算法初步高考综合试题(含答案)
- 格式:docx
- 大小:381.32 KB
- 文档页数:7
高考初步算法真题答案及解析随着社会的发展和进步,高考成为了每个学生都要面对的重要考试。
而在高考数学中,算法是一个必不可少的部分。
掌握高效的算法解题方法,对于学生们来说是非常重要的。
本文将为大家提供一些高考初步算法真题的答案及解析,希望能对大家复习和备考有所帮助。
一、单次选择题1. 已知函数 f(x) = x^2 + 3x + 2,求 f(-2) 的值。
解析:将 x 替换为 -2,得到 f(-2) = (-2)^2 + 3(-2) + 2 = 4 - 6 + 2 = 0。
2. 某班男生人数是女生人数的 2/5,女生人数是全班人数的3/8。
如果男女生人数相差 48 人,那么这个班的男生人数是多少?解析:设男生人数为 x,女生人数为 y。
根据题意可列方程组:x = (2/5)yy = (3/8)(x+y)解方程组,得到 x = 120,即这个班的男生人数为 120。
二、填空题1. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(2) 的值。
解析:将 x 替换为 2,得到 f(2) = 2(2)^2 - 3(2) + 1 = 8 - 6 + 1 = 3。
2. 一辆小车以 60 km/h 的速度行驶 2 小时后,途中加速行驶2 小时,速度达到 80 km/h。
求加速的平均加速度。
解析:平均速度的计算公式是总路程/总时间。
因为速度是加速行驶的,所以平均速度是路程的一半。
可以得到路程为 60 * 2 + 80 * 2 = 280 km,总时间为 2 + 2 = 4 小时。
平均速度为 280/4 = 70 km/h,平均加速度为 70/2 = 35 km/h^2。
三、解答题1. 某商店举行了一次促销活动,原价为 100 元的商品打 9 折出售。
若小明购买了 3 个该商品,求他实际支付的金额。
解析:每个商品打 9 折,实际支付金额为 100 * 0.9 = 90 元。
小明购买了 3 个商品,所以他实际支付的金额为 90 * 3 = 270 元。
专题03算法初步【母题来源一】【2019年高考某某卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行流程图和完善流程图的思路: (1)要明确流程图的顺序结构、条件结构和循环结构; (2)要识别、运行流程图,理解框图所解决的实际问题; (3)按照题目的要求完成解答并验证.【母题来源二】【2018年高考某某卷】一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为______________.【答案】8【解析】由伪代码可得3,2;5,4;7,8I S I S I S ======, 因为76>,所以结束循环,输出8.S =【母题来源三】【2017年高考某某卷】如图是一个算法流程图,若输入x 的值为116,则输出y 的值是______________.【答案】2-【解析】由题意得212log 216y =+=-,故答案为2-. 【名师点睛】算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项.【命题意图】(1)了解算法的含义,了解算法的思想.(2)理解流程图的三种基本逻辑结构:顺序、条件分支、循环.(3)理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.【命题规律】高考中对流程图的考查,主要是顺序结构、条件结构、循环结构,其中循环结构为重点,考查程序运行后的结果,或考查控制循环的条件,流程图常与函数、数列、不等式等知识点结合考查.高考中对算法语句的考查,主要是以伪代码的形式重点考查条件语句和循环语句.结合某某近几年的高考,此部分的考查基本集中在两个方面:一是流程图表示的算法;二是伪代码表示的算法.【方法总结】三种基本逻辑结构的常见问题及解题策略:(1)顺序结构顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.(2)条件结构利用条件结构解决算法问题时,重点是判断框,判断框内的条件不同,对应的下一框中的内容和操作要相应地进行变化,故要重点分析判断框内的条件是否满足.(3)循环结构①已知流程图,求输出的结果.可按流程图的流程依次执行,最后得出结果.②完善流程图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析流程图功能问题,可将程序执行几次,即可根据结果作出判断.1.【某某省某某市2018-2019学年高三考前模拟检测数学试题】某算法流程图如图所示,该程序运行后,x ,则实数a的值为_______.若输出的63【答案】7【解析】执行第一次循环时,有1n =,21x a =+; 执行第二次循环时,有2n =,43x a =+; 执行第三次循环时,有3n =,87x a =+, 此时有4n =,输出87x a =+. 所以8763a +=,故7a =. 故填7.【名师点睛】对于流程图的问题,我们可以从简单的情形逐步计算,计算时关注各变量的变化情况,并结合判断条件决定输出何种计算结果.对于本题,按流程图逐个计算后可得关于a 的方程,解出a 即可. 2.【某某省某某市2019届高三模拟练习卷(四模)数学试题】执行如图所示的伪代码,则输出的S 的值为_______.【答案】17【解析】模拟执行程序代码,可得S =3.第1步:i =2,S =S +i =5; 第2步:i =3,S =S +i =8; 第3步:i =4,S =S +i =12; 第4步:i =5,S =S +i =17. 此时,退出循环,输出S 的值为17. 故答案为17.【名师点睛】本题主要考查了循环结构的程序代码,正确依次写出每次循环得到的i ,S 的值是解题的关键,属于基础题.求解时,模拟执行程序代码,依次写出每次循环得到的i ,S 的值,即可得解输出的S 的值.3.【某某省某某市2019届高三适应性考试数学试题】一个算法的流程图如图所示,则输出的a 的值为_______.【答案】9【解析】初始值1,0n a ==,第一步:033,1124a n =+==+=<,继续执行循环; 第二步:336,2134a n =+==+=<,继续执行循环; 第三步:639,314a n =+==+=,结束循环,输出9a =. 故答案为9.【名师点睛】本题主要考查程序框图,分析框图的作用,逐步执行,即可得出结果.4.【某某省某某金陵中学、海安高级中学、某某外国语学校2019届高三第四次模拟考试数学试题】如图是一个算法流程图,则输出的b 的值为_______.【答案】8【解析】第1步:a>10不成立,a=a+b=2,b=a-b=1;第2步:a>10不成立,a=a+b=3,b=a-b=2;第3步:a>10不成立,a=a+b=5,b=a-b=3;第4步:a>10不成立,a=a+b=8,b=a-b=5;第5步:a>10不成立,a=a+b=13,b=a-b=8;第6步:a>10成立,退出循环,输出b=8.故答案为8.【名师点睛】本题考查循环结构的程序框图,对循环体每次循环需要进行分析并找出内在规律,属于基础题.对于本题,根据程序框图,写出每次运行结果,利用循环结构计算并输出b的值.5.【某某省七市(某某、某某、某某、某某、某某、宿迁、某某)2019届高三第三次调研考试数学试题】如图是一个算法流程图.若输出y的值为4,则输入x的值为_______.【答案】−1【解析】当1x ≤时,由流程图得:3y x =-, 令34y x =-=,解得:1x =-,满足题意. 当1x >时,由流程图得:3y x =+, 令34y x =+=,解得:1x =,不满足题意. 故输入x 的值为1-.【名师点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.求解时,对x 的X 围分类,利用流程图列方程即可得解.6.【某某省苏锡常镇四市2019届高三教学情况调查(二)数学试题】根据如图所示的伪代码,最后输出的i 的值为_______.【答案】8【解析】根据如图所示的伪代码得:1T =,2i =,6T <成立,212T =⨯=,224i =+=; 6T <成立,224T =⨯=,426i =+=;6T <成立,428T =⨯=,628i =+=, 6T <不成立,结束循环,输出8i =.故答案为8.【名师点睛】本题主要考查了循环结构语句及其执行流程,属于基础题.按程序图依次执行即可得解. 7.【某某省某某市2019届高三下学期4月阶段测试数学试题】执行如图所示的伪代码,若输出的y 的值为13,则输入的x 的值是_______.【答案】8【解析】输出13y =,若6y x =,则1326x =>,不合题意; 若5y x =+,则1358x =-=,满足题意. 本题正确结果为8.【名师点睛】本题考查算法中的If 语言,属于基础题.根据伪代码逆向运算求得结果.8.【某某省某某中学2019届高三3月月考数学试题】执行如图所示的伪代码,最后输出的a 的值为_______.【答案】4【解析】模拟执行程序代码,可得i =1,a =2,满足条件i 2≤,执行循环体,a =1⨯2,i =2; 满足条件i 2≤,执行循环体,a =1⨯22⨯,i =3, 不满足条件i 2≤,退出循环,输出a 的值为4. 故答案为4.【名师点睛】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i ,a 的值是解题的关键,当i =3时,不满足条件退出循环,输出a 的值即可,属于基础题.9.【某某省某某市(苏北三市(某某、某某、某某))2019届高三年级第一次质量检测数学试题】运行如图所示的伪代码,则输出的结果S 为_______.【答案】21【解析】第1步:3,9I S ==; 第2步:5,13I S ==; 第3步:7,17I S ==;第4步:9,21I S ==,退出循环,输出21S =. 故答案为21.【名师点睛】本题考查的知识点是程序框图和语句,当循环的次数不多或有规律时,常采用模拟循环的方法解答.求解时,由已知中的程序代码可得:程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.10.【某某省某某市2019届高三下学期阶段测试数学试题】根据如图所示的伪代码,可知输出的结果为_______.【答案】205【解析】阅读伪代码可知,I 的值每次增加2,23S I =+, 跳出循环时I 的值为101I =,输出的S 值为21013205S =⨯+=. 故答案为205.11.【某某省某某市2019届高三5月高考信息卷数学试题】执行如图所示的程序框图,输出的k 的值为_______.【答案】7【解析】程序执行中的数据变化如下:1,3,k S ==133,123S k =⨯==+=, 继续运行,339,325S k =⨯==+=;继续运行,9545,527S k =⨯==+=,S >10,此时退出循环,输出k =7, 故答案为7.12.