详细盘点氧化锌压敏电阻器的那些优缺点
- 格式:docx
- 大小:9.48 KB
- 文档页数:2
氧化锌压敏电阻
氧化锌压敏电阻是一种特殊的可变电阻,它可以根据外加压力的大小而发生变化。
它具有很好的直流和交流电性能,广泛应用于各种电子设备中,例如手机、MP3播放器、笔记本电脑、汽车导航系统、家庭影院系统等,这是最常用的电子元器件之一。
氧化锌压敏电阻的原理是由一个氧化锌片和一个金属片组成,金属片上覆盖有一层氧化锌薄膜,当外界的外加压力发生变化时,氧化锌薄膜会发生变形,使得氧化锌片与金属片之间的电阻发生变化,从而调节整个电路的电流。
氧化锌压敏电阻具有体积小、重量轻、可以调节电阻值、耐久性强、容易操作等优点,适用于各种电子产品和工业设备,可以满足不同应用场合的需求。
氧化锌压敏电阻有两种结构:单片结构和双片结构。
单片结构由一块氧化锌片和一块金属片组成,外加压力可以使氧化锌片发生变形,从而改变氧化锌片与金属片之间的电阻。
双片结构由两块氧化锌片和两块金属片组成,这种结构可以更好地表现压力变化对电阻的影响。
氧化锌压敏电阻的制作原理是将氧化锌薄膜覆盖在金属表面上,然后将金属片和氧化锌片组装成一个电阻元件,焊接在PCB板上,使其形成电路回路。
氧化锌压敏电阻的制作过程主要包括:氧化锌薄膜的制作、金属片的制作、氧化锌片的制作、焊接,以及电阻器的测试,确保电阻器的质量符合要求。
由于其性能稳定,可靠性高,使用寿命长,耐高温等优点,氧化锌压敏电阻在电子产品中的应用越来越广泛,它可以用来调节电流、调节电压、检测外部压力以及实现传感功能等,可以满足不同应用场合的需求。
氧化锌压敏电阻在电子设备中的应用越来越多,它能够提供准确可靠的信号控制,解决复杂的控制问题,为电子设备的控制提供高性能的保障,是当今高新技术领域的重要元器件之一。
“压敏电阻是中国的名词,意思是在一定电流电压范围内电阻值随电压而变,或者是说电阻值对电压敏感的阻器。
相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”。
压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。
现在大量使用的氧化锌(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。
所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。
压敏电阻器是按其用途来命名的,称为突波吸收器。
压敏电阻器按其用途有时也称为“电冲击(浪涌)抑制器(吸收器)”。
2、压敏电阻电路的“安全阀”作用压敏电阻有什么用?压敏电阻的最大特点是当加在它上面的电压低于它的阀值时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。
利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。
3、应用类型不同的使用场合,应用压敏电阻的目的,作用在压敏电阻上的电压/电流应力并不相同,因而对压敏电阻的要求也不相同,注意区分这种差异,对于正确使用是十分重要的。
根据使用目的的不同,可将压敏电阻区分为两大类:①保护用压敏电阻,②电路功能用压敏电阻。
3.1保护用压敏电阻(1)区分电源保护用,还是信号线,数据线保护用压敏电阻器,它们要满足不同的技术标准的要求。
(2)根据施加在压敏电阻上的连续工作电压的不同,可将跨电源线用压敏电阻器可区分为交流用或直流用两种类型,压敏电阻在这两种电压应力下的老化特性表现不同。
(3)根据压敏电阻承受的异常过电压特性的不同,可将压敏电阻区分为浪涌抑制型,高功率型和高能型这三种类型。
