2006031459黄德荣5位逐级进位和超前进位加法器设计剖析
- 格式:doc
- 大小:69.50 KB
- 文档页数:9
超前进位加法器超前进位加法器是一种数字电路设备,用于进行二进制数的加法运算。
它通过将多个加法器级联,实现对多位二进制数的加法计算,并且能够在加法过程中实现超前进位,提高计算速度。
超前进位加法器的原理是基于二进制加法的原理。
在二进制加法中,每一位的运算结果可以表示为:两个位的和与进位。
其中,和即为输入位的异或运算结果,进位则是输入位的与运算结果再经过左移一位。
超前进位加法器利用这一原理,通过预测进位产生的结果,以提前得到进位并作用于下一级的运算。
超前进位加法器可以分为两个部分:生成进位部分和传递进位部分。
生成进位部分用于预测进位的产生情况,传递进位部分则是将进位传递给下一级的加法器。
生成进位部分的输入为两个相邻位的和,输出为进位。
传递进位部分的输入为前一级的进位以及生成进位部分的进位,输出为当前位的进位。
为了方便理解,以下以一个四位超前进位加法器为例进行介绍。
这个四位加法器由四个单独的全加器组成,每个全加器负责一个位的运算。
生成进位部分和传递进位部分在全加器中都有相应的电路实现。
首先,生成进位部分。
对于第一位的全加器来说,由于没有前一位的进位,因此直接将两个输入位的和作为输出位的进位。
对于其他位的全加器,需要预测进位的产生。
这个预测的规则是,如果前一位的和为1,则有可能会产生进位。
因此,预测进位部分将前一位输入位的和与该位输入位的和进行与运算,得到预测的进位结果。
接下来,传递进位部分。
对于第一个全加器来说,由于没有前一位的进位,因此直接将生成进位部分的进位作为输出位的进位。
对于其他位的全加器,传递进位部分将前一位的进位与生成进位部分的进位进行或运算,得到当前位的进位。
将多个全加器级联后,就构成了一个超前进位加法器。
通过这种方式,每一位的运算可以并行进行,从而提高了计算速度。
同时,由于提前预测了进位的结果,可以减少了进位的传播延迟,进一步提高了计算效率。
超前进位加法器在数字电路的设计中具有重要的应用价值。
沈阳航空工业学院课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:超前进位加法器的设计院(系):计算机学院专业:计算机科学与技术班级:4401102学号:200403011046姓名:郭丰瑞指导教师:刘泽显完成日期:2006年12月31日沈阳航空工业学院课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (3)第2章详细设计方案 (4)2.1顶层方案图的设计与实现 (4)2.1.1创建顶层图形设计文件 (4)2.1.2器件的选择与引脚锁定 (4)2.2功能模块的设计与实现 (6)2.2十六位超前进位加法器的设计 (6)2.3仿真调试 (8)第3章编程下载与硬件测试 (12)3.1编程下载 (12)3.2硬件测试及结果分析 (12)参考文献 (15)附录(程序清单或电路原理图) (16)第1章总体设计方案1.1设计原理十六位超前进位加法器,可以由4个四位超前进位加法器构成。
由第一个四位超前进位加法器的进位输出加进为第二个超前进位加法器的进位输入,依次类推。
超前进位加法器的实现是建立在各位进位的形成条件来实现的。
所以第一位的进位c1=a0*b0+(a0+b0)*c0;第二位的进位c2=a1*b1+(a1+b1)*a0*b0+(a1+b1)(a0+b0)c0第三位的进位c3=a2*b2+(a2+b2)a1*b1+(a1+b1)*(a2+b2)*a0*b0+(a0+b0)(a1+b1)(a2+b2)*c0第四位的进位c4=a3*b3+(a3+b3)*a2*b2+(a3+b3)*(a2+b2)a1*b1+(a3+b3)(a2+b2)(a1+b1)*a0*b0+(a0+b0)(a1+b1)(a2+b2)(a3+b3)*c0 下面我们可以引进传递函数Pi和进位产生函数Gi的概念。
他们定义为:Pi=Ai+BiGi=Ai*BiP1的意义是:当A0和B0中有一个为1时,若有进位输入,则本位向高位传递进位。
试验二超前进位加法器设计练习2. 4位超前进位加法器行波进位加法器延时较长,可采用超前进位加法器减少延时,但是由此会造成电路的复杂。
超前进位加法器原理参见《数字集成电路》(周润德第二版)424页。
对以上公式的注解:公式中的C O,K 表示第K 为的进位输出,G K 为第K 位的进位产生,P K 为第K 为的进位传播。
且:K K KK K KG A B P A B ==⊕ A K ,B K 为输入加数的第K 位。
