sludge into bio gas[1]
- 格式:ppt
- 大小:7.16 MB
- 文档页数:23
环境专业英语工程的通用术语及其涵义应符合下列规定:给水工程 water supply engineering 原水的取集和处理以及成品水输配的工程..排水工程 sewerage ;wastewater engineering 收集、输送、处理和处置废水的工程..给水系统 water supply system 给水的取水、输水、水质处理和配水等设施以一定方式组合成的总体..排水系统 sewerage system 排水的收集、输送、水质处理和排放等设施以一定方式组合成的总体..给水水源 water source 给水工程所取用的原水水体..原水raw water 由水源地取来的原料水..地表水surface water 存在于地壳表面;暴露于大气的水..地下水ground water 存在于地壳岩石裂缝或工壤空隙中的水..淡水fresh water 含盐量小于500mg/L的水..废水 wastewater 居民活动过程中排出的水及径流雨水的总称..它包括生活污水、工业废水和初雨径流以及流入排水管渠的其它水..污水sewage ;wastewater 受一定污染的来自生活和生产的排出水..用水量 water consumption 用水对象实际使用的水量..污水量 wastewater flow ;sewage flow 排水对象排入污水系统的水量..用水定额 water flow norm 对不同的排水对象;在一定时期内制订相对合理的单位排水量的数值..排水定额 wastewater flow norm 对不同的排水对象;在一定时期内制订相对合理的单位排水量的数值..水质 water quality 在给水排水工程中;水的物理、化学、生物学等方面的性质..泵站 pumping house 设置水泵机组、电气设备和管道、闸阀等的房屋.. 泵站 pumping station 泵房及其配套设施的总称..给水处理 water treatment 对不符合用不对象水质要求的水..进行水质改善的过程..污水处理 sewage treatment ;wastewater treatment 为使污水达到排水某一水体或再次使用的水质要求;对其进行净化的过程..废水处理 wastewater disposal 对废水的最终安排..一般将废水排入地表水体、排放土地和再次使用等..格栅 bar screen;screening 一种栅条形的隔污设备;用以拦截水中较大尺寸的漂浮物或其他杂物..曝气 aeration 水与气体接触;进行溶氧或散除水中溶解性气体和挥发性物质的过程..沉淀 sedimentation 利用重力沉降作用去除水中杂物的过程..澄清 clarification 通过与高浓度沉渣层的接触而去除水中杂物的过程..过滤filtration 借助粒状材料或多孔介质截除水中质物的过程..混凝coagulation-flocculation臭氧氧化ozonation反渗透reverse osmosis吸附adsorption硝化nitrification反硝化denitrification离子交换法 ion exchange 采用离子交换剂去除水中某些盐类离子的过程..氯化 chlorination 在水中投氯或含氯氧化物方法消灭病原体的过程..余氯 residual chlorine 水中投氯;经一定时间接触后;在水中余留的游离性氯和结合性氯的总和..污泥 sludge 在水处理过程中产生的;以及排水管渠中沉积的固体与水的混合物或胶体物..污泥处理 sludge treatment 对污泥的最终安排..一般将污泥作农肥、制作建筑材料、填埋和投弃等..水头损失 head loss 水流通过管渠、设备和构筑物等所引起的能量消耗..二、一般术语1> 系统和水量方面的术语及其涵度;应符合下列符合下列规定:循环水系统 recirculation system 水经使用后不予排放而循环利用或处理后循环利用的给水系统..生活用水 domestic water 人类日常生活所需用的水..生产用水 process water 生产过程所需用的水..消防用水 fire demand 扑灭火灾所需用的水..浇洒道路用水 street flushing demand ;road watering 对城镇道路进行保养、清洗、降温和消尘等所需用水..绿化用水 green belt sprinkling ;green plot sprinkling 对市政绿地等所需用的水..2> 净水构筑物的术语及其涵义应符合下列规定:净水构筑物 purification structure 以去除水中悬浮固体和胶体杂质等为主要目的的构筑物的总称..投药 chemical dosing 为进行水处理而向水中加一定剂量的化学药剂的过程..混合 mixing 使投入的药剂迅速均匀地扩散于被处理水中以创造良好的凝聚反应条件的过程..凝聚 coagulation 为了消除胶体颗粒间的排斥力或破坏其亲水性;使颗粒易于相互接触而吸附的过程..絮凝 flocculation A、完成凝聚的胶体在一定的外力扰动下相互碰撞、聚集以形成较大絮状颗粒的过程..曾用名反应.. B、高分子絮凝剂在悬浮固体和胶体杂质之间吸附架桥的过程..自然沉淀 plain sedimentation 不加注任何凝聚剂的沉淀过程..凝聚沉淀 coagulation sedimentation 加注凝聚剂的沉淀过程..凝聚剂 coagulant 在凝聚过程中所投加的药剂的统称..助凝剂 coagulant aid 在水的沉淀、澄清过程中;为改善絮凝效果;另设加的辅助药剂..沉沙池沉砂池desilting basin ;grit chamber 去除水中自重很大、能自然沉降的较大粒径沙粒或杂粒的水池..预沉池 pre-sedimentation tank 原水中泥沙颗粒较大或浓度较高时;在进行凝聚沉淀处理前设置的沉淀池..平流沉淀池 horizontal flow sedimentation tank 水沿水平方向流动的沉淀池..液面负荷 surface load 在沉淀池、澄清池等沉淀构筑物的净化部分中;单位液水面积所负担的出水流量..其计量单位通常以m3/m2.h表示.. 气浮池 floatation tank 运用絮凝和浮选原理使液体中的杂质分离上浮而去除的池子..清水池 clear-water reservoir 为贮存水厂中净化后的清水;以调节水厂制水量与供水量之间的差额;并为满足加氯接触时间而设置的水池..3> 输配水管网的术语及其涵度应符合下列规定:扩展内容配水管网 distribution system ;pipe system 将水送到分配管网以至用户的管系..环状管网pipe network 配水管网的一种置形式;管道纵横相互接通;形成环状..枝状管网 branch system 配水管网的一种布置形式;干管和支管分明;形成树枝状..三、水处理术语排水制度 sewer system 在一个地区内收集和输送废水的方式..它有合流制和分流制两种基本方式..合流制 combined system 用同一种管渠分别收集和输送废水的排水的方式..分流制 separate system 用不同管渠分别收集和输送各种污水、雨水和生产废水的排水的方式..生活污水 domestic sewage ;domestic wastewater 居民中日常生活中排出的废水..工业废水 industrial wastewater 生产过程中排出的水..它包括生产废水和生产污水..生产污水polluted industrial wastewater 被污染的工业废水..还包括水温过高;排入后造成热污染的工业废水..生产废水 non-polluted industrial wastewater 未受污染或受轻微污染以及水温稍有升高的工业废水..城市污水 municipal sewage ;municipal wastewater 排入城镇污水系统的污水的统称..在合流制排水系统中;还包括生产废水和截留的雨水..水体自净 self-purification of water bodies 河流等水体在自然条件的生化作用下;有机物降解;溶解氧回升和水体生物群逐渐恢复正常的过程..一级处理 primary treatment 去除污水中的漂浮物和悬浮物的净化过程;主要为沉淀..二级处理 secondary treatment 污水经一级处理后;用生物处理方法继续除去污水不胶体和溶解性有机物的净化过程..生物处理 biological treatment 利用微生物的作用;使污水中不稳定有机物降解和稳定的过程..活性污泥法 activated sludge process 污水生物处理的一种方法..该法是在人工充氧条件下;对污水和各微生物群体进行连续混和培养;形成活性污泥..利用活性污泥的生物凝聚、吸附和氧化作用;以分解去除污水中的有机污染物..然后使污泥与水分离;大部分污泥再回流到曝气池;多余部分则排出活性污泥系统..生物膜法 biomembrance process 污水生物处理的一种方法..该法采用各种不同载体;通过污水与载体的不断接触;在载体上繁殖生物膜;利用膜的生物吸附和氧化作用;以降解去除污水中的有机污染物;脱落下来的生物膜与水进行分离..初次沉淀池 primary sedimentation tank 污水处理中第一次沉淀的构筑物;主要用以降低污水中的悬浮固体浓度..二次沉淀池 secondary sedimentation tank 污水生物处理出水的沉淀构筑物;用以分离其中的污泥..生物滤池 biological filter ;trickling filter 由碎石或塑料制品填料构成的生物处理构筑物..污水与填料表面上生长的微生物膜间歇接触;使污水得到净化..生物接触氧化 bio-contact oxidation 由浸没在污水中的填料和人工曝气系统构成的生物处理工艺..在有氧的条件下;污水与填表面的生物膜反复接触;使污水获得净化..曝气池 aeration tank 利用活性污泥法进行污水生物处理的构筑物..池内提供一定污水停留时间;满足好氧微生物所需的氧量以及污水与活性污泥充分接触的混合条件..污泥和污泥处理的术语及其涵义符合下列规定:原污泥 raw sludge 未经污泥处理的初沉污泥、二沉剩余污或两者的混合污泥.. 初沉污泥 primary sludge 从初次沉淀池排出的沉淀物..二沉污泥 secondary sludge 从二次沉淀池排出的沉淀物..活性污泥 activated sludge 曝气池中繁殖的含有各种好氧微生物群体的絮状体..消化污泥 digested sludge 经过好氧消化或厌氧消化的污泥;所含有机物质浓度有一定程度的降低;并趋于稳定..回流污泥 returned sludge 由于次沉淀池或沉淀区分离出来;回流到曝气池的活性污泥..剩余污泥 excess activated sludge 活性污泥系统中从二次沉淀池或沉淀区排出系统外的活性污泥..污泥气 sludge gas 在污泥厌氧消化时;有机物分解所产生的气体..主要成分为甲烷和二氧化碳;并有少量的氢、氮和硫化氢..俗称沼气..污泥消化 sludge digestion 在有氧或无氧条件下;利用微生物的作用;使污泥中有机物转化为较稳定物质的过程..好氧消化 aerobic digestion 污泥经过较长时间的曝气;其中一部分有机物由好氧微生物进一步降解和稳定的过程..厌氧消化 anaerobic digestion 在无氧条件下;污泥中的有机物由厌氧微生物进行降解和稳定的过程..中温消化 mesophilic digestion 污泥在温度为33℃-35℃时进行的厌氧消化工艺..高温消化 thermophilic digestion 污泥在温度为53℃-55℃时进行的厌氧消化工艺..污泥浓缩 sludge thickening 采用重力或气浮法降低污泥含水量;使污泥稠化的过程..污泥脱水 sludge dewatering 对浓缩污泥进一步去除一部分含水量的过程;一般指机械脱水..污泥真空过滤 sludge vacuum filtration 利用真空使过滤介质一侧减压;介质的污泥脱水方法..污泥压滤 sludge pressure filtration 采用正压过滤;使污泥水强制滤过介质的污泥脱水方法..污泥干化 sludge drying 通过渗滤或蒸发等作用;从污泥中去除大部分含水量的过程;一般指采用污泥干化场床等自然蒸发设施..污泥焚烧 sludge incineration 污泥处理的一种工艺..它利用焚烧炉将脱水污泥加温干燥;再用高温氧化污泥中的有机物;使污泥成为少量灰烬..工程中物理量的术语及其涵度应符合下列规定:生化需氧量 biochmical oxygen demand 水样在一定条件下;于一定期间内一般采用5日、20℃进行需氧化所消耗的溶解氧量..英文简称BOD..化学需氧量 chemical oxygen demand 水样中可氧化物从氧化剂重铬酸钾中所吸收的氧量..英文简称COD..耗氧量 oxygen consumption 水样中氧化物从氧化剂高锰酸钾所吸收的氧量..英文简称OC或CODMn ..悬浮固体 suspended solid 水中呈悬浮状态的固体;一般指用滤纸过滤水样;将滤后截留物在105℃温度中干燥恒重后的固体重量..英文简称SS..。
