第五讲 规划问题的matlab计算
- 格式:ppt
- 大小:263.00 KB
- 文档页数:49
Matlab求解线性规划和整数规划问题Matlab是一种强大的数值计算和科学计算软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将详细介绍如何使用Matlab来求解线性规划和整数规划问题。
一、线性规划问题的求解线性规划是一种优化问题,旨在找到一组变量的最佳值,以使线性目标函数在一组线性约束条件下最大或者最小化。
下面以一个简单的线性规划问题为例来说明如何使用Matlab求解。
假设有以下线性规划问题:最大化目标函数:Z = 3x + 5y约束条件:2x + y ≤ 10x + 3y ≤ 15x, y ≥ 01. 创建线性规划模型在Matlab中,可以使用linprog函数来创建线性规划模型。
首先,定义目标函数的系数向量c和不等式约束条件的系数矩阵A以及不等式约束条件的右侧常数向量b。
c = [-3; -5];A = [2, 1; 1, 3];b = [10; 15];2. 求解线性规划问题然后,使用linprog函数求解线性规划问题。
该函数的输入参数为目标函数的系数向量c、不等式约束条件的系数矩阵A、不等式约束条件的右侧常数向量b以及变量的下界和上界。
lb = [0; 0];ub = [];[x, fval, exitflag] = linprog(c, A, b, [], [], lb, ub);其中,x是最优解向量,fval是最优解对应的目标函数值,exitflag是求解器的退出标志。
3. 结果分析最后,打印出最优解向量x和最优解对应的目标函数值fval。
disp('最优解向量x:');disp(x);disp('最优解对应的目标函数值fval:');disp(fval);二、整数规划问题的求解整数规划是一种优化问题,与线性规划类似,但是变量的取值限制为整数。
Matlab提供了intlinprog函数来求解整数规划问题。
下面以一个简单的整数规划问题为例来说明如何使用Matlab求解。
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
Matlab数学规划问题求解1. 线性规划线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB6.0解决的线性规划问题的标准形式为:min n R',f∈xxsub.to:b⋅xA≤A e q=⋅xb e q≤lb≤xub其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。
其它形式的线性规划问题都可经过适当变换化为此标准形式。
在MATLAB6.0版中,线性规划问题(Linear Programming)已用函数linprog取代了MATLAB5.x版中的lp函数。
当然,由于版本的向下兼容性,一般说来,低版本中的函数在6.0版中仍可使用。
函数linprog调用格式:x=linprog(f,A,b)x=linprog(f,A,b,Aeq,beq)x=linprog(f,A,b,Aeq,beq,lb,ub)x=linprog(f,A,b,Aeq,beq,lb,ub,x0)x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval]=linprog(…)[x, fval, exitflag]=linprog(…)[x, fval, exitflag, output]=linprog(…)[x, fval, exitflag, output, lambda]=linprog(…)说明:x=linprog(f, A, b)%求min f ' *x, sub.to bA≤⋅线性规划的最优解。
返回x值x为最优解向量。
x=linprog(f, A, b, Aeq, beq) %含有等式约束beq⋅,若没有不等式xAeq=约束b⋅,则令A=[ ],b=[ ]。
A≤xx = linprog(f, A, b, Aeq, beq, lb, ub) %指定x的范围ub≤xlb≤x=linprog(f, A, b, Aeq, beq, lb, ub, x0) %设置x0为初值点。
线性规划问题M a t l a b求解(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除用MATLAB优化工具箱解线性规划命令:x=linprog(c,A,b)命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0)注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1解编写M文件小如下:c=[ ];A=[ ; 0 0 0 0;0 0 0 0;0 0 0 0 ];b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2 解: 编写M文件如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低解设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。
Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。
整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。
在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。
1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。
目标函数可以是最小化或者最大化某个线性表达式。
b. 定义约束条件:其次,需要定义线性规划问题的约束条件。
