信息安全数学基础知识点
- 格式:doc
- 大小:208.50 KB
- 文档页数:5
信息安全数学基础第一阶段知识总结第一章整数得可除性一整除得概念与欧几里得除法1 整除得概念定义1 设a、b就是两个整数,其中b≠0如果存在一个整数q 使得等式a=bq成立,就称b整除a或者a被b整除,记作b|a ,并把b 叫作a得因数,把a叫作b得倍数、这时,q也就是a得因数,我们常常将q写成a/b或否则,就称b不能整除a或者a不能被b整除,记作a b、2整除得基本性质(1)当b遍历整数a得所有因数时,-b也遍历整数a得所有因数、(2)当b遍历整数a得所有因数时,a/b也遍历整数a得所有因数、(3)设b,c都就是非零整数,(i)若b|a,则|b|||a|、(ii)若b|a,则bc|ac、(iii)若b|a,则1〈|b|≤|a|、3整除得相关定理(1)设a,b≠0,c≠0就是三个整数、若c|b,b|a,则c|a、(2)设a,b,c≠0就是三个整数,若c|a,c|b,则c|a±b(3)设a,b,c就是三个整数、若c|a,c|b则对任意整数s,t,有c|sa+tb、(4)若整数a1, …,an都就是整数c≠0得倍数,则对任意n个整数s1,…,sn,整数就是c得倍数(5)设a,b都就是非零整数、若a|b,b|a,则a=±b(6)设a,b,c就是三个整数,且b≠0,c ≠0,如果(a , c)=1,则(ab , c)=(b,c)(7) 设a,b , c就是三个整数,且c≠0,如果c|ab,(a , c)=1, 则c|b、(8)设p就是素数,若p|ab ,则p |a或p|b(9)设a1,…,a n就是n个整数,p就是素数,若p|a1…a n,则p一定整除某一个ak二整数得表示主要掌握二进制、十进制、十六进制等得相互转化、三最大公因数与最小公倍数(一)最大公因数1.最大公因数得概念定义:设就是个整数,若使得 ,则称为得一个因数。
公因数中最大得一个称为得最大公因数。
记作、若,则称互素。
若,则称两两互素。
信息安全数学基础导言信息安全是在当前信息时代中广泛关注的一个重要领域。
它涉及到保护数据的机密性、完整性和可用性,以及防止未经授权的访问、修改或破坏数据的行为。
在信息安全领域,数学起着至关重要的作用。
数学提供了许多基础概念和技术,用于保护信息和数据。
本文将介绍信息安全的一些数学基础知识。
1. 整数论整数论是信息安全中不可或缺的一部分,其主要研究整数及其性质。
在信息安全中,整数论常用于加密算法和密钥生成。
其中,最常见的整数论问题是素数的应用。
素数是只能被1和自身整除的整数。
在信息安全中,素数被广泛应用于加密算法,如RSA算法。
RSA算法的基本原理是利用两个大素数的乘积作为公钥的模数,并求解其积的欧拉函数值。
因此,整数论中研究素数的性质和生成方法对于实现安全的RSA加密算法非常重要。
除了素数,整数论还涉及到很多其他概念和技术,如模运算、同余和剩余类等。
这些概念和技术在信息安全中的密码算法和密钥生成中起着至关重要的作用。
2. 离散数学离散数学是信息安全中的另一个重要基础。
离散数学研究的是离散结构,如集合、图论、布尔代数等。
在信息安全中,离散数学的概念和技术被广泛应用于密码学和网络安全。
密码学是关于信息加密和解密的科学,其中离散数学起着关键作用。
密码学使用离散数学的技术来设计和分析密码算法。
例如,离散数学的图论技术可以用于构建网络拓扑图,以评估网络的安全性。
布尔代数被广泛应用于逻辑门电路的设计和分析,用于实现对信息的逻辑操作和处理。
离散数学的另一个重要应用是在密码学中的离散对数问题。
离散对数问题是指已知一个数的底数和模数,求解指数的问题。
这个问题在公钥密码学中扮演着重要角色,如Diffie-Hellman密钥交换协议和椭圆曲线密码算法。
3. 概率论与统计学概率论和统计学是信息安全中的另一对重要基础。