★浪涌抑制型:是指用于抑制雷电过电压和操作过电压等瞬态过电压的压敏电阻器,这种瞬态过电压的出现是随机的,非周期的,电流电压的峰值可能很大。
绝大多数压敏电阻器都属于这一类。
★高功率型:是指用于吸收周期出现的连续脉冲群的压敏电阻器,例如并接在开关电源变换器上的压敏电阻,这里冲击电压周期出现,且周期可知,能量值一般可以计算出来,电压的峰值并不大,但因出现频率高,其平均功率相当大。
zno压敏电阻阻抗
ZNO压敏电阻是一种常见的电子元器件,常用于电子电路中的过压保护和限流功能。
它由氧化锌粉末和少量其它物质制成,具有高阻值和压敏特性,能够在电路中起到重要的作用。
ZNO压敏电阻的阻值通常在几千欧姆至数百兆欧姆之间,其阻值随着电压的变化而变化,从而能够对高压下的电路进行限流和过压保护。
在电路中,ZNO压敏电阻通常与其它电阻、电容和变阻器等器件一起组成复杂的脉冲电路,可以用于温度传感器、光控设备、电子情报仪器等多个领域。
在压敏电阻中,氧化锌粉末是其最为重要的组成部分。
氧化锌粉末的选材和制造工艺是影响压敏电阻性能的主要因素,其制作精度和生产工艺的优化可以大幅提高压敏电阻的性能。
另外,在ZNO压敏电阻的生产过程中,通常会添加一些稀土元素、二氧化钇和镁等物质,以提高其敏感性和防止老化效应。
同时,在选择ZNI压敏电阻时,还需要考虑其额定电压、额定电流、温度系数、工作温度范围等多个因素,确保它能够正常工作,并能在其额定电压范围内发挥其过压保护和限流功能。
总之,ZNO压敏电阻作为一种常用的电子元器件,在多个领域都有重要应用,能够对电路进行过压保护和限流,为电子设备的稳定运行提
供了有力保障。
而在使用压敏电阻时,还需要注意选择合适的型号、
合理设计电路,以及进行正确的使用和维护,从而保证其性能和寿命。
【集成电路(IC)】氧化锌压敏电阻器的原理简介与使用【集成电路氧化锌压敏电阻器的原理简介与使用性能参数】“压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。
相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”。
压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。
现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。
所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。
在中国台湾,压敏电阻器是按其用途来命名的,称为"突波吸收器"。
压敏电阻器按其用途有时也称为“电冲击(浪涌)抑制器(吸收器)”。
一、氧化锌压敏电阻器微观结构及特性氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷工艺制成的多晶半导体陶瓷元件。
它的微观结构如图1所示。
氧化锌陶瓷是由氧化锌晶粒及晶界物质组成的,其中氧化锌晶粒中掺有施主杂质而呈N型半导体,晶界物质中含有大量金属氧化物形成大量界面态,这样每一微观单元是一个背靠背肖特基势垒,整个陶瓷就是由许多背靠背肖特基垫垒串并联的组合体。
图2是压敏电阻器的等效电路。
氧化锌压敏电阻器的典型V-I特性曲线如图3所示:预击穿区:在此区域内,施加于压敏电阻器两端的电压小于其压敏电压,其导电属于热激发电子电导机理。
因此,压敏电阻器相当于一个10MΩ以上的绝缘电阻(Rb远大于Rg),这时通过压敏电阻器的阻性电流仅为微安级,可看作为开路。
该区域是电路正常运行时压敏电阻器所处的状态。