将Co 和S 用G,P 重写为: O ii C G PC S P C =+=⊕由于低位的输出进位是高位的输入进位,所以有上面的(11.15)式源程序://this is a carry lookahead of 4bitmodule clad(ina,inb,ci,co,sum);input[3:0] ina,inb;input ci;output co;output[3:0]sum;wire co0,co1,co2,G0,G1,G2,G3,P0,P1,P2,P3;assignG0=ina[0]&inb[0],P0=ina[0]^inb[0],G1=ina[1]&inb[1],P1=ina[1]^inb[1],G2=ina[2]&inb[2],P2=ina[2]^inb[2],G3=ina[3]&inb[3],P3=ina[3]^inb[3],co0=G0|(P0&ci),co1=G1|(P1&co0),co2=G2|(P2&co1),co=G3|(P3&co2),sum[0]=P0^ci,sum[1]=P1^co0,sum[2]=P2^co1,sum[3]=P3^co2;endmodule测试程序:module clad_test;reg[3:0] ina,inb;reg ci;wire co;wire[3:0]sum;clad CI(.ina(ina),.inb(inb),.ci(ci),.co(co),.sum(sum)); initialbeginina=0;inb=0;ci=0;endalways #5 ina=ina+1'b1;always #80 inb=inb+1'b1;always #1280 ci=~ci;endmodule仿真结果:注:该结果为10进制显示练练手:参考《数字集成电路》(周润德第二版)420-421,设计一个16位的超前进位加法器,基本单元使用4位的加法器,结构自选。
先⾏进位加法器实验四32位先⾏进位加法器⼀、功能概述串⾏进位加法器延时很⼤,每级的输出结果都要等上⼀级的进位到来才可以求和算出结果,这次实验对普通全加器进⾏改良,改良为先⾏进位加法器。
先⾏进位加法器,各级的进位彼此是独⽴产⽣,只与输⼊数据A,B和C_in有关,将各级间的进位级联传播给去掉了,这样就可以减⼩进位产⽣的延时。
每个等式与只有三级延迟的电路对应,第⼀级延迟对应进位产⽣信号和进位传递信号,后两级延迟对应上⾯的积之和。
通过这种进位⽅式实现的加法器称为超前进位加法器。
因为各个进位是并⾏产⽣的,所以是⼀种并⾏进位加法器。
⼆、实验原理1、设⼆进制加法器第i位为A i,B i,输出为S i,进位输⼊为C i,进位输出为C i+1,则有:S i=A i⊕B i⊕C i(1-1)C i+1 =A i * B i+ A i *C i+ B i*C i =A i * B i+(A i+B i)* C i(1-2)令G i = A i * B i , P i = A i+B i,则C i+1= G i+ P i *C i当A i和B i都为1时,G i = 1,产⽣进位C i+1 = 1当A i和B i有⼀个为1时,P i = 1,传递进位C i+1= C i因此G i定义为进位产⽣信号,P i定义为进位传递信号。
G i的优先级⽐P i⾼,也就是说:当G i = 1时(当然此时也有P i = 1),⽆条件产⽣进位,⽽不管C i是多少;当G i=0⽽P i=1时,进位输出为C i,跟C i之前的逻辑有关。
下⾯推导4位超前进位加法器。
设4位加数和被加数为A 和B,进位输⼊为C in,进位输出为C out,对于第i位的进位产⽣G i = A i·B i ,进位传递P i=A i+B i , i=0,1,2,3。
于是这各级进位输出,递归的展开Ci,有:C0 = C inC1=G0 + P0·C0C2=G1 + P1·C1 = G1 + P1·G0 + P1·P0?C0C3=G2+ P2·C2= G2+ P2·G1+ P2·P1·G0+P2·P1·P0·C0C4=G3+ P3·C3= G3+ P3·G2+ P3·P2·G1+P3·P2·P1·G0 + P3·P2·P1·P0·C0 (1-3)C out=C4由此可以看出,各级的进位彼此独⽴产⽣,只与输⼊数据Ai、Bi和Cin有关。
超前进位加法器的设计分解沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:超前进位加法器的设计院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:完成日期:2014年01月10日第2章详细设计方案2.1 顶层方案图的设计与实现顶层方案图主要实现一位全加器的逻辑功能,采用原理图设计输入方式完成,超前进位加法器电路的是实现基于XCV200可编程逻辑芯片。
在完成原理图的功能设计后,经过检测调试,把输入/输出信号通过引脚编号安排到XCV200指定的引脚上去,最终实现芯片的引脚锁定。
2.1.1顶层方案的整体设计顶层图形文件主要由2个四位超前进位加法器构成,总共17位输入,9位输出。