它们被用于分析密码算法的安全性、测量信息系统的可靠性,并为风险评估和安全决策提供支持。
在密码学中,概率论和统计学的概念被广泛应用于对密码算法的攻击和破解。
信息安全数学基础第一阶段知识总结第一章 整数的可除性一 整除的概念和欧几里得除法 整除的概念定义 设♋、♌是两个整数,其中♌≠ 如果存在一个整数 ❑ 使得等式 ♋♌❑ 成立,就称♌整除♋或者♋被♌整除,记作♌♋ ,并把♌叫作♋的因数,把♋叫作♌的倍数 这时,❑也是♋的因数,我们常常将❑写成♋/♌或 否则,就称♌不能整除♋或者♋不能被♌整除,记作♋ ♌整除的基本性质☎✆当♌遍历整数♋的所有因数时, ♌也遍历整数♋的所有因数☎✆当♌遍历整数♋的所有因数时,♋♌也遍历整数♋的所有因数☎✆设♌,♍都是非零整数,☎♓✆若♌♋,则 ♌♋ ☎♓♓✆若♌♋,则♌♍♋♍☎♓♓♓✆若♌♋,则 ♌≤ ♋ 整除的相关定理☎✆ 设♋,♌≠ ,♍≠ 是三个整数 若♍♌,♌♋,ab则♍♋☎✆ 设♋,♌,♍≠ 是三个整数,若♍♋,♍♌,则♍♋±♌☎✆ 设♋,♌,♍是三个整数 若♍♋,♍♌则对任意整数♦,♦,有♍♦♋♦♌☎✆ 若整数♋ ⑤♋⏹都是整数♍≠ 的倍数,则对任意⏹个整数♦,⑤,♦⏹,整数是♍的倍数☎✆ 设♋,♌都是非零整数 若♋♌,♌♋,则♋±♌ ☎✆ 设♋ ♌ ♍是三个整数,且♌≠ ,♍ ≠ ,如果☎♋ ♍✆则 ☎♋♌ ♍✆☎♌ ♍✆☎✆ 设♋ ♌ ♍是三个整数,且♍≠ ,如果♍|♋♌ ☎♋ ♍✆ 则♍ ♌☎✆ 设☐ 是素数,若☐ ♋♌ 则☐ ♋或☐♌☎✆ 设♋ ⑤♋⏹是⏹个整数,☐是素数,若☐ ♋ ⑤♋⏹ 则☐一定整除某一个♋ 二 整数的表示主要掌握二进制、十进制、十六进制等的相互转化 三 最大公因数和最小公倍数 ☎一✆最大公因数 .最大公因数的概念nn a s a s ++ 11定义:设是个整数,若使得 ,则称为的一个因数.公因数中最大的一个称为的最大公因数.记作若 则称 互素.若 则称两两互素.思考: .由两两互素,能否导出.由 能否导出两两互素?.最大公因数的存在性☎✆若 不全为零,则最大公因数存在并且☎✆若全为零,则任何整数都是它的公因数.这时,它们没有最大公因数..求两个正整数的最大公因数.定理 :设任意三个不全为零的整数,且 则辗转相除法由带余除法 得☎✆⑤⑤因为每进行一次带余除法,余数至少减少 ,且是有限整数,故经过有限次带余除法后,总可以得到一个余数是零的情况,即由☎✆知,定理 :任意两个正整数 则是☎✆中最后一个不等于零的余数.定理 :任意两个正整数的任意公因数都是的因数. .性质定理 :任意两个正整数,则存在整数,使得成立定理 :设是不全为零的整数.☎♓✆若则☎♓♓✆若则☎♓♓♓✆若是任意整数,则从上面定理我们很容易得到下面几个常用结论:♊♋ 且♌♍.求两个以上正整数的最大公因数设则有下面的定理:定理 :若 是个正整数,则只需证♊是的一个公因数.♋ 是的公因数中最大一个例 求解:.求两个正整数的最大公因数的线性组合(重点掌握)方法一 运用辗转相除法求最大公因数的逆过程;方法二 补充的方法方法三 运用列表法求解☎二✆ 最小公倍数.最小公倍数的定义定义: 是 个整数,如果对于整数,有那么叫做的一个公倍数.在 的一切公倍数中最小一个正整数,叫做最小公倍数.记作 ..最小公倍数的性质.定理 :设是任给的两个正整数,则☎♓✆的所有公倍数都是的倍数.☎♓♓✆定理 :设正整数是的一个公倍数,则.求两个以上整数的最小公倍数定理 :设是个正整数 若则只需证:♊是 的一个公倍数,即♋设是的任一公倍数 则例 求解:又四 素数 算术基本定理.素数、合数的概念定义:一个大于 的整数,如果它的正因数只有 和它的本身,我们就称它为素数,否则就称为合数..性质定理 :设是大于 的整数,则至少有一个素因数,并且当是合数时,若是它大于 的最小正因数,则p ,都有定理 设⏹是一个正整数,如果对所有地素数n☐ ⏹则⏹一定是素数求素数的基本方法:爱拉托斯散筛法。