击穿区:压敏电阻器两端施加一大于压敏电压的过电压时,其导电属于隧道击穿电子电导机理(Rb与Rg相当),其伏安特性呈优异的非线性电导特性,即:I=CVα其中I通过压敏电阻器的电流C与配方和工艺有关的常数V压敏电阻器两端的电压α为非线性系数,一般大于30由上式可见,在击穿区,压敏电阻器端电压的微小变化就可引起电流的急剧变化,压敏电阻器正是用这一特性来抑制过电压幅值和吸收或对地释放过电压引起的浪涌能量。
氧化锌压敏电阻的电性能参数及添加剂的作用压敏电阻是由在电子级ZnO 粉末基料中掺入少量的电子级Bi 2O 3、Co 2O 3、MnO 2、Sb 2O 3、TiO 2、Cr 2O 3、Ni 2O 3等多种添加剂,经混合、成型、烧结等工艺过程制成的精细电子陶瓷;它具有电阻值对外加电压敏感变化的特性,主要用于感知、限制电路中可能出现的各种瞬态过电压、吸收浪涌能量。
1 氧化锌压敏电阻电性能参数1.1 压敏电压U 1mA压敏电阻的电流为1mA 时所对应的电压作为I 随U 迅速上升的电压大小的标准,该电压用U 1mA 表示,称为压敏电压。
压敏电压是ZnO 压敏电阻器伏安曲线中预击穿区和击穿区转折点的一个参数,一般情况下是1mA (Φ5产品为0.1mA )直流电流通过时,产品的两端的电压值,其偏差为±0.1%。
1.2 最大连续工作电压MCOV最大连续工作电压MCOV 指的是压敏电阻在应用时能长期承受的最大直流电压U DC 或最大交流电压有效值 U RMS 。
最大直流电压的值为80%~92%U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大直流电压;最大交流电压的值为60%~65% U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大交流电压。
1.3 漏电流 I L漏电流(mA)也称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器电流。
IEC 对漏电流 I L 较为普遍的定义是:环境温度25℃时,在压敏电阻上施加其所属规格的最大连续直流工作电压 U DC 时,流过压敏电阻的直流电流。
一般而言,在材料配方和烧结工艺固定的情况下,漏电流适中的压敏电阻具有较好的安全性和较长的寿命。
1.4 非线性指数α非线性指数α指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。
它是一个元件的电阻值是否随电压或电流变化和变化是否敏感的标志。
ZnO 压敏电阻器是一种非线性导电电阻。
电力电子• Power Electronics210 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】氧化锌压敏电阻 结构 特征 伏安特性现阶段氧化锌压敏电阻已经取得了很好的应用,在电力系统和电子系统的过压保护中发挥着重要的作用,但是在实际使用时有很大优化空间,比如氧化锌压敏电阻的老化判定可以进行优化处理,这样可以更好的对氧化锌压敏电阻的老化进行判定防止出现因为受潮而导致性能的老化。
针对这些可优化的空间,笔者对氧化锌压敏电阻的特性进行探讨,有着重要的现实意义。
1 氧化锌结构特征1.1 氧化锌晶体的结构研究氧化锌压敏电阻特性,首先要对氧化锌晶体进行研究。
氧化锌晶体是利用红锌矿为原料制作的金属氧化物,这种氧化物中既包括化学键又包括离子键,属于中间键型,氧化锌压敏电阻的这种独特的键形也就决定着其独有的特性。
氧化锌压敏电阻的基本结构是成六角排布的,并且在六角排布的中间有着很多的锌离子填充。
通常情况下,氧化锌压敏电阻有着三种构型,三种构型分包为六角、立方闪锌、立方岩盐矿等。
这三种结构是可以进行转换的。
