低渗储层压裂改造
- 格式:ppt
- 大小:326.50 KB
- 文档页数:17
低渗透油藏整体压裂设计内容和设计方法摘要在低渗透油田的开发过程中,压裂技术成为低渗透油气田开发的主导工艺,在设计思想上也由单井增产措施的优化向区块压裂方案的优化、整体改造开发方案的优化发展。
迄今为止,低渗透油藏压裂技术已伴随着整体压裂技术的发展而进入到一个新的阶段,朝着优化支撑剂、提高压裂液效率、大型整体优化压裂设计的方向发展。
本文介绍了整体压裂的基本特征及设计原则,详细介绍了整体压裂设计的内容及方法,并用G43断块油藏的整体压裂研究进行的整体压裂设计内容的说明。
关键字低渗透,整体压裂,水力压裂,优化设计随着我国石油勘探和开发程度的深入,低渗透油田储量所占比例愈来愈大。
低渗透油田的高效开发对迎接石油工业面临着严峻的挑战、缓解石油供需矛盾有着重要的作用。
在低渗透油田开发方面,相当多的油井采不出、注入井注不进,形成低产低效的半瘫痪状态。
同时相当多的低渗透油田储量仍然难以动用。
油层水力压裂作为低渗透油藏改造的主要措施,随着对压裂技术在认识上的深化,进入八十年代中、后期,在设计思想上有了新的突破:把原来的以单井产量或经济净现值为准则的单井优化设计扩展为以油藏(区块)作为总体单元、以获得最大的油藏经济净现值或采收率(扫油效率和波及系数)为准则的整体压裂优化设计。
油藏整体压裂的工作对象(工作单元)是从全油藏出发,就是将压裂缝长、缝宽、导流能力与一定延伸方位的水力裂缝置于给定的油藏地质条件和注采井网之中,然后反馈到油藏工程和油田开发方案中,从而优化井网、井距、井数及布井方位,以取得好的开发效果和效益。
上述研究成果从整体压裂方案的基础上再做单井的优化压裂设计;通过方案设计实施与评价,全面提高油藏的开发水平与经济效益。
从这个意义上来说,水力压裂已从一项单纯提高单井产量的战术手段,而发展成为经济有效地开采低渗透油藏不可或缺的战略措施,故整体压裂又称油田开发压裂。
制定低渗透油藏整体压裂方案不仅是编制采油工程方案所必需的,也是油田开发(或开发调整)方案的重要组成部分[1]。
低渗储层压裂液技术研究一、低渗储层的定义和特征低渗储层是指渗透率低于1md的岩石储层,其开发难度较大。
这类储层通常具有以下特征:1.孔隙度低:低渗储层通常具有较低的孔隙度,集中分布的孔隙度很少超过10%。
2.渗透率低:低渗储层的油气流动能力差,渗透率一般低于1md,且通常呈现非均质性。
3.油藏压力低:低渗储层通常具有较低的油藏压力,不足以带动油气自然流出,需要通过增加地表压力才能实现开发。
以上因素都给低渗储层的油气开发带来了巨大的挑战,需要采取有效的技术手段提高开发效率。
压裂技术是一种在岩石中注入高压液体,使之破裂形成裂缝的方法。
这种技术可以将未被采收的油气从孔隙中挤出,增加产能。
在低渗储层的开发中,压裂技术同样适用。
但由于低渗储层本身的特殊性质,需要使用低渗透率压裂液来完成作业。
低渗透率压裂液是指其能够在低渗透率储层中形成裂缝并保持稳定的液体。
与传统的高渗透率压裂液相比,低渗透率压裂液具有更高的黏度、更长的液体保持时间和更强的抗渗透性能。
低渗透率压裂液一般由以下组成部分组成:1.基础液体:基础液体通常是涤纶素或高分子聚合物水溶液。
它们可以增加压裂液体的黏度,提高其在储层中的分布均匀性。
此外还常常加入胶化剂来增加黏度。
2.填充物:填充物通常是人造或天然胶体物,如硅胶等。
它们可以防止破裂缝在液体排流过程中闭合。
3.微观弹性体:微观弹性体是一种形状记忆材料,可以缓慢地释放进入破裂缝中的压力。
低渗储层压裂液技术早在20世纪80年代就已经开始应用,然而此类技术的先进化和成熟化直到21世纪才得到拓展和广泛应用。
在实践中,低渗储层压裂液技术的应用从地质勘探到油气开发的各个环节,渗透率低的储层压裂后产出的油气量大幅增加,从而为系统创造了更大的经济效益。
但是,低渗储层压裂液技术也面临着一些挑战。
其中最主要的是压裂液体的组成及性质。
在使用低渗透率压裂液的同时,还需要考虑压裂液体对地下环境的影响。
因此,碳酸钙和纳米硅砂等在撤回压裂液体过程中就会从储层中渗透到地下水系中。