信息安全的数学基础
信息安全的数学基础可以总结为以下几个方面:
1. 密码学:涉及到各种加密算法和解密算法,主要是数论、代
数和概率论方面的知识。
对称加密算法(如DES、AES等)和非对称加
密算法(如RSA、ECC等)都是基于数学原理的。
2. 数字签名:数字签名是数字证书体系的基础。
数字签名涉及
到哈希函数、公钥密码体制等数学算法,这些算法在数字认证、电子
邮件、电子商务等领域得到广泛应用。
3. 随机数生成:随机数生成是很多加密算法中不可或缺的功能。
在信息安全中,随机数的产生要具有不可预测性,这可以通过伪随机
序列算法和真随机序列算法来实现。
其中,真随机序列算法主要依赖
于物理随机事件的产生,如收音机收音噪声和光学噪声等,这也需要
数学中的统计学和概率论知识。
4. 数字证书:数字证书是数字身份证明的一种方式,它包括了
某个实体的公钥以及相关的信息,可以用于数字证明的验证。
数字证
书一般采用了基于数学算法的公钥密码体制,如RSA和ECC等。
此外,数字证书的设计和实现还要涉及证书格式、证书吊销等方面的数学知识。
总之,信息安全中的数学基础是十分广泛和深奥的,需要掌握多
种数学知识才能确保信息安全。
信息安全数学基础第一阶段知识总结第一章 整数的可除性一 整除的概念和欧几里得除法 1 整除的概念定义1 设a 、b 是两个整数,其中b ≠0如果存在一个整数 q 使得等式 a=bq 成立,就称b 整除a 或者a 被b 整除,记作b|a ,并把b 叫作a 的因数,把a 叫作b 的倍数.这时,q 也是a 的因数,我们常常将q 写成a /b 或否则,就称b 不能整除a 或者a 不能被b 整除,记作a b.2整除的基本性质(1)当b 遍历整数a 的所有因数时,-b 也遍历整数a 的所有因数. (2)当b 遍历整数a 的所有因数时,a/b 也遍历整数a 的所有因数. (3)设b ,c 都是非零整数, (i)若b|a ,则|b|||a|. (ii)若b|a ,则bc|ac.(iii)若b|a ,则1<|b|≢|a|. 3整除的相关定理(1) 设a ,b ≠0,c ≠0是三个整数.若c|b ,b|a ,则c|a. (2) 设a ,b ,c ≠0是三个整数,若c|a ,c|b ,则c|a ±b(3) 设a ,b ,c 是三个整数.若c|a ,c|b 则对任意整数s ,t ,有c|sa+tb. (4) 若整数a 1 , …,a n 都是整数c ≠0的倍数,则对任意n 个整数s 1,…,s n ,整数 是c 的倍数ab n n as a s ++ 11(5) 设a,b都是非零整数.若a|b,b|a,则a=±b(6) 设a, b , c是三个整数,且b≠0,c ≠0,如果(a , c)=1,则(ab , c)=(b , c)(7) 设a , b , c是三个整数,且c≠0,如果c|ab , (a , c) = 1, 则c | b.(8) 设p 是素数,若p |ab , 则p |a或p|b(9) 设a1, …,a n是n个整数,p是素数,若p| a1…a n,则p一定整除某一个a k二整数的表示主要掌握二进制、十进制、十六进制等的相互转化.三最大公因数和最小公倍数(一)最大公因数1.最大公因数的概念定义:设是个整数,若使得,则称为的一个因数.公因数中最大的一个称为的最大公因数.记作.若 ,则称互素.若,则称两两互素.思考:1.由两两互素,能否导出2.由能否导出两两互素?2.最大公因数的存在性(1)若不全为零,则最大公因数存在并且(2)若全为零,则任何整数都是它的公因数.这时,它们没有最大公因数.3.求两个正整数的最大公因数.