Nutrient removal in an A2O-MBR reactor with sludgereductionABSTRACTIn the present study, an advanced sewage treatment process has been developed by incorporating excess sludge reduction and phosphorous recovery in an A2O-MBR process. The A2O-MBR reactor was operated at a flux of 77 LMH over a period of 270 days. The designed flux was increased stepwise over a period of two weeks. The reactor was operated at two different MLSS range. Thermo chemical digestion of sludge was carried out at a fixed pH (11)and temperature (75℃) for 25% COD solubilisation. The released pbospborous was recovered by precipitation process and the organics was sent back to anoxic tank. The sludge digestion did not have any impact on COD and TP removal efficiency of the reactor. During the 270 days of reactor operation, the MBR maintained relatively constant transmembrane pressure. The results based on the study indicated that the proposed process configuration has potential to reduce the excess sludge production as well as it didn't detonated the treated water quality.Keywords: A2O reactor; MBR; Nutrient removal; TMP1. IntroductionExcess sludge reduction and nutrients removal are the two important problems associated with wastewater treatment plant. MBR process has been known as a process with relatively high decay rate and less sludge production due to much longer sludge age in the reactor (Wenet al., 2004). Sludge production in MBR is reduced by 28-68%, depending on the sludge age used (Xia et al.,2008). However, minimizing the sludge production by increasing sludge age is limited due to the potential adverse effect of high MLSS concentrations on membrane (Yoon et al., 2004). This problem can be solved by introducing sludge disintegration technique in MBR (Young et al., 2007). Sludge disintegration techniques have been reported to enhance the biodegradability of excess sludge (Vlyssides and Karlis, 2004). In overall, the basis for sludge reduction processes is effective combination of the methods for sludge disintegration and biodegradation of treated sludge. Advances in sludge disintegration techniques offer a few promising options including ultrasound (Guo et al., 2008), pulse power (Choi et al.,2006), ozone (Weemaes et al., 2000), thermal (Kim et al., 2003), alkaline (Li et al., 2008) acid (Kim et al., 2003) and thermo chemical(Vlyssides and Karlis, 2004). Among the various disintegration techniques, thermo chemical was reported to be simple and cost effective (Weemaes and Verstraete, 1998). In thermal-chemical hydrolysis, alkali sodium hydroxide was found to be the most effective agent in inducing cell lysis (Rocker et al., 1999). Conventionally, the nutrient removal was carried out in an A2O process. It has advantage of achieving, nutrient removal along with organic compound oxidation in a single sludge configuration using linked reactors in series (Tchobanoglous et al., 2003). The phosphoroes removal happens by subjecting phosphorous accumulating organisms (PAO) bacteria under aerobic and anaerobic conditions (Akin and Ugurlu, 2004). These operating procedures enhance predominance PAO, which are able to uptake phosphorous in excess. During the sludge pretreatment processes the bound phosphorous was solubilised and it increases the phosphorousconcentration in the effluent stream (Nishimura, 2001).So, it is necessary to remove the solubilised phosphorus before it enters into main stream. Besides, there is a growing demand for the sustainable phosphorous resources in the industrialized world. In many developed countries, researches are currently underway to recover the phosphoroes bound in the sludge's of enhanced biological phosphorus removal system (EBPR). The released phosphorous can be recovered in usable products using calcium salts precipitation method. Keeping this fact in mind, in the present study, a new advanced wastewater treatment process is developed by integrating three processes, which are: (a) thermo chemical pretreatment in MBR for excess sludge reduction (b) A2O process for biological nutrient removal (c) P recovery through calcium salt precipitation. The experimental data obtained were then used to evaluate the performance of this integrated system.2. Methods2.1. WastewaterThe synthetic domestic wastewater was used as the experimental influent. It was basically composed of a mixed carbon source, macro nutrients (N and P), an alkalinity control (NaHCO3) and a microelement solution. The composition contained (/L) 210 mg glucose, 200 mg NH4C1, 220 mg NaHCO3, 22一34 mg KH2PO4, microelement solution (0.19 mg MnCl2 4H20, 0.0018 mg ZnCl22H2O,0.022 mg CuCl22H2O, 5.6 mg MgSO47H2O, 0.88 mg FeCl36H2O,1.3 mg CaCl2·2H2O). The synthetic wastewater was prepared three times a week with concentrations of 210±1.5 mg/L chemical oxygen demand (COD), 40±1 mg/L total nitrogen (TN) and 5.5 mg/L total phosphorus (TP).2.2. A2O-MBRThe working volume of the A2O-MBR was 83.4 L. A baffle was placed inside the reactor to divide it into anaerobic (8.4 L) anoxic (25 L) and aerobic basin (50 L). The synthetic wastewater was feed into the reactor at a flow rate of 8.4 L/h (Q) using a feed pump. A liquid level sensor, planted in aerobic basin of A2O-MBR controlled the flow of influent. The HRT of anaerobic, anoxic and aerobic basins were 1, 3 and 6 h, respectively. In order to facilitate nutrient removal, the reactor was provided with two internal recycle (1R). IRl (Q= 1)connects anoxic and anaerobic and IR 2 (Q=3) was between aerobic and anoxic. Anaerobic and anoxic basins were provided with low speed mixer to keep the mixed liquid suspended solids (MLSS) in suspension. In the aerobic zone, diffusers were used to generate air bubbles for oxidation of organics and ammonia. Dissolved oxygen (DO) concentration in the aerobic basin was maintained at 3.5 mg/1 and was monitored continuously through online DO meter. The solid liquid separation happens inaerobic basin with the help of five flat sheet membranes having a pore size of 0.23 