顶层图形文件由Xilinx Foundation F3.1软件编辑得到相应的模块,顶层图形的整体设计如下图2.1所示:图 2.1八位超前进位加法器整体设计图2.1.2元器件选择和引脚锁定(1)元器件的选择由于在设计的过程中,硬件设计环境是基于伟福COP2000型计算机组成原理实验仪和XCV200实验板,故采用的目标芯片为Xilinx XCV200可编程逻辑芯片。
(2)引脚锁定在Xilinx Foundation F3.1上面完成软件的设计之后,把顶层图形文件中的输入/输出信号用引脚编号安排到Xilinx XCV200芯片指定的引脚上去,从而实现芯片的设计电路的引脚锁定,各信号及Xilinx XCV200芯片引脚对应关系如下表2.1所示:表 2.1 信号和芯片引脚对应关2.2 功能模块的设计与实现在八位超前进位加法器和四位超前进位加法器的设计中均是采用Schematic 设计输入方式,而在四位超前进位加法器的设计中是由一列的门电路构成,最后在由2个四位超前进位加法器模块构成8位超前进位加法器。
可以扩展开来,16位,32位超前进位加法器原理类似8位的设计原理。
2.2.1 八位超前进位加法器的设计与实现(1)设计描述根据上面在1.1中讲述的四位超前进位加法器的设计原理那样,四位超前进位加法器的实现是建立在进位C1,C2,C3,C4的基础之上的。
数字集成电路课程设计报告-4bits超前进位加法器福州⼤学⾄诚学院数字集成电路课程设计报告设计题⽬:4bits 超前进位加法器班级:专业:姓名:学号:组名:指导⽼师:教师评分:⽇期:4bits超前进位加法器⽬录第1章概述.................................................................... - 3 -1.1课程设计⽬的 (3)1.2课程设计的主要内容 (3)1.2.1设计题⽬ (3)1.2.2设计内容 (3)第2章功能分析及逻辑分析...................................................... - 3 -2.1功能分析 (3)2.2推荐⼯作条件 (4)2.3电性能 (4)2.4交流(开关)特性 (5)2.5真值表 (6)2.6表达式 (6)2.7电路图 (7)第3章电路设计及器件参数设计.................................................. - 7 -3.1性能指标: (7)3.2模块划分 (7)3.2.1输出级电路设计 (7)3.2.2内部反相器 (8)3.2.3内部电路等效 (8)3.2.4输⼊级电路 (9)3.2.5中间缓冲级电路 (9)3.2.6输出缓冲级电路 (9)3.2.7输⼊、输出保护电路 (10)3.3本章⼩结 (10)第4章功耗估算与延时......................................................... - 10 -4.1电容估算 (10)4.2功耗估算 (11)4.3延时估算 (11)4.4本章⼩结 (12)第5章电路模拟与仿真......................................................... - 12 -5.1电路搭建 (12)5.1.1建⽴新库 (12)5.1.2建⽴SCHEMATIC VIEW (13)5.1.3建⽴SYMBOL (13)5.1.4建⽴总体电路SCHEMATIC VIEW (13)数字集成电路课程设计5.1.5建⽴总体SYMBOL (14)5.1.6测试电路 (14)5.2功能仿真 (15)5.3功耗仿真 (15)5.4仿真结果分析 (16)5.5本章⼩结 (16)第6章版图设计............................................................... - 16 -6.1原理 (16)6.2反相器版图 (17)6.2.1 LAYOUT VIEW的建⽴ (17)6.2.2添加器件 (18)6.2.3互连,实现反相器功能 (18)6.3输⼊级 (19)6.4输出级 (19)6.5输出缓冲 (19)6.6异或门 (20)6.7或⾮门 (20)6.8与门 (20)6.9整体版图 (21)6.10本章⼩结 (21)总体⼼得....................................................................... - 22 -对课程内容的建议................................................... 错误!未定义书签。
8位超前进位加法器设计说明书超前进位加法器就是使各位的进位直接由加数和被加数来决定,而不需要依赖低位进位。
即有如下逻辑表达式:1)(-++=i i i i i i C B A B A C当第i 位被加数A i 和加数B i 均为1时,有1=i i B A ,不论低位运算结果如何本位必然有进位输出(1=i C ),所以定义i i i B A G =为进位产生函数。
