第04节安培力的应用
- 格式:ppt
- 大小:561.50 KB
- 文档页数:18
高二物理教案安培力的应用一、教学内容本节课选自《高中物理》教材第二章第4节,详细内容为安培力的概念、计算方法及其应用。
重点学习安培力在电流载流子上的作用,以及安培力在现实生活中的应用实例。
二、教学目标1. 理解安培力的定义,掌握安培力的计算公式。
2. 能够运用安培力解决实际问题,分析安培力在电路中的作用。
3. 了解安培力在现实生活中的应用,提高学生的科学素养。
三、教学难点与重点重点:安培力的计算方法及其应用。
难点:安培力方向的理解,安培力与电流、磁场的关系。
四、教具与学具准备1. 教具:电流表、磁场演示器、安培力演示仪。
2. 学具:电流表、导线、磁铁、滑动变阻器。
五、教学过程1. 实践情景引入(1)展示电流表,引导学生观察电流表的指针偏转,思考电流与力的关系。
(2)演示磁场对电流的作用,让学生感受安培力的存在。
2. 例题讲解(1)讲解安培力的定义,推导安培力的计算公式。
(2)通过例题,讲解如何运用安培力公式解决实际问题。
3. 随堂练习(1)让学生计算给定电流、磁场条件下安培力的大小。
(2)分析安培力在电路中的应用实例。
4. 讨论与分享(1)引导学生讨论安培力在生活中的应用。
(2)分享安培力相关的故事和趣事。
(2)评价学生对安培力的理解程度。
六、板书设计1. 安培力的定义2. 安培力的计算公式3. 安培力的应用实例4. 生活中的安培力七、作业设计1. 作业题目:(1)计算给定电流、磁场条件下安培力的大小。
(2)分析安培力在电路中的应用。
2. 答案:(1)安培力大小:F = BILsinθ(2)安培力在电路中的应用:电动机、发电机等。
八、课后反思及拓展延伸1. 反思:本节课学生对安培力的理解程度,以及对安培力计算公式的掌握情况。
2. 拓展延伸:(1)研究安培力在磁场中的分布规律。
(2)探讨安培力在新型能源领域的应用前景。
重点和难点解析1. 安培力的定义及计算公式2. 安培力的方向理解3. 安培力在现实生活中的应用实例4. 教学过程中的实践情景引入和例题讲解5. 作业设计和课后反思一、安培力的定义及计算公式安培力的定义为:当电流通过导线时,若该导线处于磁场中,导线将受到一个垂直于电流方向和磁场方向的力,称为安培力。
安培力的应用一、安培力的方向判断:1.左手定则左手定则内容:______________________________________________________________ ___________________________________________________________________________说明:(1)安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B与I的方向不一定垂直.(2)安培力F、磁感应强度B、电流I三者的关系①已知I,B的方向,可惟一确定F的方向;②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;③已知F,I的方向时,磁感应强度B的方向不能惟一确定2.用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时).3.用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质).可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁).4.安培力作用下物体的运动方向的判断(1)电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断整段电流所受合力方向,最后确定运动方向.(2)特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向.(3)等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析.(4)利用结论法:①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;②两电流不平行时,有转动到相互平行且电流方向相同的趋势.(5)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受电流作用力,从而确定磁体所受合力及运动方向.例1.(2014·惠州月考)图中的D为置于电磁铁两极间的一段通电直导线,电流方向垂直于纸面向里。
安培力原理的应用1. 什么是安培力原理?安培力原理是指通过电流在导线中产生的磁场对其他导体或磁体产生力的现象。
根据安培力原理,当电流通过导线时,会在其周围产生一个磁场,而这个磁场会对其他导体或磁体产生力。
2. 安培力原理的应用安培力原理在日常生活和工业领域中得到了广泛的应用,下面列举了一些常见的应用:•电动机:电动机是利用安培力原理工作的设备之一。
通过在导线中通过电流,产生磁场,在磁场中放置一个导体,则导体会受到施加在它上面的力,从而产生运动,实现电能转换为机械能。
•电磁铁:电磁铁是一种利用安培力原理制作的设备。
通过在铁芯上绕制导线,并通过电流,产生强磁场,以实现对铁制物体的吸附和释放,常用于起重吊运、电磁锁等方面。
•变压器:变压器是利用安培力原理来实现电能转换和调节的设备。
通过在一个闭合的铁芯上绕制两个相互绝缘的导线圈,通过其中一组导线圈中的电流产生磁场,从而在另一组导线圈中诱发电流,实现电能的转换和调节。
•磁悬浮列车:磁悬浮列车是一种利用安培力原理来实现悬浮和推进的交通工具。
通过在轨道上设置电磁线圈,产生磁场,使列车悬浮在轨道上。
同时,在列车下方的导轨上放置导体,通过电流产生的磁场相互排斥,实现列车的推进和驱动。
3. 安培力的计算公式安培力的大小可以使用以下公式来计算:\[ F = BIL \]其中,F表示安培力的大小,B表示磁场的强度,I表示通过导线的电流,L表示导线的长度。
根据这个计算公式,可以得出以下结论:•当磁场的强度增加时,安培力的大小也会增加。
•当通过导线的电流增大时,安培力的大小也会增加。
•当导线的长度增加时,安培力的大小也会增加。
4. 安培力的应用案例4.1 电磁铁的应用电磁铁是一种非常常见的应用安培力原理的设备。
它由一个铁芯和绕制在铁芯上的导线组成。
当电流通过导线时,产生的磁场使得铁芯具有磁性,从而可以实现对铁质物体的吸附。
电磁铁广泛应用于起重吊运、电磁锁、电磁制动等方面。