pm. The area of each membrane was 0.1 m2. They were connected together by a common tube. A peristaltic pumpwas connected in the common tube to generate suction pressure. In the common tube provision was made to accommodate pressure gauge to measure transmembrane pressure (TMP) during suction. The suction pump was operated in sequence of timing, which consists of 10 min switch on, and 2 min switch off.2.3. Thermo chemical digestion of sludgeMixed liquor from aerobic basin of MBR was withdrawn at the ratio of 1.5% of Q/day and subjected to thermo chemical digestion. Thermo chemical digestion was carried out at a fixed pH of 11(NaOH) and temperature of 75℃for 3 h. After thermo chemical digestion the supernatant and sludge were separated. The thermo-chemicallydigested sludge was amenable to further anaerobic bio-degradation (Vlyssides and Karlis, 2004), so it was sent to theanaerobic basin of the MBR2.4. Phosphorus recoveryLime was used as a precipitant to recover the phosphorous in the supernatant. After the recovery of precipitant the content was sent back to anoxic tank as a carbon source and alkalinity supelement for denitrification.2.5. Chemical analysisCOD, MLSS, TP, TN of the raw and treated wastewater were analyzed following methods detailed in (APHA, 2003). The influent and effluent ammonia concentration was measured using an ion-selective electrode (Thereto Orion, Model: 95一12). Nitrate in the sample was analyzed using cadmium reduction method (APHA, 2003).3. Results and discussionFig. 1 presents data of MLSS and yield observed during the operational period of the reactor. One of the advantages of MBR reactor was it can be operated in high MLSS concentration. The reactor was seeded with EBPR sludge from the Kiheung, sewage treatment plant, Korea. The reactor was startup with the MLSS concentration of 5700 mg/L. It starts to increase steadily with increase in period of reactor operation and reached a value of 8100 mg/L on day 38. From then onwards, MLSS concentration was maintained in the range of 7500 mg/L by withdrawing excess sludge produced and called run I. The observed yields (Yobs) for experiments without sludge digestion (run I) and with sludge digestion were calculated and given in Fig. 1. The Yobs for run I was found to be 0.12 gMLSS/g COD. It was comparatively lower than a value of 0.4 gMLSS/g CODreported for the conventional activated sludge processes (Tchoba-noglous et al., 2003). The difference in observed yield of these two systems is attributed to their working MLSS concentration. At high MLSS concentration the yield observed was found to be low (Visva-nathan et al., 2000). As a result of that MBR generated less sludge.The presently used MLSS ranges (7.5一10.5 g/L) are selected on the basis of the recommendation by Rosenberger et al. (2002). In their study, they reported that the general trend of MLSS increase on fouling in municipal applications seems to result in no impact at medium MLSS concentrations (7一12 g/L).It is evident from the data that the COD removal efficiency of A2O system remains unaffected before and after the introduction of sludge digestion practices. A test analysis showed that the differences between the period without sludge digestion (run I) and with sludge digestion (run II and III) are not statistically significant.However, it has been reported that, in wastewater treatment processes including disintegration-induced sludge degradation, the effluent water quality is slightly detonated due to the release of nondegradable substances such as soluble microbial products (Ya-sui and Shibata, 1994; Salcai et al., 1997; Yoon et al., 2004). During the study period, COD concentration in the aerobic basin of MBR was in the range of 18-38 mg/L and corresponding organic concentration in the effluent was varied from 4 to 12 mg/L. From this data it can be concluded that the membrane separation played an important role in providing the excellent and stable effluent quality.Phosphorus is the primary nutrient responsible for algal bloom and it is necessary to reduce the concentration of phosphorus in treated wastewater to prevent the algal bloom. Fortunately its growth can be inhibited at the levels of TP well below 1 mg/L (Mer-vat and Logan, 1996).Fig. 2 depicts TP removal efficiency of the A2O-MBR system during the period of study. It is clearly evident from the figure that the TP removal efficiency of A/O system was remains unaffected after the introduction of sludge reduction. In the present study, the solubilised phosphorous was recovered in the form of calcium phosphate before it enters into main stream. So, the possibility of phosphorus increase in the effluent due to sludge reduction practices has been eliminated. The influent TP concentration was in the range of 5.5 mg/L. During thefirst four weeks of operation the TP removal efficiency of the system was not efficient as the TP concentration in the effluent exceeds over 2.5 mg/L. The lower TP removal efficiency during the initial period was due to the slow growing nature of PAO organisms and other operational factors such as anaerobic condition and internal recycling. After the initial period, the TP removal efficiency in the effluent starts to increase with increase in period of operation. TP removal in A2O process is mainly through PAO organisms. These organisms are slow growing in nature and susceptible to various physicochemical factors (Carlos et al., 2008). During the study period TP removal efficiency of the system remains unaffected and was in the range of 74-82%.。