低渗油藏压裂技术研究与应用一、低渗油藏概述低渗油藏是指渗透率小于1mD(1毫达西)的油藏,通常被认为是非常难以开采和开发的类型,因为油和天然气在渗透率较低的地层中难以流动。
低渗油藏的开发需要特殊的技术和方法,这也是科技进步不断带来的新挑战之一。
二、压裂技术概述压裂技术是一种利用高压将液态流体喷射到井口以达到裂缝形成的作用。
通过高压向地层岩石注入水、液化石油气或压实空气等流体,将地层岩石产生裂缝,从而使油和天然气得以流动。
压裂技术不仅应用于陆地和近海油气藏的开采,也广泛应用于煤层气开采。
三、低渗油藏压裂技术研究1. 压裂液配方研究低渗油藏与高渗油藏的最大区别在于,由于低渗油藏的渗透率非常低,因此需要使用低粘度的压裂液才能够充分渗透进入岩石中,并形成裂缝。
此外,还需要使用一些添加剂来提高压裂液在岩石中的效率,从而提高压裂效果。
例如,聚合物添加剂可以增加压裂液的黏度,提高在地层中的分散度,从而让压裂液更容易渗透进入岩石。
2. 井技术参数研究压裂技术需要精细的操作和调节,包括注入压力、注入速度和注入量等井技术参数的控制。
这些参数的调节非常重要,因为不同的压裂条件会导致不同的压缩力和破裂情况,从而影响产油率和破裂宽度等指标。
为了获得最佳的压裂效果,需要进行大量的研究和实验,以优化井技术参数的调节。
3. 岩石力学特性研究在进行压裂操作前,需要先对地层进行详细的岩石力学特性研究,以了解地层的破裂特性和裂缝的形成情况。
构建地层模型和岩石力学特性模型,可以帮助确定最佳的井技术参数,以获得最佳的压裂效果。
四、低渗油藏压裂技术应用压裂技术在低渗油藏中的应用成效显著。
当合适的压裂技术被应用时,生物源压裂剂能够适应各种岩性,同时对环境也更友善。
经过压裂后,通过水流的作用,地下棕色能够产出更多的油气。
压裂在审计和优化岩石性质上扮演了重要角色。
不同的压裂技术可以影响压缩率和裂缝宽度,从而达到最佳的采收率。
五、结论总之,低渗油藏是一个重要的资源开发领域,需要利用先进的技术和方法进行开发。
薄互层低渗透油藏整体压裂开发技术薄互层低渗透油藏整体压裂开发技术薄互层低渗透油藏整体压裂开发技术摘要:针对薄互层低渗透油藏储层薄、微裂缝发育的特点,通过开展地应力与人工裂缝扩展研究、压裂裂缝参数优化、压裂工艺技术优化等研究,在滨南油田滨660块实施整体压裂开发,取得了良好的效果,为薄互层低渗油藏高效开发探索了新的道路。
关键词:薄互层;低渗透油藏;整体压裂;地应力一、薄互层油藏概况滨南薄互层油藏主要分布在滨南油田,其中滨660块构造位置位于东营凹陷西北边缘,滨南――利津二级断裂带西段,滨649滚动背斜北台阶,其北部隔单家寺油田为滨县凸起,东北部隔利津油田为陈家庄凸起,东南临利津洼陷。
主要含油层系沙四上,埋深2863-3096米,含油面积1.99km2,地质储量235万吨,平均单井有效厚度18m。
1、薄互层油藏地质特征(1)层多,单层厚度薄,平面上广泛分布滨660块沙四段属扇三角洲前缘亚相的沉积,纵向上含油井段长,油层多,单层厚度小。
沙四上划分为2个砂组,并对含油的1、2砂组精细划分为6个小层,在100m含油井段内视分层系数最多达16层/井,最小为6层/井,平均9层/井。
(2)岩性复杂,储层物性差沙四段岩性主要为浅灰色泥岩、白云质泥岩、劣质油页岩与粉细砂岩的不等厚互层,夹有薄层白云质砂岩,平均孔隙度15.2%,渗透率11.7×10-3um2,为低孔低渗透储层。
(3)常温常压油藏,原油性好沙四段油层埋深一般2863-3096米,平均2800m,地层温度117℃,温度梯度3.44℃/100m,原始地层压力29.05MPa,压力系数为0.968,属于常温常压系统。
2、薄互层特低渗透油藏开发难点(1)自然产能低,常规压裂有效期短沙四段储层因层薄且低渗透,油井自然产能低(<3t/d)。
通过压裂改造后,初产较高,但压裂有效期短,产量递减快。
(2)注水压力高,注水效果差因储层特低渗透,沙四段吸水能力差、启动压力高,注水压力上升快,注水泵压高28MPa,油井受效不均的矛盾突出,部分井长期不见效,见效后也表现为低产稳定,总体注水开发效果差。