【某某省高三某某中学、宜兴中学、梁丰2019届高三第二学期联合调研测试数学试题】中国南宋时期的数学家秦九韶提出了一种多项式简化算法,如图是实现该算法的程序框图,若输入的2n =,1x =,依次输入的a 为1,2,3,运行程序,输出的s 的值为_______.【答案】6【解析】第一次输入1a =,得1s =,1k =,判断否;第二次输入2a =,得3s =,2k =,判断否;第三次输入3a =,得6s =,3k =,判断是,退出循环,输出6s =,故答案为6.【名师点睛】本题考查了循环结构流程图,要注意每次循环后得到的字母取值,属于基础题.求解时,先代入第一次输入的a ,计算出对应的,s k ,判断为否,再代入第二次输入的a ,计算出对应的,s k ,判断仍为否,再代入第三次输入的a ,计算出对应的,s k ,判断为是,得到输出值.13.【某某省某某市、某某市2019届高三第二次模拟考试数学试题】下图是某算法的伪代码,输出的结果S的值为_______.【答案】16【解析】运行结果依次为:i =1,S =1,1<6,i =3,S =4;3<6,i =5,S =9;5<6,i =7,S =16,7>6,输出S =16.故答案为16.【名师点睛】本题主要考查算法,意在考查学生对该知识的理解能力和掌握水平.直接按照算法的伪代码运行即得结果.14.【某某省某某市基地学校2019届高三3月联考数学试题】运行如图所示的流程图,若输入的63a b ==,,则输出的x 的值为_______.【答案】0【解析】由6a =,3b =得:3x =,循环后:4b =,5a =;由4b =,5a =得:1x =,循环后:2b =,4a =;由2b =,4a =得:2x =,循环后:3b =,3a =;由3b =,3a =得:0x =,输出结果:0x =,本题正确结果为0.【名师点睛】本题考查程序框图中的条件结构和循环结构,属于基础题.求解时,按照程序框图依次运算,不满足判断框中条件时输出结果即可.15.【某某省某某、某某、某某、苏北四市七市2019届高三第一次(2月)模拟数学试题】如图是一个算法流程图,则输出的b 的值为_______.【答案】7【解析】初始值:a =0,b =1.第1次循环:a =1,b =3,满足a <15;第2次循环:a =5,b =5,满足a <15;第3次循环:a =21,b =7,不满足a <15,退出循环,输出b =7.故答案为7.【名师点睛】本题考查的知识点是算法流程图,由于循环的次数不多,故可采用模拟程序运行的方法进行.。
一、选择题1.执行如图所示的程序框图,结果是()A.11 B.12 C.13 D.14 2.执行如图所示的程序框图输出的结果是()A.8B.6C.5D.33.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N=,则图中①②应分别填入()A.1Tk=,k N>B.1Tk=,k N≥C.TTk=,k N>D.TTk=,k N≥4.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.285.执行如图所示的程序框图,如果输入n=3,输出的S=()A .67B .37C .89D .496.某程序框图如图所示,该程序运行后输出的S 的值是( )A .1010B .2019C .2020D .30307.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A .58B .61C .66D .768.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A .17B .34C .36D .689.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A.28 B.56 C.84 D.12010.执行如图所示的程序框图,若输出的值为﹣1,则判断框①中可以填入的条件是()A.n≥999B.n≤999C.n<999 D.n>999 11.若执行如图所示的程序框图,则输出S的值为()A .9-B .16-C .25-D .36-12.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A .28B .10C .4D .2二、填空题13.执行如图所示的程序框图,则输出的i 的值为 .14.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序x=,问一开始输入的x=______斗.遇店添一倍,逢框图表达如图所示,即最终输出的0友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.15.执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值____16.如图所示的程序框图,输出的S的值为()A.12B.2 C.1-D.12-17.运行下边的流程图,输出的结果是__________.18.阅读如图所示的程序框图,运行相应的程序,则输出n的值为___________19.某程序框图如图所示,该程序运行后输出的S为____________.x=,则输出i的值是 .20.如图所示的程序框图中,若5三、解答题21.某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市经过x年后的人口总数关于x的函数关系式;(2)用程序流程图表示计算10年以后该城市人口总数的算法;(3)用程序流程图表示如下算法:计算大约多少年以后该城市人口将达到120万人.22.已知辗转相除法的算法步骤如下:第一步:给定两个正整数m,n;第二步:计算m除以n所得的余数r;=,n r=;第三步:m nr=,则m,n的最大公约数等于m;否则,返回第二步.第四步:若0请根据上述算法画出程序框图.23.根据下面的要求,求满足123500n +++⋅⋅⋅+>的最小的自然数n ,并画出执行该问题的程序框图.24.编写一个程序,要求输入两个正数a 和b 的值,输出a b 和b a 的值,并画出程序框图. 25.编写程序计算98246++⋅⋅⋅++的值.26.(1)用for 语句写出计算1×3×5×7×…×2 015的值的程序.(2)用while 语句写出求满足1+1123++ (1)>10的最小自然数n 的程序.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,可得答案.【详解】根据题意,模拟程序框图的运行过程,如下:17,0n k ==17不是偶数,3171=52n =⨯+,011k =+=,521≠;52是偶数,52262n ==,112k =+=,261≠; 26是偶数,26132n ==,213k =+=,131≠; 13不是偶数,3131=40n =⨯+,314k =+=,401≠;40是偶数,40202n ==,415k =+=,201≠; 20是偶数,20102n ==,516k =+=,101≠; 10是偶数,1052n ==,617k =+=,51≠; 5不是偶数,351=16n =⨯+,718k =+=,161≠;16是偶数,1682n ==,819k =+=,81≠; 8是偶数,842n ==,9110k =+=,41≠;4是偶数,422n ==,10111k =+=,21≠; 2是偶数,212n ==,11112k =+=,11=; 故选:B 【点睛】 关键点睛:解题的关键是要读懂程序框图,模拟程序框图的运行过程,即突破难点.2.A解析:A 【分析】根据程序框图循环结构运算,依次代入求解即可. 【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y === 第二次循环3,2,3z x y === 第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =. 所以选A 【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.3.C解析:C 【分析】根据题意计算结果直接判断即可解题. 【详解】 当①②分别是TT k=,k N >时, 首先初始化数据;10N =,1k =,0S =,1T =. 第一次循环,1TT k==,1S S T =+=,12k k =+=,此时不满足k N >; 第二次循环,112T T k ==⨯,1112S S T =+=+⨯,13k k =+=,此时不满足k N >; 第三次循环,1123T T k ==⨯⨯,11112123S S T =+=++⨯⨯⨯,14k k =+=,此时不满足k N >;一直循环下去,第十次循环,112310T T k ==⨯⨯⨯⨯,11111212312310S S T =+=++++⨯⨯⨯⨯⨯⨯⨯,111k k =+=,此时满足k N >,跳出循环. 故输出的11111212312310S =++++⨯⨯⨯⨯⨯⨯⨯.故选:C. 【点睛】本题考查根据计算补全程序框图,是基础题.4.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环;3i =,6n =,10S =,不满足7i ≥,循环; 4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.5.B解析:B 【详解】试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和. 【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.解析:D 【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S 是求数列的和,且数列每四项和是定值,由此得出S 的值. 【详解】模拟程序框图的运行过程,得出该程序运行后输出的算式: 由于cos,42xy T π==,且循环数为0,-1,0,1123420132014201520162017201820192020...+++++++(01210141)+...+(0+1201410120161)(01201810120201)S a a a a a a a a a a a a =++++=+-+++++-+++++++-+++++20206=30304=⨯故选:D 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题. 7.B解析:B 【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论. 【详解】模拟程序的运行,可得49N =,50N =, 不满足条件()13N MOD ≡,51N =; 不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =. 故选:B. 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.解析:B 【分析】根据程序框图进行模拟运算即可得出. 【详解】根据程序框图,输入的102a =,238b =,因为ab ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B . 