定理1:设任意三个不全为零的整数,且则辗转相除法由带余除法得(1)……因为每进行一次带余除法,余数至少减少1,且是有限整数,故经过有限次带余除法后,总可以得到一个余数是零的情况,即由(1)知,定理2:任意两个正整数,则是(1)中最后一个不等于零的余数.定理3:任意两个正整数的任意公因数都是的因数.4.性质定理4:任意两个正整数,则存在整数,使得成立定理5:设是不全为零的整数.(i)若则(ii)若则(iii)若是任意整数,则从上面定理我们很容易得到下面几个常用结论:①② 且③④5.求两个以上正整数的最大公因数设则有下面的定理:定理6:若是个正整数,则只需证①是的一个公因数.②是的公因数中最大一个例求解:6.求两个正整数的最大公因数的线性组合(重点掌握)方法一运用辗转相除法求最大公因数的逆过程;方法二补充的方法方法三运用列表法求解(二) 最小公倍数1.最小公倍数的定义定义:是个整数,如果对于整数,有,那么叫做的一个公倍数.在的一切公倍数中最小一个正整数,叫做最小公倍数.记作.2.最小公倍数的性质.定理1:设是任给的两个正整数,则(i)的所有公倍数都是的倍数.(ii)定理2:设正整数是的一个公倍数,则3.求两个以上整数的最小公倍数定理3:设是个正整数, 若则只需证:①是的一个公倍数,即,②设是的任一公倍数,则例1 求解:又四素数算术基本定理1.素数、合数的概念定义:一个大于1的整数,如果它的正因数只有1和它的本身,我们就称它为素数,否则就称为合数.2.性质定理1:设是大于1的整数,则至少有一个素因数,并且当是合数时,若是它大于1的最小正因数,则p ,都有定理2设n是一个正整数,如果对所有地素数np n,则n一定是素数.求素数的基本方法:爱拉托斯散筛法。
第六章 素性检验
6.1 拟素数
引例:根据Fermat 小定理,我们知道:如果n 是一个素数,则对任
意整数b,(b,n)=1,有
)(mod 11n b n ≡-
由此,我们得到:如果一个整数b,(b,n)=1,使得 )
(mod 11n b n ≡/-,则n 是一个合数。
定义1:设n 是一个奇合数,如果整数b,(b,n)=1使得同余式 )(mod 11n b n ≡-成立,则n 叫做对于基b 的拟素数。
引理:设d,n 都是正整数,如果d 能整除n 则
12-d 能整除12-n
定理1:存在无穷多个对于基2的拟素数。
定理2:设n 是一个奇合数,则
(i)n 是对于基b,((b,n)=1),的拟素数当且仅当b 模n 的指数整除n-1。
(ii)如果n 是对于基1b ((1b ,n)=1),和基2b ,((2b ,n)=1),的拟素数,则
n 是对于基21b b 的拟素数。
(iii)如果n 是对于基b,((b,n)=1),的拟素数,则n 是对于基1-b 的拟素数。
(iv)如果有一个整数b ,((b,n)=1),使得同余式
)(mod 11n b n ≡-不成立,则模n 的简化剩余系中至少有一半的数使得该同余式不成立。
//////////////////////////////////////////////////////////////////////////////////////////////////////////
Fermat 素性检验
给定奇整数3≥n 和安全参数t 。
1.随即选取整数
b ,22-≤≤n b ;
2.计算()n b r n mod 1-=;
3.如果1≠r ,则n 是合数;
4.上述过程重复t 次;
定义2:合数n 称为Carmichael 数,如果对所有的正整数b ,(b,n)=1,
都有同余式
()n b n mod 11≡-成立 定理3:设n 是一个奇合数。
(i)如果n 被一个大于1平方数整除,则n 不是Carmichael 数。
(ii)如果k p p n Λ1=是一个无平方数,则n 是Carmichael 数的充要条件是 11--n p i ,k i ≤≤1