约束条件可以是等式或者不等式形式的线性表达式。
c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。
d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。
e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。
b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。
c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。
d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。
例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为200元。
生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。
工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。
求解如何安排生产,使得利润最大化。
1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数学软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将介绍如何使用Matlab求解这两类问题,并分析其优点和适用范围。
正文内容:1. 线性规划问题1.1 线性规划问题的定义线性规划问题是指在一定的约束条件下,通过线性目标函数求解最优解的问题。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
1.2 Matlab中的线性规划求解函数Matlab提供了linprog函数来求解线性规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界,来求解线性规划问题的最优解。
1.3 线性规划问题的应用线性规划问题在实际应用中非常广泛,例如生产计划、资源分配、运输问题等。
通过Matlab求解线性规划问题,可以高效地得到最优解,为实际问题的决策提供科学依据。
2. 整数规划问题2.1 整数规划问题的定义整数规划问题是指在线性规划问题的基础上,决策变量的取值限制为整数。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0x为整数其中,c、A、b的定义与线性规划问题相同,x为整数。
2.2 Matlab中的整数规划求解函数Matlab提供了intlinprog函数来求解整数规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界和整数约束条件,来求解整数规划问题的最优解。
2.3 整数规划问题的应用整数规划问题在实际应用中常见,例如生产调度、投资决策、路径规划等。
通过Matlab求解整数规划问题,可以考虑到决策变量的整数性质,得到更为实际可行的解决方案。
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学计算软件,可用于求解各种数学问题,包括线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab求解线性规划和整数规划问题。
线性规划是一种优化问题,目标是通过线性约束条件来最大化或者最小化一个线性目标函数。
整数规划是线性规划的一种扩展,要求变量的取值必须为整数。
在Matlab中,我们可以使用内置的优化工具箱来解决这些问题。
首先,我们需要定义线性规划或者整数规划问题的目标函数和约束条件。
假设我们要最大化一个线性目标函数,可以使用以下代码定义目标函数:```matlabf = [1; 2; 3]; % 目标函数的系数向量```这里,f是一个列向量,表示目标函数的系数。
在这个例子中,我们有三个变量,所以f是一个3x1的向量。
接下来,我们需要定义约束条件。
约束条件可以是等式约束或者不等式约束。
假设我们有以下等式约束条件:```matlabAeq = [1, 1, 1]; % 等式约束条件的系数矩阵beq = 10; % 等式约束条件的右侧常数向量```这里,Aeq是一个1x3的矩阵,表示等式约束条件的系数。
beq是一个标量,表示等式约束条件的右侧常数。
我们还可以定义不等式约束条件。
假设我们有以下不等式约束条件:```matlabA = [1, 0, 0; 0, 1, 0]; % 不等式约束条件的系数矩阵b = [5; 3]; % 不等式约束条件的右侧常数向量```这里,A是一个2x3的矩阵,表示不等式约束条件的系数。
b是一个2x1的向量,表示不等式约束条件的右侧常数。
现在,我们可以使用Matlab的优化工具箱中的函数来求解线性规划问题。
使用linprog函数可以求解线性规划问题,使用intlinprog函数可以求解整数规划问题。
```matlabx = linprog(f, A, b, Aeq, beq); % 求解线性规划问题``````matlabx = intlinprog(f, [1, 2, 3], A, b, Aeq, beq); % 求解整数规划问题```这里,x是一个列向量,表示最优解。
Matlab中规划问题的计算机解法【摘要】规划问题是数学建模中最常见的问题,本文全面系统的阐述各种类型规划问题的MATLAB解法,包括线性规划、二次规划、无约束优化、有约束优化等。
【关键词】数学建模;规划问题;计算机求解;MATLAB语言规划即最优化问题就是求最大(小)值问题,是数学建模中最常见的问题,几乎每个建模问题都离不开优化。
建模中的优化问题主要有四种类型,即线性规划、二次规划、无约束优化和有约束优化。