【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用. 9.C解析:C 【分析】由已知中的程序可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序运行过程,分析循环中各变量值的变化情况,即可求解. 【详解】模拟程序的运行,可得:0,0,0i n S === 执行循环体,1,1,1i n S ===;不满足判断条件7i ≥,执行循环体,2,3,4i n S ===; 不满足判断条件7i ≥,执行循环体,3,6,10i n S ===; 不满足判断条件7i ≥,执行循环体,4,10,20i n S ===; 不满足判断条件7i ≥,执行循环体,5,15,35i n S ===; 不满足判断条件7i ≥,执行循环体,6,21,56i n S ===; 不满足判断条件7i ≥,执行循环体,7,28,84i n S ===; 满足判断条件7i ≥,退出循环,输出S 的值为84. 故选C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中模拟程序运行的过程,通过逐次计算和找出计算的规律是解答的关键,着重考查了推理与计算能力,属于基础题.10.C解析:C 【分析】分析循环结构中求和式子的特点,可到最终结果:2lg(1)S n =-+,当1S =-时计算n 的值,此时再确定判断框的内容. 【详解】由图可得:2lg1lg 2lg 2lg3...lg lg(1)S n n =+-+-++-+,则2lg(1)1S n =-+=-,所以999n =,因为此时需退出循环,所以填写:999n <.故选C. 【点睛】lglg lg(1)1nn n n =-++,通过将除法变为减法,达到简便运算的目的. 11.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•; 第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】x 的变化遵循以2-为公差递减的等差数列的变化规律,到0x <时结束,得到1x =-,然后代入解析式,输出结果. 【详解】0x ≥时,每次赋值均为2x -x 可看作是以2019为首项,2-为公差的等差数列{}n x()()20191220212n x n n ⇒=+-⨯-=-当0x <时输出,所以0n x <,即202120n -< 20212n ⇒>即:10100x >,10110x < 10112021210111x ⇒=-⨯=-1314y ∴=+=本题正确选项:C 【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.二、填空题13.4【解析】【分析】由程序框图知该程序的功能是利用循环结构计算并输出变量的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟执行如图所示的程序框图如下判断第1次执行循环体后;判断第2解析:4 【解析】 【分析】由程序框图知该程序的功能是利用循环结构计算并输出变量i 的值, 模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟执行如图所示的程序框图如下,判断S T ,第1次执行循环体后,3S =,6T =,2i =; 判断S T ,第2次执行循环体后,S 9=,11T =,3i =; 判断S T ,第3次执行循环体后,27S =,16T =,4i =; 判断S T >,退出循环,输出i 的值为4. 【点睛】本题主要考查对含有循环结构的程序框图的理解,模拟程序运算可以较好地帮助理解程序的算法功能.14.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程序框图的解析:78【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果. 【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =, 执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15.68【解析】试题分析:第一次循环:;第二次循环:;第三次循环:;结束循环输出考点:循环结构流程图【名师点睛】算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环解析:68 【解析】试题分析:第一次循环:702213155278y =⨯+⨯+⨯=;第二次循环:278105173y =-=;第三次循环:173********y =-=<;结束循环,输出68.y =考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.A 【解析】【分析】模拟执行程序框图依次写出每次循环得到的k 的值当k=2012时不满足条件退出循环输出的值为【详解】模拟执行程序框图可得满足条件满足条件满足条件满足条件由此可见S 的周期为3故当k=20解析:A 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的k ,S 的值,当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12.【详解】模拟执行程序框图,可得 2,1S k ==满足条件2011k ≤,1,22S k ==, 满足条件2011k ≤,1,3S k =-=,满足条件2011k ≤,2,4S k ==,满足条件2011k ≤,1,52S k ,== 由此可见S 的周期为3,20113670...1,÷= 故当k=2012时不满足条件2011k ≤ ,退出循环,输出S 的值为12. 故选A. 【点睛】本题主要考查了循环结构的程序框图,属于基础题.17.94【解析】不成立执行不成立执行成立所以输出解析:94 【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立, 执行33119450a =⨯+=>,成立, 所以输出94.a =18.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n 的值为4故答案为4解析:4 【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4, 因此当n=4时,满足判断框的条件,故跳出循环程序. 故输出的n 的值为4. 故答案为4.19.【分析】列出前几次循环找出该算法循环的周期性然后利用周期性求出输出结果的值【详解】成立执行第一次循环;成立执行第二次循环;成立执行第三次循环;成立执行第四次循环;成立执行第五次循环由上可知该算法循环解析:13. 【分析】列出前几次循环,找出该算法循环的周期性,然后利用周期性求出输出结果S 的值. 【详解】12011i =≤成立,执行第一次循环,12312S +==--,112i =+=; 22011i =≤成立,执行第二次循环,()()131132S +-==---,213i =+=;32011i =≤成立,执行第三次循环,11121312S ⎛⎫+- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭,314i =+=; 42011i =≤成立,执行第四次循环,1132113S +==-,415i =+=;52011i =≤成立,执行第五次循环,12312S +==--,516i =+=. 由上可知,该算法循环是以4次为一个循环周期,执行完最后一次循环,2012i =,201255024=⨯+,因此,输出的结果S 的值为13,故答案为13.【点睛】本题考查算法的周期性,解题时要结合算法程序框图得出算法循环的周期性,考查推理能力与计算能力,属于中等题.20.4【分析】模拟执行程序框图依次写出每次循环得到的的值当时满足条件退出循环从而可得结果【详解】模拟执行程序框图可得不满足条件;不满足条件;不满足条件满足条件退出循环输出i 的值为4故答案为4【点睛】本题解析:4 【分析】模拟执行程序框图,依次写出每次循环得到的,x i 的值,当325x =时满足条件109x >,退出循环,从而可得结果. 【详解】模拟执行程序框图,可得5,0x i ==,13,1x i ==,不满足条件109,37,2x x i >==; 不满足条件109,109,3x x i >==; 不满足条件109,325,4x x i >==, 满足条件109x >,退出循环,输出i 的值为4. 故答案为4. 【点睛】本题主要考查了循环结构的程序框图,正确写出每次循环得到的,x i 的值是解题的关键,属于基础题.三、解答题21.(1)()()1001 1.2%xx N y =+∈;(2)见解析;(3)见解析.【分析】(1)利用指数函数的定义可得出该城市经过x 年后的人口总数关于x 的函数关系式; (2)根据(1)中求得的函数解析式,利用循环结构框图可表示计算10年以后该城市人口总数的算法;(3)根据(1)中所求的函数解析式,即求满足100 1.012120n ⨯≥成立的最小正整数n ,在判断框图就可以设定判断条件为100 1.012120n ⨯<,当条件满足时继续循环;当条件不满足时跳出循环体.由此可利用程序框图来表示算法:计算大约多少年以后该城市人口将达到120万人. 【详解】(1)一年后,该城市的人口数为()1001 1.2%⨯+; 二年后,该城市的人口数为()21001 1.2%⨯+;;x 年后,该城市的人口数为()1001 1.2%x ⨯+.因此,该城市经过x 年后的人口总数关于x 的函数关系式为()()1001 1.2%xx N y =+∈;(2)程序框图如下图所示:(3)程序框图如下图所示:【点睛】本题考查函数模型解析式的确定,同时也考查了利用程序框图表示算法,属于中等题. 22.详见解析【分析】根据辗转相除法的算法步骤画出程序框图得到答案.【详解】如图【点睛】本题考查了辗转相除法的程序框图,意在考查学生对于程序框图的理解和掌握.23.详见解析【分析】用当型或直到型循环结构写程序框图,当型循环结构是当满足条件时,进入循环体,否时S≤,退出循环,判断框填入500S>.直到型循环结构是当满足条件时退出循环体,否时进入循环,判断框填入500【详解】或者【点睛】本题考查当型或直到型循环结构,需熟悉循环结构特征,分清两种循环结构,并且注意判断框的写法,24.见解析;【解析】试题分析: 先利用INPUT语句输入两个正数a和b的值,再分别赋值a b和b a的值,最后输出a b和b a的值试题程序和程序框图分别如下:25.答案详见解析.【解析】【分析】根据题干要求写出循环结构的程序即可.【详解】程序如下:i=2sum=0DOsum=sum+ii=i+2LOOP UNTIL i>98PRINT sumEND【点睛】应用循环语句编写程序时需注意:①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”.26.见解析【解析】试题分析:(1)确定循环体为“S=S* i”,再由for i=3:2:2015即可实现;(2)确定循环体为“i=i+1; S=S+1/i”,当型条件为:while S<=10再赋予初始值即可.试题(1)S=1;for i=3:2:2015S=S* i;endprint(%io(2),S);(2)S=1;i=1;while S<=10i=i+1;S=S+1/i;endprint(%io(2),i);点睛:本题考查的是算法与程序语句.算法与流程图的的考查.先明晰算法及程序语句的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确程序研究的数学问题,是求和还是求项。