bioresource technology简短的快讯类文章-回复"What is bioresource technology?"Bioresource technology is a field that combines biology and engineering principles to harness and utilize renewable biological resources for various applications. It focuses on finding sustainable solutions to environmental and industrial challenges by utilizing biological waste materials or biomass to produce energy, chemicals, and materials.[Overview of Bioresource Technology]In recent years, as concerns about climate change and resource scarcity have grown, the importance of developing alternative and sustainable sources of energy and materials has become increasingly apparent. Bioresource technology offers a potential solution to these challenges by utilizing biological resources in a responsible and environmentally friendly manner.Bioresource technology encompasses a wide range of processes and technologies, including but not limited to:1. Biomass conversion: Biomass, which refers to organic matter derived from plants, animals, and microorganisms, can be converted into energy-rich substances such as biofuels. Bioethanol, biodiesel, and biogas are examples of biofuels produced from the fermentation or processing of biomass.2. Bioremediation: Bioresource technology can be used to clean up polluted environments through the use of microorganisms or plants to degrade or remove contaminants from soil, water, or air.3. Bioplastics and biomaterials: Bioresource technology explores the development of biodegradable and sustainable alternatives to traditional plastic and materials derived from fossil fuels. By using biomass-based feedstocks, bioplastics and biomaterials can reduce the environmental impact associated with their production and disposal.4. Waste management: Bioresource technology enables the conversion of various types of organic waste, including agricultural waste, food waste, and sewage sludge, into valuable products. These products can include biogas, compost, and nutrients for fertilizer production.5. Bio-based chemicals: Bioresource technology plays a crucial role in the production of bio-based chemicals, which are derived from renewable biological resources. These chemicals can be used as ingredients in various industries, such as pharmaceuticals, cosmetics, and agriculture.[Advantages of Bioresource Technology]Bioresource technology offers several advantages over conventional methods of resource utilization:1. Renewable and sustainable: Unlike fossil fuels, which are finite resources, bioresource technology relies on renewable biological resources. By utilizing biomass, the production of energy, chemicals, and materials can be sustained over the long term without depleting natural resources.2. Reduced greenhouse gas emissions: Bioresource technology helps reduce greenhouse gas emissions since the carbon dioxide released during the production and use of biofuels or biomaterials is offset by carbon dioxide absorbed during biomass growth. Thisconcept is known as carbon neutrality.3. Waste reduction and circular economy: By utilizing organic waste materials to produce valuable products, bioresource technology contributes to waste reduction and promotes the concept of a circular economy. It minimizes the need for landfilling and incineration, reducing pollution and environmental impact.4. Economic opportunities: The development and implementation of bioresource technology create new economic opportunities in various sectors, including agriculture, biotechnology, and energy. It can stimulate job creation and foster sustainable economic growth.[Current and Future Applications]Bioresource technology is actively being researched and implemented globally. Some current and potential future applications include:1. Biofuel production: The production of bioethanol and biodiesel from biomass is extensively researched and commercially implemented in many countries as a renewable fuel source fortransportation.2. Anaerobic digestion: The process of anaerobic digestion, which breaks down organic matter in the absence of oxygen, is widely used to produce biogas from agricultural, municipal, and industrial waste.3. Biorefineries: Integrated biorefineries are being developed to produce multiple products from biomass, including biofuels, chemicals, materials, and even food additives.4. Bioremediation technologies: Bioresource technology is being harnessed to develop innovative bioremediation methods for cleaning up contaminated soils, water bodies, and industrial sites.5. Algal biofuels: Research is ongoing to explore the potential of using algae as a source of biofuel due to its rapid growth, high oil content, and minimal land requirements.ConclusionBioresource technology offers a sustainable and environmentallyfriendly approach to address various challenges related to energy, waste management, and resource utilization. By leveraging renewable biological resources, bioresource technology has the potential to revolutionize several industries and contribute to a more sustainable and greener future.。
新高考2024届高考英语第一轮专项冲刺限时集训——阅读理解:记叙文从命题形式上看,常见的有细节理解、词义猜测、主旨大意、推理判断、作者意图等题型。
除了推论或词义辨识题,记叙文命题的顺序一般都会按照文章的脉络和故事发展的顺序层层推进,否则就会觉得别扭,逻辑不通。
同时,记叙文需要事件的发展过程作支撑,一半以上的题目都会用来检测考生对故事的了解,因此,我们必须弄明白整件事情的发展脉络。
而其余像主旨大意、作者意图之类的题目,则取决于文章的落句,集中考查对作者所发的感触的理解。
综上所述,记叙文的应对策略即:不漏细节,奠定基础;把准寓意,方能成功。