1.2 氧化锌晶体结构的缺陷我们在对氧化锌压敏电阻的特质进行使用时,很少有人了解过这些能够被我们使用的特性来源于氧化锌压敏电阻中氧化锌晶体中的结构缺陷,这是这些缺陷使得氧化锌压敏电阻有了很多的电阻特性。
上文我们已经提到过氧化锌压敏电阻通常情况下有三种可以互相转换的构型,这些构型基本决定了他们的缺陷来源。
立方闪锌结构中有很大的孔隙,这些孔隙中不同的离子的扩散不同,有的离子的扩散系数比较高,就易于扩散,有的离子扩散系数低就不容易扩散,这些特性使得锌离子容易集中出现积聚的情况。
同时氧化锌压敏电阻中的晶体也会受到掺杂的杂质影响,这种杂质影响也会导致其内部结构出现缺陷,这种杂质影响的氧化锌压敏电阻特性文/谭智昭 王洋缺陷主要是呈现为空腔和空穴,这些空腔和空穴将会直接影响到氧化锌晶体的电子的流向,导致其载流子发生散射,使得载流体的迁移受到较大的影响。
高温对ZnO压敏电阻10N471K电性的影响引言ZnO压敏电阻10N471K是一种常见的压敏电阻,广泛应用于电子与通信领域。
压敏电阻的性能受到温度的影响,特别是高温环境下,其电性能可能会发生变化。
本文旨在探讨高温对ZnO压敏电阻10N471K电性的影响,以期为相关领域的研究和应用提供参考。
一、ZnO压敏电阻10N471K的基本性能ZnO压敏电阻10N471K是一种基于氧化锌材料制成的压敏电阻,具有高灵敏度、高稳定性和耐高温性能。
其主要特性包括电阻值、压敏系数、功率耗散和温度特性等。
在常温条件下,ZnO压敏电阻10N471K表现出良好的电性能,可以满足大部分应用要求。
然而在高温环境下,其电性能可能会出现变化。
二、高温对ZnO压敏电阻10N471K电性的影响1. 电阻值变化高温环境下,ZnO压敏电阻10N471K的电阻值可能会发生变化。
由于材料的热膨胀系数不同,温度升高会导致电阻元件的尺寸扩大,从而使电阻值产生偏差。
高温环境还可能导致材料内部晶格结构的改变,影响电子在材料内部的运动,进而影响电阻值的稳定性。
2. 压敏系数变化ZnO压敏电阻10N471K的压敏系数是衡量其灵敏度的重要指标,通常在低频率下进行测试。
然而在高温环境下,由于材料的电导率和介电常数的变化,压敏系数可能会发生变化。
这意味着在高温环境下,ZnO压敏电阻10N471K的灵敏度可能会受到影响,使其难以满足实际应用需求。
3. 功率耗散变化在高温环境下,ZnO压敏电阻10N471K的功率耗散可能会增加。
由于材料的电导率随温度的升高而增加,从而使电阻元件在工作过程中产生更多的热量。
这不仅会影响电阻元件的稳定性,还可能对周围环境造成影响。
三、高温环境下ZnO压敏电阻10N471K的应对措施1. 优化材料选用针对高温环境下ZnO压敏电阻10N471K电性发生变化的情况,可以考虑优化材料的选用。
通过调整材料的成分和结构,使其在高温环境下具有更好的稳定性和耐温性能。
氧化锌压敏电阻器
主要是以氧化锌为主原料,添加多种少量金属氧化物,经成型烧结而成的陶瓷元件。
压敏电阻器是一种电压非线性器件,它有对称而陡峭的击穿持性,当很高的瞬时过电压加到电路上时,压敏电阻的阻抗从接近于开路的状态急剧变化到高导通状态,把瞬时过电压抑制到安全电压水平,因而电路中的脆弱的元件受到保护。
特点与用途:
1.电压范围宽
2.对过电压响应快
3.耐脉冲电流能力强
4.限制电压低
5.电压温度系数小
本压敏电阻器主要适用于电子电器设备以及电源的暧间过电压保护和浪涌吸收。
尤为适用电子电表智能电表,远程自动抄表系统及远程载波预付费抄表系统等的过电压保护和间接防雷用。
本产品通过UL,VDE,CSA,SGS认证。
压敏电阻器的尺寸单位:mm。
