还是采用被动悬架(Passive Suspension)。
其两自由度系统模型如图1.1(a)所示。
传统的被动悬架一般由参数固定的弹簧和减振器组成,其弹簧的弹性特性和减振器的阻尼特性不能随着车辆运行工况的变化而进行调节,而且各元件在工作时不消耗外界能源,故称为被动悬架。
《基于智能控制的汽车主动悬架控制策略研究》篇一一、引言随着汽车工业的快速发展,人们对汽车行驶的平稳性、安全性和舒适性要求越来越高。
汽车主动悬架系统作为提高汽车行驶性能的关键技术之一,其控制策略的研究显得尤为重要。
传统的被动悬架系统已经无法满足现代汽车的需求,而基于智能控制的主动悬架系统则能够更好地适应复杂的道路环境,提高汽车的行驶性能。
本文旨在研究基于智能控制的汽车主动悬架控制策略,为汽车悬架系统的设计和优化提供理论依据。
二、智能控制技术概述智能控制技术是一种基于人工智能、计算机技术和控制理论的技术,具有自适应、自学习和优化的特点。
在汽车主动悬架系统中,智能控制技术可以实现对车辆行驶状态的实时监测和调整,提高车辆的行驶稳定性和舒适性。
目前,常见的智能控制技术包括模糊控制、神经网络控制、遗传算法控制等。
三、汽车主动悬架系统概述汽车主动悬架系统是一种能够根据道路条件和车辆行驶状态实时调整悬架参数的系统。
与传统的被动悬架系统相比,主动悬架系统具有更好的适应性和控制性,能够更好地提高车辆的行驶性能。
主动悬架系统主要由传感器、控制器和执行器等部分组成,其中控制器是整个系统的核心。
四、基于智能控制的汽车主动悬架控制策略研究4.1 模糊控制策略模糊控制是一种基于模糊逻辑的控制方法,具有较好的鲁棒性和适应性。
在汽车主动悬架系统中,模糊控制可以根据传感器采集的车辆状态信息,通过模糊推理方法对悬架参数进行调整,实现对车辆行驶状态的优化。
研究表模糊控制策略可以有效地提高车辆的平稳性和安全性。
4.2 神经网络控制策略神经网络是一种模拟人脑神经元工作的计算模型,具有自学习和自适应的能力。
在汽车主动悬架系统中,神经网络控制可以通过学习大量的驾驶数据,自动调整悬架参数,实现对车辆行驶状态的优化。
研究表明,神经网络控制策略可以更好地适应不同的道路环境和驾驶需求。
4.3 遗传算法控制策略遗传算法是一种模拟自然进化过程的优化算法,具有全局搜索和优化能力。