一、选择题1.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列2.若执行如图所示的程序框图,输出S 的值为( )A .2log 23B .log 27C .3D .23.执行如下图的程序框图,输出S 的值是( )A.2 B.1C.12D.-14.执行如图所示的程序框图,输出的S值为()A.511 B.512 C.1022 D.10245.如图所示程序框图是德国数学家科拉茨1937年提出的一个著名猜想.根据猜想,不断重复程序运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.按照这种运算,若输出k的值为9,则输入整数N的值可以为()A.3 B.5 C.6 D.106.某程序框图如图所示,该程序运行后输出的S的值是( )A .1010B .2019C .2020D .30307.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n 8.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A.17 B.34 C.36 D.68 9.执行如图所示的程序框图,输出S的值等于()A.1111238+++⋅⋅⋅+B.1111237+++⋅⋅⋅+C.11111237+++++D.11111238++++⋅⋅⋅+10.执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.11 11.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4 12.执行如下图的程序框图,那么输出S的值是( )A.2 B.1 C.12D.-1二、填空题13.执行如图所示的伪代码,则输出的S的值是_______.14.如图是一个算法流程图,若输入x的值为2,则输出y的值为_______. .15.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.16.执行如图的程序框图,则输出的S =__________.17.执行如图所示的程序框图,若输入的,a k 分别是89,2,则输出的数为__________.18.已知一个算法的程序框图如图所示,当输入的1x =-与1x =时,则输出的两个y 值的和为__________.19.阅读如图所示的程序框图,运行相应的程序,则输出n的值为___________20.根据如图所示的程序框图,若输出的值为4,则输入的值为______________.三、解答题21.现有一个算法框图如图所示。
专题 算法初步1.【2019年高考天津卷文数】阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .29【答案】B【分析】根据程序框图,逐步写出运算结果即可.【解析】1,2S i ==;11,1225,3j S i ==+⨯==;8,4S i ==,结束循环,输出8S =.故选B .【名师点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体. 2.【2019年高考北京卷文数】执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,运行第一次,2212312s ⨯==⨯-,2k =,运行第二次,2222322s ⨯==⨯-,3k =,运行第三次,2222322s ⨯==⨯-,结束循环,输出2s =,故选B .【名师点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.3.【2019年高考全国Ⅰ卷文数】如图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+【答案】A【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【解析】初始:1,122A k ==≤,因为第一次应该计算1122+=12A +,1k k =+=2; 执行第2次,22k =≤,因为第二次应该计算112122++=12A +,1k k =+=3,结束循环,故循环体为12A A=+,故选A .【秒杀速解】认真观察计算式子的结构特点,可知循环体为12A A=+.4.【2019年高考全国Ⅲ卷文数】执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A .4122- B .5122-C .6122-D .7122-【答案】C【分析】根据程序框图,结合循环关系进行运算,可得结果. 【解析】输入的ε为0.01,11,01,0.01?2x s x ==+=<不满足条件; 1101,0.01?24s x =++=<不满足条件;⋅⋅⋅611101,0.00781250.01?22128S x =++++==<满足条件,结束循环;输出676111112(1)22222S =+++=⨯-=-,故选C .【名师点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析.5.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.【答案】5【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342xS S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442xS S x =+==≥成立,输出 5.S =【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.6.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算1592017++++L 的程序框图中,判断框内应填入的条件是A .2017?i ≤B .2017?i <C .2013?i <D .2021?i ≤【答案】A【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .7.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于A .1B .eC .1e -D .2e -【答案】C【解析】由题3x =,231x x =-=-,此时0x >,继续运行,1210x =-=-<,程序运行结束,得1e y -=,故选C .8.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为A .4B .5【答案】C【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .9.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于A .30B .31C .62D .63【答案】B【解析】由流程图可知该算法的功能为计算123412222S =++++的值,即输出的值为512341(12)122223112S ⨯-=++++==-.故选B .10.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的实数x 值的个数为A .1B .2【答案】B【分析】根据程序框图的含义,得到分段函数221,2log ,2x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可输入的实数x 值的个数.【解析】根据题意,该框图的含义是:当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,若2x ≤,得到211x -=,解得x = 若2x >,得到2log 1x =,无解,因此,可输入的实数x的值可能为,共有2个.故选B .11.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是A .输入a 的值,计算2021(1)31a -⨯+的值 B .输入a 的值,计算2020(1)31a -⨯+的值 C .输入a 的值,计算2019(1)31a -⨯+的值 D .输入a 的值,计算2018(1)31a -⨯+的值【答案】B【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,又由132n n a a +=-,得113(1)n n a a +-=-,得11(1)3n n a a --=-⨯即1(1)31n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B . 12.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为A .2-B .13- C .12D .3【答案】A【分析】根据程序框图进行模拟运算得到x 的值具备周期性,利用周期性的性质进行求解即可.【解析】∵12x =,∴当1i =时,13x =-;2i =时,2x =-; 3i =时,3x =,4i =时,12x =,即x 的值周期性出现,周期数为4,∵201850442=⨯+,则输出x 的值为2-,故选A .【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x 的值具备周期性是解决本题的关键,属于中档题.13.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所示,则该程序运行后输出的值是A .5B .4C .3D .2【答案】B【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,此时满足判断框的条件,输出4i =.故选B .【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.14.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算法流程图.若输出 的值为4,则输入x 的值为______________.【答案】1-【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.15.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,则输出y 值的取值范围是______________.【答案】[3,2]-【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<, 当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。