(2023年新高考I卷)When John Todd was a child, he loved to explore the woods around his house, observing how nature solved problems. A dirty stream, for example, often became clear after flowing through plants and along rocks where tiny creatures lived. When he got older, John started to wonder if this process could be used to clean up the messes people were making.After studying agriculture, medicine, and fisheries in college, John went back to observing nature and asking questions. Why can certain plants trap harmful bacteria (细菌)? Which kinds of fish caneat cancer-causing chemicals? With the right combination of animals and plants, he figured, maybe he could clean up waste the way nature did. He decided to build what he would later call an eco-machine.The task John set for himself was to remove harmful substances from some sludge (污泥). First, he constructed a series of clear fiberglass tanks connected to each other. Then he went around to local ponds and streams and brought back some plants and animals. He placed them in the tanks and waited. Little by little, these different kinds of life got used to one another and formed their own ecosystem. After a few weeks, John added the sludge.He was amazed at the results. The plants and animals in the eco-machine took the sludge as food and began to eat it! Within weeks, it had all been digested, and all that was left was pure water.Over the years, John has taken on many big jobs. He developed a greenhouse — like facility thattreated sewage (污水) from 1,600 homes in South Burlington. He also designed an eco-machine to clean canal water in Fuzhou, a city in southeast China.“Ecological design” is the name John gives to what he does. “Life on Earth is kind of a box of re parts for the inventor,” he says. “You put organisms in new relationships and observe what’s happening. Then you let these new systems develop their own ways to self-repair.”24.What can we learn about John from the first two paragraphs?A.He was fond of traveling.B.He enjoyed being alone.C.He had an inquiring mind.D.He longed to be a doctor.25.Why did John put the sludge into the tanks?A.To feed the animals.B.To build an ecosystem.C.To protect the plants.D.To test the eco-machine.26.What is the author’s purpose in mentioning Fuzhou?A.To review John’s research plans.B.To show an application of John’s idea.C.To compare John’s different jobs.D.To erase doubts about John’s invention. 27.What is the basis for John’s work?A.Nature can repair itself.B.Organisms need water to survive.C.Life on Earth is diverse.D.Most tiny creatures live in groups.【正确答案】24.C 25.D 26.B 27.A【导语】这是一篇记叙文。
微生物专业英语2020.2.241、微生物:microorganism [ˌmaɪkroʊˈɔːrɡənɪzəm]释:微生物小的鲜活生物,只有使用显微镜才能看到。
A microorganism is a very small living thing which can only be seen by a microscope.2、固体废弃物:(solid waste)[ˈsɑːlɪd]释:一般所说的垃圾,是人类新陈代谢排泄物和消费品消费后的废弃物品。
Generally speaking, soild waste is the waste products of human metabolism and consumer products after consumption.3、浸出:leach [liːtʃ]释:浸出是通过溶剂从固体中提取可溶性成分的过程。
Leaching is the process of extracting a soluble constituent from a solid by means of a solvent.4、油污泥:oily sludges[slʌdʒ]5、市政污泥civil sludge/ municipal sludge释:主要指来自污水厂的污泥Mainly refers to sludge from sewage plants6、土壤改良:soil improvement释:针对土壤的不良质地和结构,采取相应的物理、生物或化学措施,改善土壤性状,提高土壤肥力,增加作物产量,以及改善人类生存土壤环境的过程。
Soil improvement is the process of taking appropriate physical, biological, or chemical measures to improve soil properties, soil fertility, crop yields, and improving the soil environment of human existence in response to the poor texture and structure of the soil.句子:一、目的研究微生物-植物联合对稠油污染土壤的修复效果,为石油污染土壤生物修复技术的应用提供依据。
排水工程——wastewater engineering; sewage排水系统——waste water engineering system排水体制——sewerage system排水设施——sewerage facilities合流制——combined system合流制管道溢流——combined sewer overflow分流制——separate system城镇污水——urban wastewater, sewage城镇污水系统——urban wastewater system面源污染——diffuse pollution低影响开发——low impact development城镇污水污泥——urban wastewater sludge旱流污水——dry weather sludge生活污水——domestic wastewater/sewage综合生活污水——comprehensive sewage工业废水——industrial wastewater入渗地下水——infiltrated ground water总变化系数——peaking factor径流系数——runoff coefficient径流量——runoff暴雨强度——rainfall intensity重现期——recurrence interval雨水管渠设计重现期——recurrence interval for storm sewer design 降雨历时——duration of rainfall汇水面积——catchment area内涝——local flooding内涝防治系统——local flooding prevention and control system内涝防治设计重现期——recurrence interval for local flooding design 地面集水时间——time of concentration截流倍数——interception ratio排水泵站——drainage pumping station污水泵站——sewage pumping station雨水泵站——storm water pumping station合流污水泵站——combined sewage pumping station一级处理——primary treatment二级处理——secondary treatment活性污泥法——activated sludge process, suspended growth process 生物反应池——biological reaction tank活性污泥——activated sludge回流污泥——returned sludge格栅——bar screen格栅除污机——bar screen machine固定式格栅除污机——fixed raking machine移动式格栅除污机——mobile raking machine沉砂池——grit chamber平流沉砂池——horizontal flow grit chamber曝气沉砂池——aerated grit chamber旋流沉砂池——vortex-type grit chamber沉淀——sedimentation, settling初次沉淀池——primary settling tank二次沉淀池——secondary settling tank平流沉淀池——horizontal settling tank竖流沉淀池——vertical flow settling tank辐流沉淀池——radial flow settling tank斜管(板)沉淀池——incline tube (plate) sedimentation tank好氧——aerobic, oxic厌氧——anaerobic缺氧——anoxic生物硝化——bio-nitrification生物反硝化——bio-denitrification混合液回流——mixed liquor recycle生物除磷——biological phosphorus removal缺氧/好氧脱氮工艺——anoxic/oxic process厌氧/好氧除磷工艺——anaerobic/oxic process厌氧/缺氧/好氧脱氮除磷工艺——anaerobic/anoxic/oxic process 序批式活性污泥法——sequencing batch reactor充水比——fill ratio总凯式氮——total Kjeldahl nitrogen(有机氮和氨氮之和)总氮——total nitrogen总磷——total phosphorus好氧泥龄——oxic sludge age泥龄——sludge age, sludge retention time氧化沟——oxidation ditch好氧区——oxic zone缺氧区——anoxic zone厌氧区——anaerobic zone生物膜法——attached-growth process, biofilm process生物接触氧化——bio-contact oxidation曝气生物滤池——biological aerated filter生物转盘——rotating biological contactor塔式生物滤池——biotower低负荷生物滤池——low-rate trickling filters高负荷生物滤池——high-rate biological filters五日生化需氧量容积负荷——BOD-volumetric loading表面负荷——hydraulic loading rate固定布水器——fixed distributor旋转布水器——rotating distributor石料滤料——rock filtering media塑料滤料——plastic media污水自然处理——natural treatment of wastewater土地处理——land treatment稳定塘——stabilization pond, stabilization lagoon灌溉田——sewage farming人工湿地——artificial wetland, constructed wetland污水再生利用——wastewater reuse深度处理——advanced treatment再生水——reclaimed water, reuse water膜过滤——membrane filtration颗粒活性炭吸附池——granular activated carbon absorption tank 紫外线——ultraviolet紫外线剂量——ultraviolet dose污泥处理——sludge treatment污泥处置——sludge disposal污泥浓缩——sludge thickening污泥脱水——sludge dewatering污泥干化——sludge drying污泥消化——sludge digestion厌氧消化——anaerobic digestion好氧消化——aerobic digestion中温消化——mesophilic digestion高温消化——thermophilic digestion原污泥——raw sludge初沉污泥——primary sludge二沉污泥——secondary sludge剩余污泥——excess activated sludge消化污泥——digested sludge消化池——digester消化时间——digest time挥发性固体——volatile solids挥发性固体去除率——removal percentage of volatile solids挥发性固体容积负荷——cubage load of volatile solids污泥气——sludge gas, marsh gas污泥气燃烧器——sludge gas burner回火防止器——backfire preventer污泥热干化——sludge heat drying污泥焚烧——sludge incineration污泥综合利用——sludge integrated application污泥土地利用——sludge land application污泥农用——sludge farm application。