当A i 和B i 中只有一个为1时,有0=i i B A ,1=+i i B A ,使得1-=i i C C ,所以定义i i i B A P +=为进位传递函数。
将P i 和G i 代入全加器的“和”及“进位”表达式有:1-⊕⊕=i i i i C B A Y从而构成超前进位加法器。
VHDL 示例程序如下:(本程序在MAXPLUSII V9.6上编译通过)--*****8位超前进位加法器*****LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE. STD_LOGIC _ARITH.ALL;USE IEEE. STD_LOGIC _UNSIGNED.ALL;ENTITY ADDER8BIT ISPORT(A, B: IN UNSIGNED(7 downto 0);CI,clk: IN STD_LOGIC;Y_OUT: OUT STD_LOGIC_VECTOR(7 downto 0);CO_OUT: OUT STD_LOGIC);END ADDER8BIT;ARCHITECTURE doing OF ADDER8BIT ISSIGNAL CO,Y: STD_LOGIC_VECTOR(7 downto 0);BEGINY(0)<=A(0) xor B(0) xor CI;CO(0)<=(A(0) and B(0)) or (B(0) and CI) or (A(0) and CI);GEN:for i in 1 to 7 GENERATEY(i)<=A(i) xor B(i) xor CO(i-1); --1-⊕⊕=i i i i C B A YCO(i)<=(CO(i-1) and A(i)) or (CO(i-1) and B(i)) or (A(i) and B(i)); -- 1)(-++=i i i i i i C B A B A Cend GENERATE;process(clk)beginif clk'event and clk='1' thenY_OUT<=Y(7) & Y(6) & Y(5) & Y(4) & Y(3) & Y(2) & Y(1) & Y(0);CO_OUT<=CO(7);end if;end process;END doing;附:仿真时序波形。
华东交通大学理工学院课程设计报告书所属课程名称EDA课程设计题目超前进位加法器设计分院专业班级学号学生姓名指导教师2013 年7月2日目录第一章设计内容与要求 (3)第二章超前进位加法器设计原理 (3)第三章详细设计流程 (4)3.1.创建工程文件 (4)3.2.程序的编译 (5)3.3.波形的仿真 (7)第四章设计结果分析 (11)第五章源程序代码 (12)第六章心得体会 (14)第七章参考文献 (15)第一章设计内容与要求加法运算是最重要也是最基本的运算,所有的其他基本运算,如减、乘、除运算最终都能归结为加法运算。
但因为加法运算存在进位问题,使得某一位计算结果的得出和所有低于他的位相关。
因此为了减少进位传输所消耗的时间,提高计算速度,人们设计了多种类型的加法器,如跳跃进位加法器、进位选择加法器、超前进位加法器等。
本设计采用的是超前进位加法器。
通过Verilog 设计一个超前8位加法器。
要求在Quartus II软件下,利用Verilog编程完成层次式电路设计,电路中的元件可以用Verilog设计也可以用库元件连线构成再封装。
8位超前进位加法器,借助EDA工具中的综合器,适配器,时序仿真器和编程器等工具进行相应处理。
适配采用Cyclone系列的EP1C6Q240C8。
要求综合出RTL电路,并进行仿真输入波形设计并分析电路输出波形. 试比较并阐述数据类型reg型和wire型的区别。
第二章超前进位加法器设计原理将n个全加器相连可得n位加法器,但是加法时间较长。
解决的方法之一是采用“超前进位产生电路”来同时形成各位进位,从而实现快速加法。
超前进位产生电路是根据各位进位的形成条件来实现的首先对于1位加法器基本位值和与进位输出为1;如果a,b有一个为1,则进位输出等于cin;令G=ab,P=a+b,则有:Cout==ab+(a+b)cin=G+P•cin由此可以G和P来写出4位超前进位链如下(设定四位被加数和加数为A 和B,进位输入Cin,进位输出为cout,进位产生Gi=AiBi,进位传输Pi=Ai+Bi);C0=cin;C1=G0+P0C0=G0+P0•cinC2=G1+P1C1=G1+P1(G0+P0cin)=G1+P1G0+P1P0cinC3=G2+P2C2=G2+P2(G1+P1cin)=G2+P2G1+P2P1G0+P2P1P0cinC4=G3+P3C3=G3+P3(G2+P2C2)=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0cin Cout=c4由超前进位链,各个进位彼此独立产生,将进位级联传播给去掉了,因此,减小了进位产生的延迟时间。