氧化锌压敏电阻的电性能参数及添加剂的作用压敏电阻是由在电子级ZnO 粉末基料中掺入少量的电子级Bi 2O 3、Co 2O 3、MnO 2、Sb 2O 3、TiO 2、Cr 2O 3、Ni 2O 3等多种添加剂,经混合、成型、烧结等工艺过程制成的精细电子陶瓷;它具有电阻值对外加电压敏感变化的特性,主要用于感知、限制电路中可能出现的各种瞬态过电压、吸收浪涌能量。
1 氧化锌压敏电阻电性能参数1.1 压敏电压U 1mA压敏电阻的电流为1mA 时所对应的电压作为I 随U 迅速上升的电压大小的标准,该电压用U 1mA 表示,称为压敏电压。
压敏电压是ZnO 压敏电阻器伏安曲线中预击穿区和击穿区转折点的一个参数,一般情况下是1mA (Φ5产品为0.1mA )直流电流通过时,产品的两端的电压值,其偏差为±0.1%。
1.2 最大连续工作电压MCOV最大连续工作电压MCOV 指的是压敏电阻在应用时能长期承受的最大直流电压U DC 或最大交流电压有效值 U RMS 。
最大直流电压的值为80%~92%U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大直流电压;最大交流电压的值为60%~65% U 1mA ,或产品在85℃下,正常工作1000h ,施加的最大交流电压。
1.3 漏电流 I L漏电流(mA)也称等待电流,是指压敏电阻器在规定的温度和最大直流电压下,流过压敏电阻器电流。
IEC 对漏电流 I L 较为普遍的定义是:环境温度25℃时,在压敏电阻上施加其所属规格的最大连续直流工作电压 U DC 时,流过压敏电阻的直流电流。
一般而言,在材料配方和烧结工艺固定的情况下,漏电流适中的压敏电阻具有较好的安全性和较长的寿命。
1.4 非线性指数α非线性指数α指压敏电阻器在给定的外加电压作用下,其静态电阻值与动态电阻值之比。
它是一个元件的电阻值是否随电压或电流变化和变化是否敏感的标志。
ZnO 压敏电阻器是一种非线性导电电阻。
氧化锌压敏电阻器的性能及失效后的三种表现
氧化锌压敏电阻器的性能
氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷工艺制成的多晶半导体陶瓷元件。
由于其独特的晶界结构,在一定电场下,晶界导电由热电子发射传导瞬间转变为电子隧道传导,其电阻值随着电压的增大而急剧减小,具有优异的非线性伏安特性。
那么,当存在过电压时,晶界电子隧道效应抑制过电压峰值增长,吸收部分过电压能量,从而起到对线路或设备的防护作用。
但是,不论压敏电阻器应用在电力线路或电子线路,若各种类型的过电压频繁出现,则压敏电阻器就会频繁动作以抑制过电压幅值和吸收释放浪涌能量,保护电气设备及元器件,这势必会导致压敏电阻器的性能劣化乃至失效。
氧化锌压敏电阻器失效后的三种表现
(1)劣化,表现为漏电流增大,压敏电压显著下降,直至为零;
(2)炸裂,若过电压引起的浪涌能量太大,超过了所选用的压敏电阻器极限承受能力,则压敏电阻器在抑制过电压时将会发生陶瓷炸裂现象;
(3)穿孔,若过电压峰值特别高,导致压敏电阻器陶瓷瞬间发生电击穿,表现为穿孔。
其中,在进行分级防雷保护前提下,压敏电阻器的失效模式绝大部分表现为劣化和穿孔(即短路),因此,在使用压敏电阻器时,必须与之串联一个合适的断路器或保险丝,避免电路短路引起事故。
目前,国际上流行的过电压保护器就是将压敏电阻器与限流、过流和劣化告警装置有机地组合在一起,它除了具有过电压保护功能外,还具有防止自身劣化、导致电路短路的功能。
氧化锌压敏电阻器的工频过电压(TOV)特性分析发布时间:2021-12-16T02:28:40.820Z 来源:《科技新时代》2021年10期作者:罗致成[导读] 为进一步了解氧化锌压敏电阻器自身工频过电压(TOV)基本特性,便于更好地提升氧化锌压敏电阻器自身耐受性,积极落实此方面细致分析工作现实意义较为突出。