一、线性规划问题(linprog)minf(x)x属于Rs.t:A*x<=b;Aeq*x=beq;lb<=x<=ub;其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。
函数linprog格式:x = linprog(f,A,b)%求minf s.t 线性规划的最优解。
x = linprog(f,A,b,Aeq,beq)%不等式约束,若没有不等式约束,则A=[],b=[]。
x = linprog(f,A,b,Aeq,beq,lb,ub)%指定x的范围,若没有等式约束,则Aeq=[],beq=[]x = linprog(f,A,b,Aeq,beq,lb,ub,x0)%设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)% options为指定的优化参数[x,fval]= linprog(…)% 返回目标函数最优值,即fval= f[x,lambda,exitflag]= linprog(…)% lambda为解x的Lagrange乘子。
[x,lambda,fval,exitflag]= linprog(…)% exitflag为终止迭代的错误条件。
说明:若exitflag>0表示函数收敛于解x,exitflag=0表示超过函数估值或迭代的最大数字,exitflag<0表示函数不收敛于解x;若lambda=lower 表示下界lb,lambda=upper表示上界ub,lambda=ineqlin表示不等式约束,lambda=eqlin 表示等式约束,lambda中的非0元素表示对应的约束是有效约束。
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种强大的数学计算软件,广泛应用于科学、工程和金融等领域。
在数学优化中,线性规划和整数规划问题是常见的优化问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并详细阐述求解过程和注意事项。
正文内容:1. 线性规划问题求解1.1 线性规划问题的定义线性规划问题是在一组线性约束条件下,最大化或者最小化线性目标函数的问题。
在Matlab中,可以使用线性规划函数linprog进行求解。
1.2 线性规划问题的建模在求解线性规划问题之前,需要将问题转化为标准的线性规划形式。
这包括定义决策变量、约束条件和目标函数。
在Matlab中,可以使用矩阵和向量表示线性约束条件和目标函数。
1.3 线性规划问题的求解步骤求解线性规划问题的普通步骤包括定义问题、建模、调用linprog函数进行求解、获取结果并进行分析。
在Matlab中,可以使用linprog函数指定问题的目标函数、约束条件和变量范围,然后通过调用该函数获得最优解。
2. 整数规划问题求解2.1 整数规划问题的定义整数规划问题是在线性规划问题的基础上,对决策变量增加整数限制的问题。
在Matlab中,可以使用整数线性规划函数intlinprog进行求解。
2.2 整数规划问题的建模与线性规划问题类似,整数规划问题也需要定义决策变量、约束条件和目标函数。
不同之处在于,决策变量需要增加整数限制。
在Matlab中,可以使用矩阵和向量表示整数约束条件和目标函数。
2.3 整数规划问题的求解步骤整数规划问题的求解步骤与线性规划问题类似,只是需要调用intlinprog函数进行求解。
在Matlab中,可以通过指定问题的目标函数、约束条件、变量范围和整数约束条件来调用该函数,然后获取最优解。
总结:在本文中,我们介绍了如何使用Matlab求解线性规划和整数规划问题。
对于线性规划问题,需要定义问题、建模、调用linprog函数进行求解,并获取结果进行分析。
7.3 优化工具箱及其应用在工程设计、经济管理和科学研究等诸多领域中,人们常常会遇到这样的问题:如何从一切可能的方案中选择最好、最优的方案,在数学上把这类问题称为最优化问题。
这类问题很多,例如当设计一个机械零件时如何在保证强度的前提下使重量最轻或用量最省(当然偷工减料除外);如何确定参数,使其承载能力最高;在安排生产时,如何在现有的人力、设备的条件下,合理安排生产,使其产品的总产值最高;在确定库存时如何在保证销售量的前提下,使库存成本最小;在物资调配时,如何组织运输使运输费用最少。
这些都属于最优化问题所研究的对象。
MA TLAB 的优化工具箱被放在toolbox 目录下的optim 子目录中,其中包括有若干个常用的求解函数最优化问题的程序。
MA TLAB 的优化工具箱也在不断地完善。
不同版本的MA TLAB ,其工具箱不完全相同。
在MATLAB5.3版本中,对优化工具箱作了全面的改进。
每个原有的常用程序都重新编制了一个新的程序。
除fzero 和fsolve 外都重新起了名字。
这些新程序使用一套新的控制算法的选项。
与原有的程序相比,新程序的功能增强了。
在MA TLAB5.3和6.0版本中,原有的优化程序(除fzero 和fsolve 外)仍然保留并且可以使用,但是它们迟早会被撤消的。
鉴于上述情况,本书将只介绍那些新的常用的几个优化程序。
7.3.1 线性规划问题线性规划是最优化理论发展最成熟,应用最广泛的一个分支。
在MA TLAB 的优化工具箱中用于求解下述线性规划的问题cx z =minb Ax t s ≤.. (线性不等式约束)11b x A = (线性等式约束)UB x LB ≤≤ (有界约束)的函数是linprog ,其主要格式为:[x, fval, exitflag, output, lambda]= linprog(c, A, b, A1, b1 , LB, UB, x0, options)其中,linprog 为函数名,中括号及小括号中所含的参数都是输入或输出变量,这些参数的主要用法及说明如下:(1)c, A 和b 是不可缺省的输入宗量;x 是不可缺省的输出宗量,它是问题的解。