定理4:每个Carmichael 数是至少三个不同素数的乘积
注:1.存在无穷多个Carmichael 数
2.当n 充分大时,区间[]n ,2内的Carmichael 数的个数大于等于72n 6.2 Euler 拟素数
引例:设n 是奇素数,根据定理,我们有同余式
)(mod 21n n b b n ⎪⎭
⎫ ⎝⎛≡- 对任意整数b 成立
因此,如果存在整数b ,(b,n)=1,使得
)(mod 21n n b b n ⎪⎭
⎫ ⎝⎛≡/- 则n 不是一个素数。
定义1:设n 是一个正奇合数,设整数b 与n 互素,如果整数n 和b 满足条件: )(mod 21n n b b n ⎪⎭
⎫ ⎝⎛≡- 则n 叫做对于基b 的Euler 拟素数。
定理1:如果n 是对于基b 的Euler 拟素数,则n 是对于基b 的拟素 数。
////////////////////////////////////////////////////////////////////////////////////////////////////////// Solovay-Stassen 素性检验
给定奇整数3≥n 和安全参数
t . 1.随即选取整数b ,
22-≤≤n b ; 2.计算);(mod 21n b r
n -= 3.如果1≠r 以及1-≠n r ,则n 是合数;
4.计算Jacobi 符号;⎪⎭⎫ ⎝⎛=n b s
5.如果s r ≠,则你是合数;
6.上述过程重复t 次。
6.3 强拟素数 引例:设n 是正奇整数,并且有t n n 2
1=-,则我们有如下因数分解式:)1)(1()1)(1(121221-+++=----t t t t n b b b b b n n Λ
因此,如果有同余式 )(mod 11n b n ≡-
则如下同余式至少有一个成立:
)
(mod 1)
(mod 1)
(mod 1)
(mod 1122n b n b n b n b t t t t n -≡-≡-≡≡-M
定义1:设n 是一个奇合数,且有表达式t n n 21=-,其中t 为奇数,
设整数b 与n 互素,如果整数n 和b 满足条件:
)(mod 1n b t ≡
或者存在一个整数,s r
<≤0使得 )(mod 12n b t r -≡
则n 叫做对于基b 的强拟素数。
定理1:存在无穷多个对于基2的强拟素数。
定理2:如果n 是对于基b 的强拟素数,n 是对于基b 的Euler 拟素数。
定理3:设n 是一个奇合数,则n 是对于基b ,11-≤≤n b ,的强拟素数的可能性至多为25%。
////////////////////////////////////////////////////////////////////////////////////////////////////////// Miller-Rabin 素性检验
给定奇整数3≥n 和安全参数k 。
写t n s
21=-,其中t 为奇整数。
1.随机选取整数22,-≤≤n b b 。
2.计算)(mod 0n b r t ≡;
3.(i )如果10=r 或10-=n r ,则通过检验,可能为素数。
回到1,
继续选取另一个随机整数22,-≤≤n b b ; (ii )否则,有10≠r 以及10-≠n r ,我们计算)(mod 201n r r ≡;
4.(i )如果11-=n r ,则通过检验,可能为素数。
回到1,继续选取另一个随机整数22,-≤≤n b b ; (ii )否则,有11-≠n r ,我们计算)(mod 212n r r ≡; 如此继续下去,
S+2.(i )如果11-=-n r s ,则通过检验,可能为素数。
回到1,继续选取另一个随机整数22,-≤≤n b b ; (ii )否则,有11-≠-n r s ,n 为合数。