计算方法及其MATLAB实现第二章作业
- 格式:docx
- 大小:43.07 KB
- 文档页数:3
第二章非线性方程求根习题2-11. 试寻找f(x)= x 3+6.6 x2-29.05 x +22.64=0的实根上下界,及正根所在的区间,区间长度取1。
解:由笛卡儿符号规则知,f(x)=0可能有二个正根或无正根f(-x)= -x 3+6.6 x2+29.05 x +22.64=0即x 3 -6.6 x2-29.05 x -22.64=0f(-x)=0有一个正根,因此,f(x)=0有一个负根。
由定理2-3,f(x)=0的正根上界f(x)=0的负根下界x0123456 6.39f(x)++-+++++正根所在区间为(1, 2),(2, 3)。
2.你能不利用多项式的求导公式,而借鉴于余数定理的思想,构造出P n(x)=a0x n+a1x n-1+...+a n-1x+a n在x0这点上的导数值的算法吗?习题2-21.用二分法求方程x2-x-1=0的正根,要求准确到小数点后第一位a F(a)b F(b)x F(x)0-1211-11-121 1.5-0.251.5-0.2521 1.750.31251.5-0.25 1.750.3125 1.6250.3015625 1.5-0.25 1.6250.015625 1.5625-0.12109375 1.5625-0.12104375 1.6250.015625 1.59375-0.053710937 1.59375-0.053710937 1.6250.015625 1.609375-0.019287109 1.609375-0.019287109 1.6250.015625 1.6171875-0.001892089 1.6171875-0.001892089 1.6250.015625 1.621093750.006851196 1.6171875-0.001892089 1.621093750.006851196 1.6191406250.002175738 1.6171875-0.001892089 1.619140620.002475738 1.6181640630.000290904X*=1.618K=5X*=1.593752.试证明用试位法(比例求根法),求在区间[0, 1]内的一个根必然收敛。
MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。
要求输出结果精确至小数点后两位。
答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。
matlab章课后作业MATLAB基础教程1~8章作业Matlab第⼀章1.阐述Matlab的功能Matlab作为⼀种⾼级计算软件,是进⾏算法开发、数据可视化、数据分析以及数值计算的交互式应⽤开发环境,已被⼴泛应⽤于不同领域。
Matlab的基本功能包括:数学计算功能、图形化显⽰功能、M 语⾔编程功能、编译功能、图形⽤户界⾯开发功能、Simulink建模仿真功能、⾃动代码⽣成功能。
Matlab第⼆章1.创建double的变量,并进⾏计算。
(1)a=87,b=190,计算a+b、a-b、a*b。
(2)创建uint8 类型的变量,数值与(1)中相同,进⾏相同的计算。
>> a=87,b=190a =87b =190>> a+bans =277>> a-bans =-103>> a*bans =16530>> c=uint8(87), d=uint8(190)c =87d =190>> c+dans =255>> c-dans =>> c*dans =2552.计算(1)sin(60)(2)e^3(3)cos(3π/4)>> sind(60)ans =0.8660>> exp(3)ans =20.0855>> cos(3*pi/4)ans =-0.70713.设u=2,v=3,计算:(1)(2)(3)>> u=2;>> v=3;>> 4*u*v/log(v)ans =21.8457>> (exp(u)+v)^2/(v^2-u) ans = 15.4189>> sqrt(u-3*v)/(u*v) ans =0 + 0.4410i 4.计算如下表达式:(1)(2)>> (3-5*i)*(4+2*i)ans =22.0000 -14.0000i >> sin(2-8*i) 1.3553e+003 +6.2026e+002i5.判断下⾯语句的运算结果。
作业六6-1 试验目的计算特色值,实现算法试验内容:随机产生一个10 阶整数矩阵,各数均在-5 和 5 之间。
(1〕用 MATLAB 函数“ eig 〞求矩阵全部特色值。
(2〕用幂法求 A 的主特色值及对应的特色向量。
〔3〕用根本 QR 算法求全部特色值〔可用MATLAB 函数“ qr 〞实现矩阵的QR 分解〕。
原理幂法:设矩阵 A 的特色值为 | 1|>|2||n |并设 A 有完好的特色向量系1,2 , , n (它们线性没关 ),那么对任意一个非零向量V0R n所构造的向量序列V k AV k 1有lim(V k ) j 1 ,其中k(V k1) j(V k ) j表示向量的第j 个重量。
为防范逐次迭代向量V k不为零的重量变得很大〔 | 1 |1时〕或很小〔 | 1 |1时〕,将每一步的 V k按其模最大的元素进行归一化。
详尽过程以下:选择初始向量V0,令 m k max(V k ),U k V k,V k 1 AU k , k 1 ,当 k充分大时m kU k1,max(V k 1 ) 1 。