专业英语环境:environment 环境工程:environmental engineering环境保护:environmental protection 环境意识:environmental consciousness/awareness 环境问题:environmental issue/problem 环境效应:environmental effect环境污染:environmental pollution 环境要素:environmental elements环境因子:environmental factors 环境化学:environmental chemistry环境生态学:environmental ecology 环境质量:environmental quality环境自净作用:environmental self-purification/self-cleansing生物圈:biosphere 生态学:ecology生态系统:ecosystem 生态平衡:ecological balance生态破坏:ecological damage生物群落:biological community猎食者:predator 食物链:food chain被猎食者:prey 营养级:trophic level物质循环:material cycle信息反馈:information feedback能量传递:energy transfer物质不灭定律:the law of conservation of mass能量守恒定律:the law of conservation of energy物料平衡定律:Material balance principle水环境:watershed 水体:water body流域:watershed 水质:water quality水资源:water resources 供水:water supply废水:waste water 水处理:water treatment物理性水质指标:physical indicate of water quality 水污染物:water pollutant生物性水质指标:biological water-quality index 水质标准:water quality standard化学性水质指标:chemical water-quality indexDS:dissolved solids BOD:biochemical oxygen demand TDS:total dissolved solids COD:chemical oxygen demand TSS:total suspended solids DO:dissolved oxygenTOC:total organic carbon PH值:TN:总氮total nitrogen TP:总磷phosphorusZn:zinc Cu:CopperAs:arsenic Cd:CadmiumCr:chromium Ni:NickelHg:mercury Pb:plumbum物理处理:physical treatment 过滤:screening生物处理:biological treatment 沉淀:sedimentation化学处理:chemical treatment 气浮:flotation物理化学处理:physical-chemical treatment蒸发:evaporation 稀释:dilution扩散:dispersion 吹脱:stripping好氧处理:aerobic treatment 生物膜法:biofilm process bio-membrane process厌氧处理:anaerobic treatment 生物滤池:trickling filters活性污泥法:activated sludge process 生物接触氧化:biological contact SBR:苯乙烯-丁二烯Styrene Butadiene RubberUASB(流式厌氧污泥床):Upflow anaerobic sludge blanket活性污泥:activated sludge 改进型:modification一级处理:primary treatment二级处理:secondary treatment三级处理:tertiary treatment高级氧化处理:advanced treatment生活污水:domestic wastewater生产废水:industrial wastewater城市生活污水:municipal wastewater电镀废水:metalplating plants印染废水:pulp and paper industries wastewater浊度:turbidity硬度:hardness水质净化:water quality purifies混凝沉淀:coagulate flocculating agent活性炭吸附:activated carbon adsorption隔油池:oil separation tank中和池:neutralization tank调节池:adjusting tank生物反应池:biological reactor加药设备:physical equipment沉淀池:sedimentation tank初沉池:primary sedimentation tank二沉池:secondary sedimentation tank絮凝剂:flocculant混凝剂:coagulate flocculant生物降解:biodegradation生物累积:bioaccumulation大气环境:airshed 气体净化:atmospheric cleanup对流层:troposphere 摩擦层:frictional layer?平流层:stratosphere 中间层:mesosphere热层:thermosphere 臭氧层:ozonosphere粉尘:dust 气溶胶:aerosol烟雾:smoke 降尘:dust fall飘尘:floating dust 可吸入颗粒物:inhalable particles能见度:visibility 酸雨:acid rain一次污染物:primary pollutant二次污染物:secondary pollutant氮氧化物:nitrogen oxides 硫氧化物:sulfur oxides硫化氢:hydrogen sulfide 碳氧化物:carbon oxides硝酸:nitric acid 盐酸:hydrochloric acid硫酸:sulfuric acid 二氧化硫:sulfur dioxide除尘工艺:Dust removal吸收:absorption吸附:adsorptionGAC(颗粒活性炭):granular a c tivated carbonPAC(粉末活性炭):powdered a c tivated carbonACF(活性炭纤维):a c tivated carbon fiber静电除尘:electric dust precipitation重力除尘:gravitational settling臭氧:ozone光化学烟雾:photochemical smoke喷淋(洗涤):scavenging凝聚:flocculation植物吸收:植物吸附:土壤:soil 热污染:temperature change/thermal pollution 噪声:noise 放射性:radioactivity光辐射:optical radiation光合成:Photosynthesis易燃性:ignitability易爆性:ignitability反应性:reactivity传染性:infectivity腐蚀性:corrosivityEIA:environmental impact assessmentCAD(计算机辅助设计):computer aided design大气污染控制工程:air pollution control水污染控制工程:water pollution control固体废物污染控制工程:solid waste management污染物:pollutant污染源:pollution source同化作用:assimilation 固体废物:solid wastes消纳作用:Digestive Function 危险废物:hazardous wastes城市生活垃圾:municipal wastes化学污泥chemical sludge:生物污泥:biological sludge工业固废:industrial wastes 分选处理:separation treatment矿业固废:mine solid wastes 破碎处理:processing农业固废:agriculture solid wastes 压实处理:reduction in volume污泥脱水:disposal of the sludge ?污泥浓缩:sludge thickening带式压滤:Belt filter press离心脱水:centrifugal dewatering筛分:screening堆肥和堆肥化:compost and composting沼气和沼气化:biogas热解与焚烧:pyrolysis and incineration生物转化作用:biotransformation热化学转化作用:thermo-chemical conversion固化和稳定化作用:solidification and stabilization资源化:resource减量化:pollution control无害化:harmlessness固体废物全过程控制:solid waste integrated control固体废物污染控制:solid waster pollution control固体废物处理:processing and recovery处置:disposal物质回收:materials recovery 物质转化:material conversion能量回收:energy recovery 能量转化:energy conversion1.Environmental engineering has been defined as the branch of engineering that is concernedwith protecting the environment from the potential, deleterious effects of human activity, protecting human populations from the effects of adverse environmental factors, and improving environmental quality for human health and well-being.(2页)环境工程学是环境工程的分支学科,其研究内容包括①保护环境免受人类活动改造形成的潜在和不利影响②保护人类免受不利环境因素的影响③持续改善环境质量,以造福于人类健康与福祉。
矿物掺料和生物技术对城市污泥的除臭作用研究(南昌大学建筑工程学院,江西南昌 330031)摘要:采用纳氏试剂分光光度法,定量研究了矿物掺料(硅藻土)和两种生物除臭剂(生物除臭剂Ⅰ和生物除臭剂Ⅱ)对城市污泥中氨含量的影响规律,以此分析其对城市污泥的除臭效果。
结果表明:不同掺量的硅藻土对城市污泥均有一定的除臭效果,硅藻土最优掺量为10%;两种生物除臭剂对城市污泥均有一定的除臭效果,但生物除臭剂Ⅱ优于生物除臭剂Ⅰ;复掺硅藻土和生物除臭剂Ⅱ比矿物掺料吸附或生物除臭单一方式的效果更好,其对城市污泥的除臭作用有叠加效应。
除臭效果最好且最经济合理的复合除臭剂配比为:5%硅藻土和0.3%生物除臭剂Ⅱ。