广东南方宏明电子科技股份有限公司广东东莞 523000摘要因低压的供电系统当中工频过电压现象频繁出现,以至于氧化锌压敏电阻器自身耐受性无法得以保证,致使失效情况产生。
故积极分析与了解氧化锌压敏电阻器自身工频过电压(TOV)基本特性较为必要且重要。
关键词:氧化锌;电阻器;压敏;过电压(TOV);工频;特性;前言为进一步了解氧化锌压敏电阻器自身工频过电压(TOV)基本特性,便于更好地提升氧化锌压敏电阻器自身耐受性,积极落实此方面细致分析工作现实意义较为突出。
1、简述氧化锌压敏电阻器氧化锌压敏式电阻器,属于主体为氧化锌、加入多种不同金属的氧化物质,通过电子陶瓷典型工艺加工制作而成半导体多晶陶瓷元件,所具备优势特点集中表现为大通流容量、低限制电压、快速响应、无续流、无极性、电压低温度系数等[1]。
2、特性分析2.1在特性表征层面氧化锌压敏电阻器TOV基本特性,即TOV施加过程,氧化锌压敏电阻器所表现特性以及可度量各项参数相对较多,包含着TOV幅值、电流变化、温升曲线、TOV耐受时间、耐受最高的温升等。
2.2在影响因素层面1)在自身因素层面氧化锌压敏电阻器形成自身性能,属于配方以及工艺所产生共同作用所致。
针对规格相同的氧化锌压敏电阻器,压敏电压为不同值,有离散分布现象存在,施加同等幅值TOV电压,相比较低压敏电压产品,较高压敏电压产品呈较低负荷[2]。
较高压敏电压产品所表现TOV 耐受为较长时间,也就是,相比较低压敏电压产品,较高压敏电压产品更具TOV耐受性优势。
但压敏电压,其并非属于氧化锌压敏电阻器基本性能当中TOV耐受性在本质上影响因素。
片式氧化锌压敏电阻器与TVS管技术对比QQ:917603226深圳顺络电子有限公司2008.01.22目录一、 片式氧化锌压敏电阻器的微观结构和工作原理二、 TVS管微观结构和工作原理三、 片式氧化锌压敏电阻器和TVS管性能对比四、我公司片式氧化锌压敏电阻器的竞争优势一、 片式氧化锌压敏电阻器微观结构和工作原理片式氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷流延工艺制成的多晶半导体陶瓷元件。
它的微观结构、等效电路如图1、2所示。
氧化锌陶瓷是由氧化锌晶粒及晶界物质组成的,其中氧化锌晶粒中掺有施主杂质而呈N型半导体, 晶界物质中含有大量金属氧化物形成大量界面态,这样两个晶粒和一个晶界(即微观单元)形成一个类似背靠背双向PN结, 整个陶瓷就是由许多背靠背双向PN结串并联的组合体。
由于氧化锌压敏陶瓷晶界非常薄,仅有埃数量级,则当施加电压小于其反向PN结击穿电压时,属于肖特基势垒热电子发射电导,其导通电流与PN结势垒及温度有关;当施加电压大于其反向PN结击穿电压(3.2V)时,属于隧道电子击穿导电,其导通电流只与所施加电压有关,隧道电子击穿时间小于几百皮秒。
其中:当施加电压小于其反向PN结击穿电压时,Rb远大于Rg,施加电压几乎全部加在晶界上,Rb >10MΩ;当施加电压大于其反向PN结击穿电压时,晶界产生隧道电子击穿导电,Rb远小于Rg,施加电压加在晶粒和晶界上,Rg+Rb阻值只有欧姆级;因此当外施电压小于氧化锌压敏陶瓷晶界击穿电压(即压敏电压)时,压敏电阻呈现绝缘体高阻值,其漏电流仅有微安级;当外施电压大于氧化锌压敏陶瓷晶界击穿电压(即压敏电压)时,压敏电阻呈现导体低阻值,通过电流有几十安培,而且随着外施电压稍微升高,通过电流急速增长。
图1 压敏电阻器微观结构图2 压敏电阻器等效电路氧化锌压敏陶瓷的典型V-I特性曲线如图3所示:图3 压敏电阻器伏安特性曲线由于片式氧化锌压敏电阻器应用于电子电路和数据传输线路中,被保护电路的工作电压很低,同时对其电容有特殊要求,因此通过结构设计和工艺调整,可以得到不同线路保护要求的压敏电阻器。