max( 1 )QR 法求全部特色值:A A1Q1 R1R Q1A2Q2 R21, k1,2,3,R k Q k Ak 1Qk 1Rk 1由于此题的矩阵是 10 阶的,上述算法计算时间过长,考虑采用改良算法——移位加速。
迭代格式以下:A k q k I Q k R kA k1R k Q k q k Ia n(k1,n)1a n(k1,)n的特色值(k ),( k ),当(k ),( k )为实数时,选q k为计算 A k右下角的二阶矩阵( k )a( k )n 1n n 1na1n,nn, nn(k1), n( k )中最凑近a n(k,n)的。
程序A=-5+round(10*rand(10));[V,D]=eig(A)[lamda u]=lab6_2_power(A,[1;1;1;1;1;1;1;1;1;1],10^(-5),1000)d=lab6_3_qr2(A,10^(-5))functionlamda=0;err=1;[lamda u]=lab6_2_power(a,v,eps,N)k=1;while (k<=N && err>eps)u=a*v;[m j]=max(abs(u));dc=abs(lamda-m);u=u/m;dv=norm(u-v);err=max(dc,dv);v=u;lamda=m;k=k+1;endfunction D=lab6_3_qr2(A,eps)[n,n]=size(A);m=n;D=zeros(n,1);B=A;while (m>1)while (abs(B(m,m-1))>=eps*(abs(B(m-1,m-1))+abs(B(m,m)))) S=eig(B(m-1:m,m-1:m));[j,k]=min([abs(B(m,m)-S(1)),abs(B(m,m)-S(2))]);[Q,U]=qr(B-S(k)*eye(m));B=U*Q+S(k)*eye(m);endA(1:m,1:m)=B;m=m-1;B=A(1:m,1:m);endD=diag(A);界面(1)(2)(3)作业七7-1 试验目的:熟悉代数插值试验内容:在 f(x)在 7 个点的函数值以下表所示,分别使用拉格朗日插值法和牛顿插值法求 f(0.596) 与 f(0.906) 的近似值。
第二章作业M2_1.利用MATLAB实现下列连续时间信号。
(1)x(t)=u(t)-u(t-2)function y=heaviside(t);y=(t>0);endt=-10:0.001:10;>>xt=heaviside(t)-heaviside(t-2);>>plot(t,xt)>>axis([-10,10,-2,2])(2) x(t)=u(t)function y=heaviside(t);y=(t>0);endt=-10:0.001:10;>>xt=heaviside(t);>>plot(t,xt)>>axis([-10,10,-2,2])(3)xt=10exp(-t)-5exp(-2t)>> A=10;a=-1;>> t=0:0.001:10;>> x1t=A*exp(a*t);>> A=5;a=-2;>> t=0:0.001:10;>> x2t=A*exp(a*t);>>xt=x1t-x2t;>>plot(t,xt)(4)xt=tu(t)>> t=-10:0.001:10;>>xt=t.*heaviside(t);>>plot(t,xt)(5)xt=2|sin(10pit+pi/3)| >> A=2;w0=10*pi;phi=pi/3; >> t=0:0.001:1;>>xt=A*abs(sin(w0*t+phi)); >>plot(t,xt)>>axis([0,1,-4,4])Xt=cost+sin(2pit)>> A=1;w0=1;phi=0; >> t=0:0.002:10;>> x1t=A*cos(w0*t+phi); >> A=2;w0=2*pi;phi=0; >> t=0:0.002:10;>> x2t=A*sin(w0*t+phi); >>xt=x1t+x2t;>>plot(t,xt)(7)xt=4exp(-0.5t)cos(2pit) >> A=5;a=-0.5;>> t=0:0.001:10;>> x1t=A*exp(a*t);>> A=1;w0=2*pi;phi=0; >> t=0:0.001:10;>> x2t=A*cos(w0*t+phi); >>xt=x1t.*x2t;>>plot(t,xt)(8)Sa(pit)cos(30t)A=1;w0=30;phi=0;>> t=0:0.001:3;>> x1t=A*cos(w0*t+phi);>> t=0:0.001:3;>> x2t=sinc(t);>>xt=x1t.*x2t;>>plot(t,xt)M2-3,写出书中图示波形函数,并画出xt,x0.5t,x(2-0.5t)的图像function yt=x2_3(t)yt=t.*(t>=0&t<2)+2*(t>=2&t<3)+(-1)*(t>=3&t<=5); end>> t=0:0.001:5;>>xt=x2_3(t);>>title('x(t)');>>plot(t,xt)>>axis([0,6,-2,3])>> t=0:0.001:10;xt=x2_3(0.5*t); >>plot(t,xt)>>title('x(0.5t)')>>axis([0,10,-2,3])x(0.5t)>> t=-10:0.001:10;>>xt=x2_3(2-0.5*t);>>plot(t,xt)>>title('x(2-0.5t)')>>axis([-10,10,-2,3])M2-4画出图示的奇分量和偶分量。