关键词:矿物掺料;生物技术;城市污泥;除臭中图分类号:文献标识码:文章编号:Study on Deodorization of Municipal Sludge by Means ofMineral Additives and BiotechnologyAbstract: Abstract: Using the spectrophotometric method, we analyze the influencing rule of mineral additives (diatomite) and two kinds of biological deodorant (biological deodorantⅠand biological deodorantⅡ) on the ammonia content in the municipal sludge quantificationally, and in order to analyze their deodorization of the municipal sludge thereby. The result indicates that the different contents of diatomite have the certain effect of deodorization on the municipal sludge, and the best content is 10%; Both of the biological deodorants have the certain effect of deodorization on the municipal sludge, and the biological deodorant Ⅱis better than the biological deodorantⅠ;the effect of the deodorization of the combination between diatomite and biological deodorant Ⅱis better than the single one works against the municipal sludge because of their superimposition effect. The proportion is 5% of diatomite and 0.3% of biotechnologyⅡconsidering the most effective and the most economic and reasonable factors.Key words: Mineral additives, Biotechnology, Municipal sludge, Deodorization——————————————————————胡明玉,女,1958年生,江西高安人,教授,博士江西省2008年科技支撑计划项目(2008AE01400)江西省2009年研究生创新基金资助项目江西省教育厅2010年度青年科学基金项目(GJJ10082)引言Introduction随着我国城市化速度加快,污水处理厂所产生的城市污泥量日益增加。
1、给水工程w a t e r s u p p l y e n g i n e e r i n g 原水(de)取集和处理以及成品水输配(de)工程.2、排水工程 sewerage ,wastewater engineering收集、输送、处理和处置废水(de)工程.3、给水系统 water supply system给水(de)取水、输水、水质处理和配水等设施以一定方式组合成(de)总体.4、排水系统 sewerage system排水(de)收集、输送、水质处理和排放等设施以一定方式组合成(de)总体.5、给水水源 water source给水工程所取用(de)原水水体.6、原水raw water由水源地取来(de)原料水.7、地表水surface water存在于地壳表面,暴露于大气(de)水.8、地下水ground water存在于地壳岩石裂缝或工壤空隙中(de)水.9、苦咸水(碱性水) brackish water ,alkaline water碱度大于硬度(de)水,并含大量中性盐,PH值大于7.10、淡水fresh water含盐量小于500mg/L(de)水.11、冷却水cooling water用以降低被冷却对象温度(de)水.12、废水 wastewater居民活动过程中排出(de)水及径流雨水(de)总称.它包括生活污水、工业废水和初雨径流以及流入排水管渠(de)其它水.13、污水sewage ,wastewater受一定污染(de)来自生活和生产(de)排出水.14、用水量 water consumption用水对象实际使用(de)水量.15、污水量 wastewater flow ,sewage flow排水对象排入污水系统(de)水量.16、用水定额 water flow norm对不同(de)排水对象,在一定时期内制订相对合理(de)单位排水量(de)数值. 17、排水定额 wastewater flow norm对不同(de)排水对象,在一定时期内制订相对合理(de)单位排水量(de)数值. 18、水质 water quality在给水排水工程中,水(de)物理、化学、生物学等方面(de)性质.19、渠道 channel ,conduit天然、人工开凿、整治或砌筑(de)输水通道.20、泵房 pumping house设置水泵机组、电气设备和管道、闸阀等(de)房屋.21、泵站 pumping station泵房及其配套设施(de)总称.22、给水处理 water treatment对不符合用不对象水质要求(de)水.进行水质改善(de)过程.23、污水处理 sewage treatment ,wastewater treatment为使污水达到排水某一水体或再次使用(de)水质要求,对其进行净化(de)过程.24、废水处理 wastewater disposal对废水(de)最终安排.一般将废水排入地表水体、排放土地和再次使用等. 25、格栅 bar screen一种栅条形(de)隔污设备,用以拦截水中较大尺寸(de)漂浮物或其他杂物. 26、曝气 aeration水与气体接触,进行溶氧或散除水中溶解性气体和挥发性物质(de)过程.27、沉淀 sedimentation利用重力沉降作用去除水中杂物(de)过程.28、澄清 clarification通过与高浓度沉渣层(de)接触而去除水中杂物(de)过程.29、过滤filtration借助粒状材料或多孔介质截除水中质物(de)过程.30、离子交换法 ion exchange采用离子交换剂去除水中某些盐类离子(de)过程.31、氯化 chlorination在水中投氯或含氯氧化物方法消灭病原体(de)过程.32、余氯 residual chlorine水中投氯,经一定时间接触后,在水中余留(de)游离性氯和结合性氯(de)总和.33、游离性余氯 free residual chlorine水中以次氯酸和次氯酸盐形态存在(de)余氯.34、结合性余氯 combinative residual chlorine水中以二氯胺和一氯胺形态存在(de)余氯.35、污泥 sludge在水处理过程中产生(de),以及排水管渠中沉积(de)固体与水(de)混合物或胶体物.36、污泥处理 sludge treatment对污泥(de)最终安排.一般将污泥作农肥、制作建筑材料、填埋和投弃等.37、水头损失 head loss水流通过管渠、设备和构筑物等所引起(de)能量消耗.二、室外给水术语1> 给水工程中系统和水量方面(de)术语及其涵度,应符合下列符合下列规定:1、直流水系统 once through system水经过一次使用后即行排放或处理后排放(de)给水系统.2、复用水系统 water reuse system水经重复利用后再行排放或处理后排放(de)给水系统.3、循环水系统 recirculation system水经使用后不予排放而循环利用或处理后循环利用(de)给水系统.4、生活用水 domestic water人类日常生活所需用(de)水.5、生产用水 process water 生产过程所需用(de)水.6、消防用水 fire demand 扑灭火灾所需用(de)水.7、浇洒道路用水 street flushing demand ,road watering对城镇道路进行保养、清洗、降温和消尘等所需用水.8、绿化用水 green belt sprinkling ,green plot sprinkling对市政绿地等所需用(de)水.2> 给水工程取水构筑物(de)术语其涵义应符合下列规定:1、管井 deep well ,drilled well井管从地面打到含水层,抽取地下水(de)井.2、管井滤水管 deep well screen设置在管井动水位以下,用以从含水层中集水(de)有缝隙或孔隙(de)管段.3、管井沉淀管 grit compartment位于管井最下部,用以容纳进入井内(de)沙粒和从水中析出(de)沉淀物(de)管段.4、大口井 dug well ,open well由人工开挖或沉井法施工,设置井筒,以截取浅层地下水(de)构筑物.5、井群 batter of wells数个井组成(de)群体.6、渗渠 infiltration gallery壁上开孔,以集取浅层地下水(de)水平管渠.7、地下水取水构筑物反滤层 inverted layer在大口井或渗渠进水处铺设(de)粒径沿水流方向由细到粗(de)级配砾层(简称反滤层)8、泉室 spring chamber集取泉水(de)构筑物.9、进水间 intake chamber连接取水管与吸水井、内设格栅或格网(de)构筑物.10、格网 screen一种网状(de)用以拦截水中较大尺寸(de)漂浮物、水生动物或其他污染物(de)拦污设备.其网眼尺寸较格栅为小.11、吸水井 suction well为水泵吸水管专门设置(de)构筑物.3> 给水工程中净水构筑物(de)术语及其涵义应符合下列规定:1、净水构筑物 purification structure以去除水中悬浮固体和胶体杂质等为主要目(de)(de)构筑物(de)总称.2、投药 chemical dosing为进行水处理而向水中加一定剂量(de)化学药剂(de)过程.3、混合 mixing使投入(de)药剂迅速均匀地扩散于被处理水中以创造良好(de)凝聚反应条件(de)过程.4、凝聚 coagulation为了消除胶体颗粒间(de)排斥力或破坏其亲水性,使颗粒易于相互接触而吸附(de)过程.5、絮凝 flocculationA、完成凝聚(de)胶体在一定(de)外力扰动下相互碰撞、聚集以形成较大絮状颗粒(de)过程.曾用名反应.B、高分子絮凝剂在悬浮固体和胶体杂质之间吸附架桥(de)过程.6、自然沉淀 plain sedimentation不加注任何凝聚剂(de)沉淀过程.7、凝聚沉淀 coagulation sedimentation加注凝聚剂(de)沉淀过程.8、凝聚剂 coagulant在凝聚过程中所投加(de)药剂(de)统称.9、助凝剂 coagulant aid在水(de)沉淀、澄清过程中,为改善絮凝效果,另设加(de)辅助药剂.10、药剂固定储备量 standby reserve为考虑非正常原因导致药剂供应中断,而在药剂仓库内设置(de)在一般情况下不准动用(de)储备量.简称固定储备量.11、药剂周转储备量 current reserve考虑药剂消耗与供应时间之间差异所需(de)储备量.简称周转储备量.12、沉沙池(沉砂池)desilting basin ,grit chamber去除水中自重很大、能自然沉降(de)较大粒径沙粒或杂粒(de)水池.13、预沉池 pre-sedimentation tank原水中泥沙颗粒较大或浓度较高时,在进行凝聚沉淀处理前设置(de)沉淀池. 14、平流沉淀池 horizontal flow sedimentation tank水沿水平方向流动(de)沉淀池.15、异向流斜管 (或斜板)沉淀池 tube(plate)settler池内设置斜管(或斜板),水自下而上经斜管(或斜板)进行沉淀,沉泥沿斜管(或斜板)向下滑动(de)沉淀(de)池.16、同向流斜板沉淀池lamella池内设置斜板,沉淀过程在斜板内进行,水流与沉泥均沿斜板向下流动(de)沉淀池.17、机械搅拌澄清池 accelerator利用机械使水提升和搅拌,促使泥渣循环,并使原水中固体杂质与己形成(de)泥渣接触絮凝而分离沉淀(de)水池.18、水力循环澄清池 circulator clarifier利用水力使水提升,促使泥渣循环,并使原水中固体杂质与己形成(de)泥渣接触絮凝而分离沉淀(de)水池.19、脉冲澄清池 pulsator悬浮层不断产生固周期性(de)压缩和膨胀,促使原水中固体杂质与己形成(de)泥渣进行接触凝聚页分离沉淀(de)水池.20、悬浮澄清池 sludge blanket clarifier加药后(de)原水由上通过处于悬浮状态(de)泥渣层,使水中杂质与泥渣悬浮层(de)颗粒碰撞凝聚而分离沉淀(de)水池.21、表面负荷 surface load在沉淀池、澄清池等沉淀构筑物(de)净化部分中,单位液(水)面积所负担(de)出水流量.其计量单位通常以m3/表示.22、气浮池 floatation tank运用絮凝和浮选原理使液体中(de)杂质分离上浮而去除(de)池子.23、气浮溶气罐 dissolved air vessel在气浮工艺中,水与空气在有压条件下相互溶合(de)密闭容器.简称溶气罐.24、清水池 clear-water reservoir为贮存水厂中净化后(de)清水,以调节水厂制水量与供水量之间(de)差额,并为满足加氯接触时间而设置(de)水池.4> 给水工程中输配水管网(de)术语及其涵度应符合下列规定:1、自灌充水将离心泵(de)泵顶设于最低吸水位标高以下,启动时水靠重力充入泵体(de)引水方式.2、转输流量水厂向设在配水管网中(de)调节构筑物输送(de)水量.3、配水管网 distribution system ,pipe system将水送到分配管网以至用户(de)管系.4、环状管网pipe network配水管网(de)一种置形式,管道纵横相互接通,形成环状.5、枝状管网 branch system配水管网(de)一种布置形式,干管和支管分明,形成树枝状.6、水管支墩 buttress ,anchorage为防止由管内水压引起(de)水管配件接头移位而造成漏水,需在水管干线适当部位砌筑(de)墩座.