氧化锌压敏电阻特性的分析摘要:氧化锌压敏电阻因为其自身的一些物理和化学性质,使得其在电路保护及相关系统保护中应用较为广泛。
现阶段氧化锌压敏电阻已经在电子设备保护、通讯系统保护、电力及工业系统保护中取得了较好的应用。
关键词:氧化锌压敏电阻;结构;特征;伏安特性由于雷电电压和操作电压等瞬间高电压会导致电子系统遭到破坏,并且这种破坏通常会导致整个系统的瘫痪,进而产生较大的经济损失。
为此各国均在对这种高压对电路系统的破坏防护进行研究,这种背景下氧化锌压敏电阻由于其对限制过电压的优异性能,其特性也非常受到研究界的关注,通过对其特性的研究分析出更加方便的保护系统。
现阶段氧化锌压敏电阻已经取得了很好的应用,在电力系统和电子系统的过压保护中发挥着重要的作用,但是在其使用过程中还存在着一些问题有待解决,比如老化劣化的判定标准不够精确,内部容易受潮导致性能下降,受过电压冲击时瓷套因制造工艺不高而产生爆炸等。
为此笔者对氧化锌压敏电阻的结构特征,电气特性等方面进行深入细致的研究具有重要的意义。
1、氧化锌结构特征1.1氧化锌晶体的结构研究氧化锌压敏电阻特性,首先要对氧化锌晶体进行研究。
氧化锌晶体是利用红锌矿为原料制作的金属氧化物,这种氧化物中既包括化学键又包括离子键,属于中间键型,结构的基础是氧离子以六角密堆积的方式排列,氧离子紧密排列所形成的四面体空隙中半数由锌离子填充,而氧离子密堆所形成的八面体空隙则是全空的。
氧化锌晶体常见的结构有三种,分别为六角纤锌矿结构、立方闪锌矿结构和立方岩盐矿结构。
上述三种结构受温度以及压力等因素的影响可以互相转变,其相变的过程会导致极性效应的产生,而极性效应则直接影响着氧化锌晶体的电气特性。
1.2氧化锌晶体的能带结构纯净的氧化锌晶体,其能带由氧离子的电子能级和锌离子电子能级组成。
价带和导带之间的禁带宽度为3.2~3.4eV。
因此,在室温下,满足化学计量比的纯净的氧化锌晶体应该是绝缘体。
然而,实际上氧化锌晶体却是一种典型的型半导体。
氧化锌压敏电阻器概述
氧化锌压敏电阻器是一种瞬时过电压保护器件。
它的主要功能是电阻值随着电压的变化而对称地非线性地变化,因而,它是一种对电压敏感性元件。
它具有电压非线性系数a大,残压低,浪涌耐量大,使用电压范围宽(从几伏到几十万伏),伏安特性陡峭且对称,对脉冲响应时间快,而且无续流,漏电流小(uA),电压随温度变化小等特有的优点。
高能氧化锌压敏电阻器还具有低场强、高能容的特点。
近年来的电力系统、电子线路中,吸收大气过电压和操作过电压,在超导移能和发电机组灭磁、电器设备、半导体器件及各种电机过压保护等方面具有广泛的应用前景。
一、主要用途
A、吸收大气过电压(防感应雷或沿着电源线进入系统的侵入波)
在电力系统用作避雷器保护配电变压器、配电盘、电镀表等。
在铁路系统用于铁路信号系统防雷,作为移频自动闭塞设备,小站电源屏等半导体讯号装置的保护。
在广播系统用于广播外线防雷击过电压保护。
B、吸收内部过电压(操作过电压)
用于各种电子设备、电子仪器的电源回路吸收切合闸引过的操作过电压,保护可控硅及硅整流管(如用在龙门刨、轧钢机、数控机床调速柜上,大型可控硅整流装置的交流侧、直流侧和元件侧等)以及高低压开关柜、防暴开关真空开关、高压变压器、高压电机等抑制浪涌过电压。
C、消除接点电火花
用于消除继电器触点火花,消除微型马达上电火花。
抑制显象管内部跳火和自动消磁等,以延长被保护线路的寿命,消除由电火花产生的无线电干扰等。
D、发电机灭磁,超导移能和过电压保护
用于各种发电机绕组灭磁,超导磁体移能和转子过电压保护及大功率整流设备与同步电机的过电压吸收。