算法初步本章达标测评(总分:150分;时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法的描述正确的一项是( )A.算法只能用自然语言来描述B.算法只能用图形语言来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.563.下面一段程序执行后的结果是( )A.6B.4C.8D.104.算式1 010(2)+10(2)的值是( )A.1 011(2)B.1 100(2)C.1 101(2)D.1 000(2)5.执行如图所示的程序框图,当输入的值为3时,输出的结果是( )A.3B.8C.12D.206.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A.T=T·(i+1)B.T=T·iC.T=T·1i+1D.T=T·1i7.已知7 163=209×34+57,209=57×3+38,57=38×1+19,38=19×2.根据上述一系列等式,可确定7 163和209的最大公约数是( )A.57B.3C.19D.348.已知44(k)=36,则把67(k)转化成十进制数为( )A.8B.55C.56D.629.执行如图所示的程序框图,若输出的k=5,则输入的整数p的最大值为( )A.7B.15C.31D.6310.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,其中v4的值为( )A.-57B.124C.-845D.22011.某程序框图如图所示,若该程序运行后输出的值是9,则( )5A.a=4B.a=5C.a=6D.a=712.执行如图所示的程序框图,则输出的n的值是( )A.29B.31C.61D.63二、填空题(本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上)13.输入8,则下列程序运行后输出的结果是.化成十进制数,结果为,再将该结果化成七进制数,结14.将二进制数110 101(2)果为.15.执行如图所示的程序框图,则输出结果S= .16.阅读下面程序,当输入x的值为3时,输出y的值为.(其中e为自然对数的底数)三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.18.(12分)输入10个数,找出其中最大的数并输出,画出程序框图,并写出程序.19.(12分)如图所示,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动(不与A、B重合).设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,画出程序框图,写出程序.20.(12分)把区间[0,1]10等分,求函数y=√2x+1+|x-2|在各分点(包括区间端点)的函数值,写出程序.21.(12分)设计一个程序求11×4+13×6+15×8+…+199×102的值.22.(14分)“角谷猜想”是由日本学者角谷静夫首先提出的,所以称为“角谷猜想”.猜想的内容是:对于任意一个大于1的整数n,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,然后将得到的结果再进行以上处理,则最后结果总是1.试设计一个算法的程序框图,对任意输入的整数n(n≥2)进行检验,要求输出每一步的结果,直到结果为1时结束.附加题1.(2015河北石家庄一模,★★☆)执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为( )A.2B.2√2C.4D.62.(2015山西四校联考三,★★☆)执行如图的程序框图,则输出S 的值为( )D.-1 A.2 016 B.2 C.12一、选择题1.C 算法可以用自然语言、图形语言和程序语言来描述;同一个问题可以有不同的算法,但算法的结果相同.2.D 第一次循环,S=0+11×2=12,k=2;第二次循环,S=12+12×3=23,k=3;第三次循环,S=23+13×4=34,k=4;第四次循环,S=34+14×5=45,k=5;第五次循环,S=45+15×6=56,此时k=5不满足判断框内的条件,跳出循环,输出S=56,选D.3.A 由程序知a=2,2×2=4,4+2=6,故最后输出a 的值为6,故选A.4.B 1 010(2)+10(2)=(1×23+0×22+1×21+0×20)+(1×21+0×20)=12=1 100(2).5.B 3<5,执行y=x 2-1,所以输出结果为8.故选B.6.C 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得选项C 正确. 7.C 由辗转相除法的思想可得结果. 8.B 由题意得,36=4×k 1+4×k 0,所以k=8. 则67(k)=67(8)=6×81+7×80=55.9.B 由程序框图可知:①S=0,k=1;②S=1,k=2;③S=3,k=3;④S=7,k=4;⑤S=15,k=5,输出k,此时S=15≥p,则p 的最大值为15,故选B. 10.D由已知,得a 0=12,a 1=35,a 2=-8,a 3=79,a 4=6,a 5=5,a 6=3,所以v 0=3,v 1=3×(-4)+5=-7,v 2=(-7)×(-4)+6=34,v 3=34×(-4)+79=-57,v 4=(-57)×(-4)-8=220.11.A 此程序框图的作用是计算S=1+11×2+12×3+…+1a (a+1)的值,由已知得S=95,即S=1+1-12+12-13+…+1a -1a+1=2-1a+1=95,解得a=4.12.D 开始:p=5,n=1;p=9,n=3;p=15,n=7;p=23,n=15;p=31,n=31;p=31,n=63,此时log 3163>1,结束循环,输出n=63. 二、填空题 13.答案 0.7解析 这是一个用条件语句编写的程序,由于输入的数据为8,8<-4不成立,所以c=0.2+0.1×(8-3)=0.7. 14.答案 53;104(7)解析 110 101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104.(7)15.答案 1 007解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2 013+2 014)=1 007,故输出的S的值为1 007.16.答案 1.5解析当输入x=3时,由于3>e,故执行y=0.5x,即y=0.5×3=1.5.三、解答题17.解析(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:18.解析程序框图如图.程序:19.解析 函数关系式为 y={2x (0<x ≤4),8(4<x ≤8),2(12-x )(8<x <12).程序框图如图所示:程序:20.解析把区间[0,1]10等分,故步长为0.1,∴用“x=x+0.1”表达,y=√2x+1+|x-2|,用“y=SQR(2*x+1)+ABS(x-2)”表达,循环控制条件x≤1.程序如下:21.解析程序:22.解析程序框图如图:附加题1.B 由程序框图可知,S=1,i=1;S=1,i=2;S=√2,i=3;S=2,i=4;S=2√2,i=5,此时跳出循环,输出S=2√2.故选B.2.B 循环前S=2,k=0,第一次循环,得S=11-2=-1,k=1;第二次循环,得S=11-(-1)=12,k=2;第三次循环,得S=11-12=2,k=3;……,由此可知S 的值的变化周期为3,又2 016=672×3,所以输出S 的值为2,故选B.。
2、基本算法语句:①输入语句。
输入语句的格式:INPUT “提示内容”;变量②输出语句。
输出语句的一般格式:PRINT“提示内容”;表达式③赋值语句。
赋值语句的一般格式:变量=表达式④条件语句。
(1)“IF—THEN—ELSE”语句格式:IF 条件THEN语句1ELSE语句2END IF⑤循环语句。
(1)当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND(2)“IF—THEN”语句格式:IF 条件THEN语句END IF(2)直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件高中数学必修三《算法初步》练习题一、选择题1.下面对算法描述正确的一项是 ( )A .算法只能用伪代码来描述B .算法只能用流程图来表示C .同一问题可以有不同的算法D .同一问题不同的算法会得到不同的结果2.程序框图中表示计算的是 ( ).A .B CD3将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( )A B C D .4. 计算机执行下面的程序段后,输出的结果是( )1a = 3b = a a b =+ b a b =-PRINT a ,b A .1,3 B .4,1 C .0,0 D .6,05.当2=x 时,下面的程序运行后输出的结果是 ( )A .3B .7C .15D .17 6. 给出以下四个问题:①输入一个数x , 输出它的相反数 ②求面积为6的正方形的周长 ③输出三个数,,a b c 中的最大数 ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值其中不需要用条件语句来描述其算法的有 ( ) A .1个 B .2个 C . 3个 D .4个7.图中程序运行后输出的结果为 ( ) A. 3 43 B. 43 3 C. 18- 16 D. 16 18-8. 如果右边程序执行后输出的结果是990,那么在程序中 UNTIL 后面的“条件”应为 ( )A. i>10B. i<8C. i<=9D. i<99. INPUT 语句的一般格式是( )A. INPUT “提示内容”;表达式B.“提示内容”;变量C. INPUT “提示内容”;变量D. “提示内容”;表达式10.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( )A . 一个算法只能含有一种逻辑结构 B. 一个算法最多可以包含两种逻辑结构 C. 一个算法必须含有上述三种逻辑结构D. 一个算法可以含有上述三种逻辑结构的任意组合11. 如右图所示的程序是用来 ( )A .计算3×10的值B .计算93的值C .计算103的值D .计算12310⨯⨯⨯⋅⋅⋅⨯的值12. 