人教版九年级上册圆内接四边形的性质与判定定理
- 格式:ppt
- 大小:443.50 KB
- 文档页数:17
圆的内接四边形有什么性质
圆内接四边形是一个几何概念。
四个顶点在同一圆上的四边形称为圆内接四边形。
我们来看看它的属性。
以圆内接四边形ABCD为例,圆心为O,假设AC、BD交于Q,则:
1、圆内接四边形的对角互补:∠BAD+∠DCB=180°,
∠ABC+∠ADC=180°
2、圆内接四边形的任意一个外角等于它的内对角:
∠CBE=∠ADC
3、圆心角的度数等于所对弧的圆周角的度数的两倍:
∠AOB=2∠ACB=2∠ADB
4、圆内接四边形对应三角形相似:△ABQ∽△DCQ
5、同弧所对的圆周角相等:∠ABD=∠ACD
6、相交弦定理:AQ×CQ=BQ×DQ
7、托勒密定理:AB×CD+AD×CB=AC×BD
8、判定定理编辑
1.如果一个四边形的对角是互补的,那么这个四边形内接于一个圆。
2.如果一个四边形的外角等于其内对角线,那么这个四边形内接于一个圆。
3.如果一个四边形的四个顶点到一个固定点的距离相等,那么这个四边形内接于一个以该点为圆心的圆。
4.如果有两个三角形有相同的底边,其他顶点都在底边的同一侧,并且顶点相等,那么这两个三角形有一个公共外接圆。
5.如果一个四边形的张角相等,那么这个四边形内接于一个圆。
第 7课 圆内接四边形的性质与判定定理【学习目的】理解圆内接四边形的性质与判定定理,能熟练运用圆内接四边形的性质与判定定理解题。
【学习重点】能熟练运用圆内接四边形的性质与判定定理解题。
【学习难点】能熟练运用圆内接四边形的性质与判定定理解题。
【过程展示】1、圆内接四边形的性质定理:定理1:定理2:2、圆内接四边形的判定定理:推论:例1、如图,⊙1和⊙O 2都经过A 、B 两点,经过点A 的直线CD 与⊙O 1交于点C ,与⊙O 2交于点D 经过点B 的直线EF 与⊙O 1交于点E ,与⊙O 2交于点F .求证:CE ∥DF .例2、如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA交△ABC 的外接圆于点F ,连接FB ,FC .(1)求证:FB =FC ; (2)若AB 是△ABC 的外接圆的直径, ∠EAC =120°,BC =6,求AD 的长.O 2 · · O 1F E DC B AA B F C D E你还有解以上各题的好方吗?站在大家面前,勇敢地展示你的想法和解法吧!你评、我评、大家评,评出精彩,评出智慧!6.已知四边形ABCD 是圆内接四边形,∠A ,∠B ,∠C 的度数之比为2∶3∶6,则∠D 的度数为________.解析:设∠A ,∠B ,∠C 分别为2x,3x,6x ,因四边形ABCD 内接于圆,∴∠D =180°-∠B =180°-3x ,∴∠A +∠B +∠C +∠D =2x +3x +6x +180°-3x =360°,解得x =22.5°.∴∠D =180°-3x =112.5°.答案:112.5°1、如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P 。
若PB=1,PD=3,则BC AD 的值为 。
2.2圆内接四边形的性质与判定定理一.教学目标1.知识与技能目标:(1)理解圆内接四边形的性质定理,能应用定理解决相关的几何问题;(2)理解圆内接四边形的判定定理,能应用定理及推论解决相关的几何问题2.过程与方法目标:经历定理的提出、证明、应用的过程,探究定理的本质,整理点共圆的重要知识3.情感态度与价值观目标:通过对圆内接四边形性质的探究,体会观察、归纳方法在数学命题中的应用;通过对圆内接四边形判定定理的探究,进一步体会分类思想以及反证法的应用二.重点圆内接四边形的性质定理,圆内接四边形的的判定定理及推论,判定定理证明中蕴涵的数学思想方法三.难点(1)判定定理的证明(2)运用运动变化思想方法探究几何问题四、教学过程(一)导入新课1.复习:圆内接四边形的定义2.提出问题:我们知道,任意三角形都有外接圆,那么,任意四边形有外接圆吗?