ZNO压敏电阻阻抗介绍ZNO(氧化锌)压敏电阻是一种常见的功能材料,具有高阻抗和高耐压能力,广泛应用于电子元器件中。
本文将对ZNO压敏电阻的阻抗特性进行全面、详细、完整且深入地探讨。
电阻和阻抗的概念电阻电阻是指电子在导体中流动时遭受阻碍的程度,通常用欧姆(Ω)来表示。
电阻越大,表示对电子流动的阻碍越大。
阻抗阻抗是指电路中对交流电流的阻碍程度,包括电阻和电抗。
电抗又可分为电感抗和电容抗。
阻抗用欧姆(Ω)来表示,是复数形式,包括实部和虚部。
ZNO压敏电阻的特性ZNO压敏电阻具有以下几个特性,使其成为电子元器件中广泛使用的材料。
高阻抗能力ZNO压敏电阻的阻抗能力很高,能够有效地阻碍电流的流动。
这使得ZNO压敏电阻可以在电路中起到限流的作用,保护其他电子元器件。
快速响应速度ZNO压敏电阻在面对外部电压变化时,具有快速的响应速度。
这使得它能够迅速调整阻抗,保护电路免受过电流或过压的损害。
耐压能力强ZNO压敏电阻具有较高的耐压能力,能够承受较大的电压。
这使得它适用于需要处理高电压的电子设备中。
温度特性稳定ZNO压敏电阻的阻抗与温度的变化关系较小,具有较好的温度特性稳定性。
这使得它适用于在不同温度环境下使用的电子设备。
ZNO压敏电阻的结构与工作原理ZNO压敏电阻一般由氧化锌陶瓷制成。
它的结构可以分为三个部分:电极、氧化锌陶瓷和封装材料。
1.电极电极是连接电路的部分,通常由金属材料制成,如银、铜等。
电极的选材和制备工艺对ZNO压敏电阻的性能有着重要的影响。
2.氧化锌陶瓷氧化锌陶瓷是ZNO压敏电阻的核心部分,它具有高阻抗和压敏特性。
氧化锌陶瓷的制备过程包括原料选择、混合、成型、烧结等多个步骤。
3.封装材料封装材料用于保护ZNO压敏电阻不受外界环境的影响。
常见的封装材料包括树脂、玻璃等。
ZNO压敏电阻的工作原理基于ZNO陶瓷的压敏效应。
当外加电压在一定范围内时,ZNO陶瓷的阻抗保持较高,限制电流的流动。
而当外加电压超过一定阈值时,ZNO陶瓷的阻抗迅速下降,允许大电流通过。
详细盘点氧化锌压敏电阻器的那些优缺点
氧化锌材料的压敏电阻器已经越来越多的走进了人们的视线,在通讯、供
电以及智能产品的设计领域都能看到它的身影。
那么,这种压敏电阻器在应用
过程中的优点都有哪些?又有哪些问题需要工程师特别注意呢?今天小编就来为
大家详细盘点一下吧!
以目前的氧化锌压敏电阻器应用情况和制造工艺来看,这种新型的压敏电阻
在配方和性能上分为相互不能替代的两大类,分别是高压型压敏电阻和高能型
压敏电阻两大类,接下来我们将进行详细的优缺点盘点介绍。
首先来看高压型压敏电阻,这种压敏电阻的最大优点就是它的电压梯度非常高,一般可以达到100~250V/mm,因此它的大电流特性好,
V10kA/V1mA≤1.4。
但这种氧化锌压敏电阻也有一个缺点,那就是它仅对窄
脉宽(2≤ms)的过压和浪涌有理想的防护能力,能量密度较小。
接下来我们再来看一下高能型压敏电阻的优缺点吧。
这种氧化锌压敏电阻的
突出优点,是其本身的能量密度较大,实际应用中可达到
300J/cm3~750J/cm3,承受长脉宽浪涌能力强。
但它也有一个很大的缺陷,那就是其本身的电压梯度较低,其梯度范围只有20V/mm~500V/mm,大电流特性差。
从上面的介绍中我们也可以看到,这两种氧化锌压敏电阻器在配方上的性能
差别,造成了许多应用上的死角。
就目前的收藏元能够用情况来看,在10kV
电压等级的输配电系统中广泛采用了真空开关,由于它动作速度快、拉弧小,
会在操作瞬间造成极高过压和浪涌能量,如果选用高压型压敏电阻加以保护,
虽然它电压梯度高、成本较低,但能量容量小,容易损坏。
如果选用高能型压
敏电阻,虽然它能量容量大,寿命较长,但电压梯度低,成本太高,是前者的。