把88化为五进制数是( )A. 324(5)B. 323(5)C. 233(5)D. 332(5)13.下列判断正确的是 ( )A.条件结构中必有循环结构B.循环结构中必有条件结构C.顺序结构中必有条件结构D.顺序结构中必有循环结构14. 如果执行右边的框图,输入N =5,则输出的数等于( ) A .54B.45C. 65 D.5615.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是 ( )A .2()f x x =B .1()f x x =C .()ln 26f x x x =+-D . ()f x x =二、填空题: 16.(如右图所示)程序框图能判断任意输入的正整数x 是奇数或是偶数, 其中判断框内的条件是_____________17.执行右边的程序框图, 若0.8p =,则输出的n =18. 读下面程序 , 该程序所表示的函数是19.对任意非零实数a ,b ,若a b ⊗的运算原理如图所示,则21lg1000()2-⊗=________.20.将二进制数101 101(2) 化为八进制数,结果为 .21.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当2x =时的值的过程中,要经过 次乘法运算和 次加法运算,其中3v 的值是 .三、解答题: 22.设计算法求S = 201614121+⋅⋅⋅+++的值, 并画出程序框图.23.(1) 用辗转相除法求840与1785的最大公约数 ;(2) 用更相减损术求612 与468的最大公约数.高中数学必修三《算法初步》练习题-----参考答案一、选择题:CABBC, BADCD, CBBDD二、填空题:16.m = 0?17.4 18.10,00,10.x xy xx x+>⎧⎪==⎨⎪-+<⎩19.1 20.55(8)21.5,5,64三、解答题:22.解:(算法略)程序框图如右图所示.23. 解:(1)105;(2)36.。
2021年高中数学第一章算法初步综合测试题(含解析)新人教B版必修3一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.表达算法的基本结构不包括( )A.顺序结构B.条件分支结构C.循环结构D.计算结构[答案]D[解析]表达算法的基本结构包括顺序结构、条件分支结构、循环结构三种基本结构,故选D.2.下列给出的赋值语句正确的是( )A.6=A B.M=-MC.B=A=2 D.x+5y=0[答案] B[解析]赋值语句可以对同一个变量进行重复赋值,M=-M的功能是把当前M的值取相反数后再赋给变量M.故选B.3.下列对程序框图中,图形符号的说法中正确的是( )A.此图形符号的名称为处理框,表示的意义为赋值、执行计算语句、结果的传送B.此图形符号的名称是起止框,表示框图的开始和结束C.此图形符号的名称为注释框,帮助理解框图,是程序框图中不可少的一部分D.此图形符号的名称为注释框,表示的意义为帮助理解框图,并不是程序框图中不可少的一部分[答案] D[解析]此图形符号是注释框,并不是程序框图中不可少的一部分,故选D.4.执行下面的程序框图,如果输入a=4,那么输出的n的值为( )A.2 B.3C.4 D.5[答案] B[解析]本题考查赋值语句、循环结构等知识.n=0,P=0,Q=1→n=1,P=1,Q=3→n=2,P=5,Q=7→n=3,P=21,Q=15→结束,∴输出n=3.算法多以流程图(框图)考查,循环结构是重点.5.(xx·河南新乡市高一期末测试)某程序框图如图所示,该程序运行后输出的S的值是( )A.2 059 B.1 035C.11 D.3[答案] A[解析]循环一次:S=0+20=1,k=3;循环二次:S=1+21=3,k=2;循环三次:S=3+23=11,k=1;循环四次:S=11+211=2 059,k=0,循环终止,输出S=2 059.6.循环语句for x=3:3:99循环的次数是( )A.99 B.34C.33 D.30[答案] C[解析]∵初值为3,终值为99,步比为3,故循环次数为33.7.在用“等值算法”求98和56的最大公约数时,操作如下:(98,56)→(56,42)→(42,14)→(28,14)→(14,14),由此可知两数的最大公约数为( ) A.98 B.56C.14 D.42[答案] C[解析]由等值算法可知(14,14)这一对相等的数,这个数就是最大公约数.8.阅读如图程序框图,输出的结果为( )A.1321B.2113C.813D.138[答案] D[解析]该程序框图的运行过程是:x=1,y=1,z=1+1=2,z=2<20是;x=1,y=2,z=1+2=3,z=3<20是;x=2,y=3,z=2+3=5,z=5<20是;x=3,y=5,z=3+5=8,z =8<20是; x =5, y =8, z =5+8=13, z =13<20是; x =8, y =13, z =8+13=21, z =21<20否, 输出y x =138.9.已知函数f (x )=⎩⎪⎨⎪⎧0 x >0-1x =0x +1 x <0,写{f [f (2)]}的算法时,下列哪些步骤是正确的( )S1 由2>0,得f (2)=0.S2 由f (0)=-1,得f [f (2)]=f (0)=-1.S3 由-1<0,得f (-1)=-1+1=0,即f {f [f (2)]}=f (-1)=0. A .S1 B .S2 C .S3 D .三步都对[答案] D[解析] 遵循从内向外运算即可.10.用秦九韶算法求f (x )=12+3x -8x 2+79x 3+6x 4+5x 5+3x 6在x =-4时的值时,v 1的值为( )A .3B .-7 C.-34 D .-57[答案] B[解析] 根据秦九韶算法知:v 1=v 0x +a n -1,其中v 0=a n =3(最高次项的系数),a n -1=5,∴v 1=3×(-4)+5=-7.11.如图所示的程序框图中的错误是( )A.i没有赋值B.循环结构有错C.s的计算不对D.判断条件不成立[答案] A[解析]这是一个求数据和的程序框图,但只给出循环结束的条件,却未给出循环开始时i的初始值,故选A.12.如图所示,程序框图的输出结果是( )A.3 B.4C.5 D.8[答案] B[解析]当x=1,y=1时,满足x≤4,则x=2,y=2;当x=2,y=2时,满足x≤4,则x=2×2=4,y=2+1=3;当x=4,y=3时,满足x≤4,则x=2×4=8,y=3+1=4;当x=8,y=4时,不满足x≤4,则输出y=4.二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.)13.下列算法语句的输出结果C=________.A=5;B=A;C=A;print(%io(2),C)[答案] 5[解析]变量的值可以多次赋出,赋值后该变量的值仍然保持不变.14.1 734、816、1 343的最大公约数是________.[答案]17[解析]由“更相减损之术”得,(1 734,816,1 343)=(1 734-1 343,1 343-816,816)=(391,527,816)=(391,527-391,816-527)=(391,136,289)=(391-289,136,289-136)=(102,136,153)=(102,136-102,153-136)=(102,34,17)=(102-2×34,34-17,17)=(34,17,17)=(17,17,17)=17,∴1 734,816,1 343的最大公约数是17.15.用“秦九韶算法”求多项式P(x)=8x4-17x3+7x-2当x=21的值时,需把多项式改写成________.[答案]P(x)=(((8x-17)x+0)x+7)x-2[解析]根据“秦九韶算法”的原理可知,把多项式改写为P(x)=(((8x-17)x+0)x +7)x-2.16.下图是一个算法流程图,则输出的k的值是________.[答案] 5[解析]本题考查程序框图及程序语句知识,考查学生分析问题的能力.∵条件语句为k2-5k+4>0,即k<1或k>4.∴当k=5时,满足此条件,此时输出5.要注意算法的循环结构程序框图的理解.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分12分)某次数学考试中,其中一个小组的成绩为55 89 69 73 81 56 90 74 82设计一个算法,用自然语言描述从这些成绩中搜索出小于75的成绩,并画出程序框图.[解析]S1 将序列中的第一个数m与“75”比较,如果此数m小于75,则输出此数;S2 如果序列中还有其它数,重复S1;S3 在序列中一直到没有可比的数为止.18.(本题满分12分)已知△ABC 的三个顶点坐标为A (-1,2)、B (2,1)、C (0,4),设直线l :y =k (x +3)与△ABC 的边AB 交于点P ,试设计一个求直线l 的斜率k 的取值范围的算法.[解析] 根据题意画出图形,如图,直线l :y =k (x +3)恒过定点M (-3,0).又根据已知条件,l 与AB 相交,所以k MB ≤k ≤k MA .算法步骤如下: S1 计算k MA =2-0-1+3=1;S2 计算k MB =1-02+3=15; S3 输出结果15≤k ≤1.19.(本题满分12分)利用秦九韶算法求多项式f (x )=2x 5+4x 4-2x 3+8x 2+7x +4当x =3的值,写出每一步的计算表达式.[解析] 把多项式改成如下形式:f (x )=2x 5+4x 4-2x 3+8x 2+7x +4=((((2x +4)x -2)x +8)x +7)x +4.按照从内到外的顺序,依次计算一次多项式当x =3时的值:v 0=2,v 1=v 0x +4=2×3+4=10, v 2=v 1x -2=10×3-2=28, v 3=v 2x +8=28×3+8=92, v 4=v 3x +7=92×3+7=283, v 5=v 4x +4=283×3+4=853.所以,当x =3时,多项式f (x )的值是853.20.(本题满分12分)试分别用辗转相除法和更相减损术求840与1 764、440与556的最大公约数.[解析] 用辗转相除法求840与1764的最大公约数. 1 764=840×2+84,840=84×10. 故84是840与1764的最大公约数.用更相减损术求440与556的最大公约数.556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4,所以440与556的最大公约数是4.21.(本题满分12分)相传古代印度国王舍罕要褒赏他聪明能干的宰相达依尔(国际象棋的发明者),问他需要什么,达依尔说:“国王只要在国际象棋的棋盘第一个格子上放一粒麦子,第二个格子上放两粒,第三个格子上放四粒,以后按此比例每一格加一倍,一直放到第64格(国际象棋8×8=64格),我就感恩不尽,其他什么也不要了.”国王想:“这有多少,还不容易!”让人扛来一袋小麦,但不到一会儿就全用没了,再扛来一袋很快又没有了,结果全印度的粮食用完还不够,国王很奇怪.一个国际象棋棋盘一共能放多少粒小麦,试用程序框图表示其算法.[分析]依题意可知:第一个格放1粒,即20粒,第二个格放2粒,即21粒,第三个格放4粒,即22粒,第四个格放8粒,即23粒,…,第64格放263粒,所以一个国际象棋棋盘一共能放1+21+22+23+24+…+263粒小麦,因此应设计含有循环结构的程序框图.[解析]程序框图如图所示:22.(本题满分14分)某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约经过几年可使总销量达到40 000台?画出解决此问题的程序框图,并写出程序.[解析]程序框图如图所示:程序如下:m=5 000;S=0;i=0;while S<40 000S=S+m;m=m*(1+0.1);i=i+1;endprint(%io(2),i);32567 7F37 缷B124168 5E68 幨39796 9B74 魴-j36670 8F3E 輾) f36224 8D80 趀。