(1)由学生通过画图得到初步结论,形成感性认识;(2)教师进一步提出问题:具备什么条件的四边形才有外接圆呢?(与原稿相比,这样设计目标更具体,过程更容易操作,更容易激发学生的探究欲望,从而为研究圆内接四边形的判定做好铺垫)(二)推进新课1.圆内接四边形性质的研究(1)阅读教材P.27“探究”:观察一组圆内接四边形,寻找其共同特征设计如下问题,帮助学生得出结论①图中都研究哪些四边形?它们有什么共同特征?②观察以上四个图形中各四边形四个内角的关系,你能够得出什么结论?③是不是所有的圆内接四边形都有这样的结论?④你能证明你的结论吗?(1)(2)(3)(4)(与原稿相比,这样设计能够突出学生的主体作用,学生分析问题和解决问题更有目的性,更能体现知识的形成过程)(2)性质定理1:圆的内接四边形的对角互补(3)性质定理2:圆内接四边形的外角等于它的内角的对角2.提出问题:(1)回顾平行线的性质定理与判定定理:性质定理:两直线平行,同位角相等……;判定定理:同位角相等,两直线平行……;(2)回顾等腰三角形的性质定理与判定定理: 性质定理:在三角形中,等边对等角 判定定理:在三角形中,等角对等边(3)从上述性质定理与判定定理的关系中,你能够得出什么结论?(通常情况下,性质定理与判定定理是互逆的)(4)圆内接四边形的性质定理的逆命题是否成立?即对角互补的四边形是否是圆内接四边形? (与原稿相比,这样设计沟通了通常情况下性质定理与判定定理的内在联系,更容易引起学生的思考,学生更容易接受,并且可以通过这样的规律学生其他定理,从而体会了数学定理衍生的一般过程)3.探究圆内接四边形的判定定理 (1)画出图形,写出已知,求证如图,已知,四边形ABCD 中,180=∠+∠D B 求证:D C B A ,,,在同一圆上(简称四点共圆) (2)分析过程:①任意三点C B A ,,显然在同一圆上,过这三点作圆O ,只要证明点D 在圆上;②直接证明点D 在圆上比较困难,考虑反证法;让学生回顾证明点在圆上的方法,发现只有圆的定义,即到圆心的距离等于半径,对本题而言,这很难操作。
3.圆内接四边形的性质与判定一、基础知识回顾1.在同圆或等圆中,相等的圆心角所对 的相等,所对的 也相等。
2. 在同圆或等圆中,如果两个圆心角、两条 、两条 、两个 中有一对量相等,那么它们所对应的其余各对量都相等。
3. 圆周角定理:一条弧所对的圆周角等于它所对 。
(1) 半圆(或直径)所对的圆周角是 ; 90º的圆周角所对的弦是 . (2) 在同圆或等圆中,同弧或等弧所对的圆周角 ; 相等的圆周角所对的弧也 .二、知识延伸拓展如果四边形的各顶点在一个圆上,这个四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆。
例如,图1中,四边形ABCD 是⊙O 的内接四边形;⊙O 是四边形ABCD 的外接圆。
圆内接四边形有以下性质:性质定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的相邻内角的对角。
已知:如图2,四边形ABCD 内接于⊙O ,∠DCE 是四边形ABCD 的外角。
求证:(1)∠A+∠BCD=180º,∠B+∠D=180º; (2)∠DCE=∠A 。
图1E图2BAD ⌒ BCD⌒ ⌒∠A 所对的弧是BCD∠BCD 所对的弧是BAD⌒ ⌒⌒m m .21,21A BAD BCD BCD =∠=∠1111证明:(1)∵,,∴∵和的度数和是360 º∴同理,∠B+∠D=180º。
(2) ∵∠DCE是四边形ABCD的外角,∴∠DCE+∠BCD=180º由(1)得∠A+∠BCD=180º∴∠DCE=∠A。
反过来,如果一个四边形的对角互补,那么它的四个顶点在同一个圆上吗已知:四边形ABCD中,∠B +∠D=180°求证:A,B,C,D在同一圆周上。
分析:根据不在同一直线上的三点确定一个圆,不妨设A、B、C三点确定⊙O,则点D 与⊙O的位置关系有三种:在圆外、在圆上、在圆内,如果能排除点D在圆外和在圆内,则点D必在圆上。