超前进位加法器原理超前进位加法器是一种在数字电路中常用的加法器,它可以实现快速、高效地进行数字加法运算。
在本文中,我们将详细介绍超前进位加法器的原理和工作方式。
首先,让我们来了解一下传统的进位加法器。
在传统的进位加法器中,每一位的进位都依赖于前一位的运算结果。
这意味着当我们进行多位数的加法运算时,每一位的计算都需要等待前一位的计算结果,这会导致整体的运算速度变慢。
而超前进位加法器则通过引入预测进位的方式来解决这一问题。
它可以在不等待前一位计算结果的情况下,提前计算出进位的值,从而加快整体的运算速度。
超前进位加法器的原理是基于两个关键的概念,预测进位和进位生成。
预测进位是指在进行加法运算时,提前计算出下一位的进位值。
而进位生成则是指在当前位的计算中,根据当前位的两个加数和上一位的进位值,生成当前位的进位值。
为了更好地理解超前进位加法器的工作原理,让我们来看一个具体的例子。
假设我们要计算两个4位数的加法,1101和1011。
在传统的进位加法器中,我们需要等待前一位的计算结果,而在超前进位加法器中,我们可以提前计算出进位值,从而加快整体的运算速度。
对于上面的例子,我们可以先计算最低位的进位值。
根据预测进位的原理,我们可以提前计算出第二位的进位值为1。
然后,根据进位生成的原理,我们可以计算出最低位的和为0,进位值为1。
接着,我们可以继续计算第二位的和和进位值,依次类推,直到计算出最高位的和和进位值。
通过上面的例子,我们可以看到,超前进位加法器可以在不等待前一位计算结果的情况下,提前计算出进位值,从而加快整体的运算速度。
这种预测进位和进位生成的原理,使得超前进位加法器成为了数字电路中常用的加法器之一。
总之,超前进位加法器通过引入预测进位的方式,提前计算出进位值,从而加快了加法运算的速度。
它的工作原理基于预测进位和进位生成的概念,通过这种方式可以在不等待前一位计算结果的情况下,快速、高效地进行数字加法运算。
性能改进的16位超前进位加法器李 嘉,蒋 林(西安邮电学院 陕西西安 710061)摘 要:加法运算是最重要最基本的运算,所有的其他基本算术运算,减、乘、除、模乘运算最终都能归结为加法运算。
在不同的场合使用的加法器对其要求也不同,有的要求速度更快,有的要求面积更小。
基于速度更快的要求,对3种常用加法器从结构与性能上进行比较,给出了综合面积与速度的比较。
进而对超前进位加法器进行了进一步改进,加入了流水线结构设计,大大提高了其速度性能。
关键词:串行进位加法器;超前进位加法器;流水线;逻辑综合中图分类号:T P342+.21 文献标识码:B 文章编号:1004-373X(2007)22-172-03A 16-bit C LA with Improved PerformanceL I Jia,JIA N G L in(Xi an Institute o f P ost and T elecom municat i o ns,Xi an,710061,Chi na)Abstract :T he addition o perat ion is the mo st impo rtant fundamental o per ation,all other o perat ions including subtr action multiplication division and modular mult iplication can be implemented by addition operatio n.A dders using at var ious cases are different since the requirement are different.Some ask for faster,others ask for smaller.T hree co mmon used adder s are com -pared in the st ruct ur al and perfo rmance,based o n the requirement o f faster.T hen so me amelio ratio ns on the CL A are made by adding pipline str ucture to impro ve its perfo rmance fo r w or king faster.Keywords :ripple adder ;car ry loo k -ahead adder;pipeline;log ic sy nthesis收稿日期:2007-04-23加法运算是最重要最基本的运算,所有的其他基本算术运算,减、乘、除、模乘运算最终都能归结为加法运算。