算法初步与框图1.阅读下边的程序框图,运行相应的程序,则输出n的值为( )A.7B.6C.5D.4图1 图22.如图所示,程序框图(算法流程图)的输出结果为( )A、3/4B、1/6C、11/12D、25/24)A.25B.30C.31D.614.执行如图4所示的程序框图,则输出的k的值是( )A.3B.4C.5D.6图4 图5 5.执行如图5所示的程序框图,输出的S值为( )6.执行两次如图6所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为( )A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8图6 图77.阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A.S<8B.S<9C.S<10D.S<118.执行下面的程序框图,如果输入的N=4,那么输出的S=( )A、1+1/2+1/3+1/4B、1+1/2+1/(3×2)+1/(4×3×2)C、1+1/2+1/3+1/4+1/5D、1+1/2+1/(3×2)+1/(4×3×2)+1/(5×4×3×2)9.执行如图所示的程序框图,若输入n=8,则输出S=( )A、4/9B、6/7C、8/9D、10/1110.执行如图所示的程序框图,若输入n的值为3,则输出s的值是( )A.1B.2C.4D.7图8 图9 图1011.阅读如图11所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i= .12.若某程序框图如图12所示,则该程序运行后输出的值等于.13.执行如图13所示的程序框图,如果输入a=1,b=2,则输出的a的值为.图11 图12 图13参考答案:1-4DCCC 5、13/21 6-10 CBBAC 11、4 12、 9/5 13、91、解析:第一次运行:S=0+(-1)1·1=-1<2,第二次运行:n=2,S=-1+(-1)2×2=1<2;第三次运行:n=3,S=1+(-1)3×3=-2<2;第四次运行:n=4,S=-2+(-1)4×4=2,满足S≥2,故输出的n值为4.。
一、选择题1.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.282.该程序中k的值是()A.9 B.10 C.11 D.123.执行如图所示的程序框图,则输出的a=()A .-9B .60C .71D .814.如图是求样本数据方差S 的程序框图,则图中空白框应填入的内容为( )A .()28i S x x S +-=B .()2(1)8i i S x x S -+-=C .()2i S x x S i+-=D .()2(1)i i S x x S i-+-=5.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.56.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,S ,则输入m的值为()问日行几何?”根据此问题写出如下程序框图,若输出465A.240 B.220 C.280 D.2607.朱世杰是我国元代伟大的数学家,其传世名著《四元玉鉴》中用诗歌的形式记载了下面这样一个问题:我有一壶酒,携着游春走.遇务①添一倍,逢店饮斛九②.店务经四处,没了这壶酒.借问此壶中,当原多少酒?①“务”:旧指收税的关卡所在地;②“斛九”:1.9斛.下图是解决该问题的算法程序框图,若输入的x值为0,则输出的x值为()A .5740B .13380C .5732D .5893208.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .69.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为() A .6B .720C .120D .504010.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-11.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为10,14,则输出的a =( )A .6B .4C .2D .012.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤二、填空题13.若45a =,则以下程序运行后的结果是_____.14.如图所示的伪代码,最后输出的S 值为__________.15.执行如图所示的程序框图,输出S 的值为___________.16.如图所示的程序框图,输出S的结果是__________.17.执行如图所示的程序框图,输出的S值是__________.18.运行右图所示程序框图,若输入值xÎ[-2,2],则输出值y的取值范围是_____.19.如图所示的程序框图输出的值是 .20.程序框图如下图所示,其输出的结果是__________________________.三、解答题21.已知直线1:240l x y +-=,阅读如图所示的程序框图,若输入的x 的值为612+,输出的()f x 的值恰为直线2l 在x 轴上的截距,且12l l ⊥.(1)求直线1l 与2l 的交点坐标;(2)若直线3l 过直线1l 与2l 的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求3l 的方程.22.某算法框图如图所示.(1)求函数()y f x =的解析式及7[()]6f f -的值;(2)若在区间[2,2]-内随机输入一个x 值,求输出y 的值小于0的概率. 23.写出一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.24.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式;(2)若输出的y值为12,求点Q的坐标.25.读下列程序,写出此程序表示的函数,并求当输出的6y 时,输入的x的值.26.画出求的程序框图.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环; 4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.2.B解析:B 【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误). 【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<; 第二次循环,6,12,1214k y ==<; 第三次循环,8,14,1414k y ===; 第四次循环,10,16,1614k y ==>, 退出循环,输出10k =, 故选:B. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3.C解析:C 【分析】根据程序框图,模拟运算即可求解. 【详解】第一次执行程序后,1a =-,i=2; 第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71. 故选:C 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.4.D解析:D 【分析】由题意知该程序的作用是求样本128,,,x x x 的方差,由方差公式可得. 【详解】由题意知该程序的作用是求样本128,,,x x x 的方差,所用方法是求得每个数与x 的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:()2(1)i i S x x S i-+-=故选:D 【点睛】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.5.C解析:C 【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求. 【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f xx ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=,此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=,此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=,此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=,此时1.4375 1.3750.06250.1-=<,符合精确度要求. 退出循环,输出n 的值为4. 故选:C. 【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.6.A解析:A 【分析】根据程序框图,依次循环计算,可得输出的S 表达式.结合465S =,由等比数列求和公式,即可求得m 的值. 【详解】由程序框图可知,0,0S i ==,1S m i ==,22mS m i =+= ,324m mS m i =++= ,4248m m mS m i =+++= ,524816m m m mS m i =++++= 此时输出S .所以46524816m m m mm ++++= 即1111146524816m ⎛⎫++++= ⎪⎝⎭由等比数列前n 项和公式可得5112465112m ⎛⎫- ⎪⎝⎭⨯=- 解得240m = 故选:A 【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.7.C解析:C【分析】本题首先可以根据题意以及程序框图明确输入的数据为“0x =,0i =”和运算的算式为“119210xx、1i i =+”,然后进行运算并结合条件“4i ”得出结果。
算法初步
1.【2019年高考江苏卷】下图是一个算法流程图,则输出的S 的值是______________.
【答案】5
【分析】结合所给的流程图运行程序确定输出的值即可. 【解析】执行第一次,1
,1422
x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3
,2422x S S x =+
==≥不成立,继续循环,13x x =+=; 执行第三次,3,342x
S S x =+==≥不成立,继续循环,14x x =+=;
执行第四次,5,442
x
S S x =+==≥成立,输出 5.S =
【名师点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构;(2)要识别、运行程序框图,理解框图所解决的实际问题;(3)按照题目的要求完成解答并验证.
2.【天津市和平区2018-2019学年度第二学期高三年级第三次质量调查】在如图所示的计算
1592017++++的程序框图中,判断框内应填入的条件是
A .2017?i ≤
B .2017?i <
C .2013?i <
D .2021?i ≤
【答案】A
【解析】由题意结合流程图可知当2017i =时,程序应执行S S i =+,42021i i =+=, 再次进入判断框时应该跳出循环,输出S 的值;
结合所给的选项可知判断框内应填入的条件是2017?i ≤.故选A .
3.【吉林省长春市北京师范大学长春市附属中学2019届高三第四次模拟考试】根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于
A .1
B .e
C .1e -
D .2e -
【答案】C
【解析】由题3x =,231x x =-=-,此时0x >,继续运行,
1210x =-=-<,程序运行结束,得1e y -=,故选C .
4.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】执行如图所示的程序框图,则输出的值为
C .6
D .7
【答案】C
【解析】由题可得3,27,315,431,563,6S i S i S i S i S i ==→==→==→==→==, 此时结束循环,输出6i =,故选C .
5.【山东省济宁市2019届高三二模】阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于
A .30
B .31
C .62
D .63
【答案】B
【解析】由流程图可知该算法的功能为计算123412222S =++++的值,
即输出的值为51
2
3
4
1(12)122223112
S ⨯-=++++==-.故选B .
6.【辽宁省大连市2019届高三第二次模拟考试】执行如图所示的程序框图,若输出结果为1,则可输入的
实数x 值的个数为
C .3
D .4
【答案】B
【分析】根据程序框图的含义,得到分段函数221,2
log ,2
x x y x x ⎧-≤⎪=⎨>⎪⎩,分段解出关于x 的方程,即可得到可
输入的实数x 值的个数.
【解析】根据题意,该框图的含义是:
当2x ≤时,得到函数21y x =-;当2x >时,得到函数2log y x =, 因此,若输出的结果为1时,
若2x ≤,得到211x -=
,解得x = 若2x >,得到2log 1x =,无解,
因此,可输入的实数x
的值可能为
,共有2个.故选B . 7.【江西省新八校2019届高三第二次联考】如图所示的程序框图所实现的功能是
A .输入a 的值,计算2021(1)31a -⨯+的值
B .输入a 的值,计算2020(1)31a -⨯+的值
C .输入a 的值,计算2019(1)31a -⨯+的值
D .输入a 的值,计算2018(1)31a -⨯+的值
【答案】B
【解析】由程序框图,可知1a a =,132n n a a +=-,由i 的初值为1,末值为2019, 可知,此递推公式共执行了201912020+=次,
又由132n n a a +=-,得113(1)n n a a +-=-,得1
1(1)3n n a a --=-⨯
即1
(1)3
1n n a a -=-⨯+,故2021120202021(1)31(1)31a a a -=-⨯+=-⨯+,故选B .
8.【山西省2019届高三考前适应性训练(二模)】执行如图所示的程序框图,则输出x 的值为
A .2-
B .1
3
-
C .
12
D .3
【答案】A
【分析】根据程序框图进行模拟运算得到x 的值具备周期性,利用周期性的性质进行求解即可.
【解析】∵12x =
,∴当1i =时,1
3
x =-;2i =时,2x =-; 3i =时,3x =,4
i =时,12
x =,即x 的值周期性出现,周期数为4, ∵201850442=⨯+,则输出x 的值为2-,故选A .
【名师点睛】本题主要考查程序框图的识别和判断,结合条件判断x 的值具备周期性是解决本题的关键,属于中档题.
9.【青海省西宁市第四高级中学、第五中学、第十四中学三校2019届高三4月联考】若某程序框图如图所
示,则该程序运行后输出的值是
A .5
B .4
C .3
D .2
【答案】B
【分析】模拟执行循环结构的程序得到n 与i 的值,计算得到2n =时满足判断框的条件,退出循环,输出结果,即可得到答案.
【解析】模拟执行循环结构的程序框图, 可得:6,1n i ==, 第1次循环:3,2n i ==; 第2次循环:4,3n i ==; 第3次循环:2,4n i ==,
此时满足判断框的条件,输出4i =.故选B .
【名师点睛】本题主要考查了循环结构的程序框图的应用,其中解答中根据给定的程序框图,根据判断框的条件推出循环,逐项准确计算输出结果是解答的关键,着重考查了考生的运算与求解能力,属于基础题.
10.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研】下图是一个算
法流程图.若输出y 的值为4,则输入x 的值为______________.
【答案】1-
【解析】当1x ≤时,由流程图得3y x =-, 令34y x =-=,解得1x =-,满足题意. 当1x >时,由流程图得3y x =+, 令34y x =+=,解得1x =,不满足题意. 故输入x 的值为1-.
11.【北京市人大附中2019届高三高考信息卷(三)】执行如图所示的程序框图,若输入x 值满足24x -<≤,
则输出y 值的取值范围是______________.
【答案】[3,2]-
【解析】根据输入x 值满足24x -<≤,利用函数的定义域,分成两部分:即22x <<﹣和24x ≤≤,当22x <<﹣时,执行23y x =- 的关系式,故31y -≤<, 当24x ≤≤时,执行2log y x =的关系式,故12y ≤≤. 综上所述:[3,2]y ∈-,故输出y 值的取值范围是[3,2]-.。