简称支墩.三、室外排水术语1> 排水工程中排水制度和管渠附属构筑物(de)术语及其涵义应符合下列规定:1、排水制度 sewer system在一个地区内收集和输送废水(de)方式.它有合流制和分流制两种基本方式.2、合流制 combined system用同一种管渠分别收集和输送废水(de)排水(de)方式.3、分流制 separate system用不同管渠分别收集和输送各种污水、雨水和生产废水(de)排水(de)方式.4、检查井 manhole排水管渠上连接其他管渠以及供养护工人检查、清通和出入管渠(de)构筑物.5、跌水井 drop manhole上下游管底跌差较大(de)检查井.6、事故排出口 emergency outlet在排水系统发生故障时,把废水临时排放到天然水体或其它地点去(de)设施.7、曝雨溢流井 (截留井)storm overflow well ,intercepting well合流制排水系统中,用来截留、控制合流水量(de)构筑物.2> 排水工程中水和水处理(de)术语及其涵度,应符合下列规定:1、生活污水 domestic sewage ,domestic wastewater居民中日常生活中排出(de)废水.2、工业废水 industrial wastewater生产过程中排出(de)水.它包括生产废水和生产污水.3、生产污水polluted industrial wastewater被污染(de)工业废水.还包括水温过高,排入后造成热污染(de)工业废水.4、生产废水 non-polluted industrial wastewater未受污染或受轻微污染以及水温稍有升高(de)工业废水.5、城市污水 municipal sewage ,municipal wastewater排入城镇污水系统(de)污水(de)统称.在合流制排水系统中,还包括生产废水和截留(de)雨水.6、旱流污水 dry weather flow合流制排水系统在晴天时输送(de)污水.7、水体自净 self-purification of water bodies河流等水体在自然条件(de)生化作用下,有机物降解,溶解氧回升和水体生物群逐渐恢复正常(de)过程.8、一级处理 primary treatment去除污水中(de)漂浮物和悬浮物(de)净化过程,主要为沉淀.9、二级处理 secondary treatment污水经一级处理后,用生物处理方法继续除去污水不胶体和溶解性有机物(de)净化过程.10、生物处理 biological treatment利用微生物(de)作用,使污水中不稳定有机物降解和稳定(de)过程.11、活性污泥法 activated sludge process污水生物处理(de)一种方法.该法是在人工充氧条件下,对污水和各微生物群体进行连续混和培养,形成活性污泥.利用活性污泥(de)生物凝聚、吸附和氧化作用,以分解去除污水中(de)有机污染物.然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统.12、生物膜法 biomembrance process污水生物处理(de)一种方法.该法采用各种不同载体,通过污水与载体(de)不断接触,在载体上繁殖生物膜,利用膜(de)生物吸附和氧化作用,以降解去除污水中(de)有机污染物,脱落下来(de)生物膜与水进行分离.13、双层沉淀池(隐化池) Imhoff tank由上层沉淀槽和下层污泥消化室组成.14、初次沉淀池 primary sedimentation tank污水处理中第一次沉淀(de)构筑物,主要用以降低污水中(de)悬浮固体浓度. 15、二次沉淀池 secondary sedimentation tank污水生物处理出水(de)沉淀构筑物,用以分离其中(de)污泥.16、生物滤池 biological filter ,trickling filter由碎石或塑料制品填料构成(de)生物处理构筑物.污水与填料表面上生长(de)微生物膜间歇接触,使污水得到净化.17、生物接触氧化 bio-contact oxidation由浸没在污水中(de)填料和人工曝气系统构成(de)生物处理工艺.在有氧(de)条件下,污水与填表面(de)生物膜反复接触,使污水获得净化.18、曝气池 aeration tank利用活性污泥法进行污水生物处理(de)构筑物.池内提供一定污水停留时间,满足好氧微生物所需(de)氧量以及污水与活性污泥充分接触(de)混合条件.3> 排水工程中污泥和污泥处理(de)术语及其涵义符合下列规定:1、原污泥 raw sludge未经污泥处理(de)初沉污泥、二沉剩余污或两者(de)混合污泥.2、初沉污泥 primary sludge从初次沉淀池排出(de)沉淀物.3、二沉污泥 secondary sludge从二次沉淀池排出(de)沉淀物.4、活性污泥 activated sludge曝气池中繁殖(de)含有各种好氧微生物群体(de)絮状体.5、消化污泥 digested sludge经过好氧消化或厌氧消化(de)污泥,所含有机物质浓度有一定程度(de)降低,并趋于稳定.6、回流污泥 returned sludge由于次沉淀池(或沉淀区)分离出来,回流到曝气池(de)活性污泥.7、剩余污泥 excess activated sludge活性污泥系统中从二次沉淀池(或沉淀区)排出系统外(de)活性污泥.8、污泥气 sludge gas在污泥厌氧消化时,有机物分解所产生(de)气体.主要成分为甲烷和二氧化碳,并有少量(de)氢、氮和硫化氢.俗称沼气.9、污泥消化 sludge digestion在有氧或无氧条件下,利用微生物(de)作用,使污泥中有机物转化为较稳定物质(de)过程.10、好氧消化 aerobic digestion污泥经过较长时间(de)曝气,其中一部分有机物由好氧微生物进一步降解和稳定(de)过程.11、厌氧消化 anaerobic digestion在无氧条件下,污泥中(de)有机物由厌氧微生物进行降解和稳定(de)过程.12、中温消化 mesophilic digestion污泥在温度为33℃-35℃时进行(de)厌氧消化工艺.13、高温消化 thermophilic digestion污泥在温度为53℃-55℃时进行(de)厌氧消化工艺.14、污泥浓缩 sludge thickening采用重力或气浮法降低污泥含水量,使污泥稠化(de)过程.15、污泥淘洗 elutriation of sludge改善污泥脱水能(de)一种污泥预处理方法.用清水或废水淘洗污泥,降低水化污泥碱度,节省污泥处理投药量,提高污滤脱水效率.16、污泥脱水 sludge dewatering对浓缩污泥进一步去除一部分含水量(de)过程,一般指机械脱水.17、污泥真空过滤 sludge vacuum filtration利用真空使过滤介质一侧减压,介质(de)污泥脱水方法.18、污泥压滤 sludge pressure filtration采用正压过滤,使污泥水强制滤过介质(de)污泥脱水方法.19、污泥干化 sludge drying通过渗滤或蒸发等作用,从污泥中去除大部分含水量(de)过程,一般指采用污泥干化场(床)等自然蒸发设施.20、污泥焚烧 sludge incineration污泥处理(de)一种工艺.它利用焚烧炉将脱水污泥加温干燥,再用高温氧化污泥中(de)有机物,使污泥成为少量灰烬.4> 排水工程中物理量(de)术语及其涵度应符合下列规定:1、生化需氧量 biochmical oxygen demand水样在一定条件下,于一定期间内(一般采用5日、20℃)进行需氧化所消耗(de)溶解氧量.英文简称BOD.2、化学需氧量 chemical oxygen demand水样中可氧化物从氧化剂重铬酸钾中所吸收(de)氧量.英文简称COD.3、耗氧量 oxygen consumption水样中氧化物从氧化剂高锰酸钾所吸收(de)氧量.英文简称OC或CODMn .4、悬浮固体 suspended solid水中呈悬浮状态(de)固体,一般指用滤纸过滤水样,将滤后截留物在105℃温度中干燥恒重后(de)固体重量.英文简称SS.2.0.1生活用水 domestic water人类日常生活所需用(de)水.2.0.2浇洒道路用水 street flushing demand, road watering对城镇道路进行保养、清洗、降温和消尘等所需用(de)水.2.0.3绿化用水 green beit sprinkling, green plot sprinkling对市政绿地等所需用(de)水.2.0.4未预见用水量 unforeseen demand给水系统设计中,对难于预测(de)各项因素而准备(de)水量.2.0.5自用水量 water consumption in water works水厂内部生产工艺过程和为其它用途所需用(de)水量.2.0.6管网漏失(de)水量 Leakage水在输配过程中漏失(de)水量.2.0.7平均日供水量 average daily output一年(de)总供水量除以全年供水天数所得(de)数值.2.0.8最高日供水量 maximum daily output一年中最大一日(de)供水量.2.0.9日变化系数 daily variation coefficient最高日供水量与平均日供水量(de)比值.时变化系数 hourly variation coefficient最高日最高时供水量与该日平均时供水量(de)比值.最小服务水头 minimum service head配水管网在用户接管点处应维持(de)最小水头.取水构筑物 intake structure取集原水而设置(de)各种构筑物(de)总称避咸蓄淡水库取水构筑物 coastal reservoir为避免咸潮影响而设置(de)储蓄淡水水库中取水(de)构筑物.岸边式取水构筑物 riverside intake structure直接从江河岸边取水(de)构筑物,一般由进水间、泵房两部分组成.河床式取水构筑物 riverbed intake structure利用进水管将取水头部伸入江河中取水(de)构筑物,一般由取水头部、进水管(自流管或虹吸管)、进水间(或集水井)和泵房组成.取水头部 intake head 为河床式取水构筑物(de)进水部分.进水间 intake chamber连接进水(进水管或进水孔)与吸水、内设格栅或格网(de)构筑物.格网 screen一种网状(de)用以拦截水中较小尺寸(de)漂浮物、水生物或其他污染物(de)拦污设备.自动清污机 autocleaner一种栅状(de)可以连续自动清除被拦截水中各种形状杂物(de)清污设备.消防用水 fire demand扑灭火灾所需用(de)水.最大时用水量 maximum hourly water consumption最高日用水时间内,最大1小时(de)用水量.水头损失 head loss水通过管(渠)、设备、构筑物等引起(de)能耗.配水管网 distribution system, pipe system将水送到分配管网以至用户(de)管系.环状管网 pipe network配水管网(de)一种布置形式,管道纵横相互接通,形成环状.枝状管网 branch system配水管网(de)一种布置形式,干管和支管分明,形成树枝状.支墩 buttress, anchorage为防止管内水压引起(de)水管配件接头移位而造成漏水,需至水管干管适当部位砌筑(de)礅座.埋设深度(覆土深度) buried depth埋地管道管顶至地表面(de)垂直距离.输水管(渠) delivery pipe一般指从水源到城市水厂(原水输水管道)或从城市水厂到较远管网(de)管道(净水输水管道)压力管道 pressure conduit (pipeline)指输送液体、气体等介质是在压力(de)状态下运行(de)管道.管道防腐 corrosion preventive of pipes为减缓或防止钢管、铸铁管在内外介质(de)化学、电化学作用下或由于微生物(de)代谢活动而被侵蚀和变质措施.钢管 steel pipe由铁和碳等元素炼制(de)圆管统称.球墨铸铁管 ductile cast iron pipe (DIP)指由球化和孕育处理优质铁水(其中石墨组织已由片变成球状)采用离心浇注制作(de)圆管.预应力砼管 prestressed concrete pipe (PCP)在制管过程中用张拉高强钢丝(de)工艺使管体砼在环向和纵向均处于受压状态(de)圆管.预应力钢筒砼管 prestressed concrete cylinder pipe (PCCP)指在带钢筒(de)砼管芯上缠绕环向预应力钢丝,使该复合管芯在环向处于受压状态下并喷涂水泥砂浆保护面层而制成(de)圆管.聚乙烯塑料管 Polyethylene pipe(PE)以聚乙烯树脂单体为主,用挤出成型法制成(de)热塑性塑料圆管.硬聚氯乙烯塑料管 unplasticised polyvinyl chloride pipe(UPVC)以聚氯乙烯树脂单体为主,用挤出胀型法制成(de)热塑料塑料管.玻璃纤维增强热固性塑料管 glass fibre reinforced plastics pipe(GRP)指由已固化(de)热固性树脂包围或环绕玻璃纤维增强材料(de)复合结构圆管,俗称玻璃钢管.水锤压力 Surge pressure管道系统由于水流程度突然变化,而产生(de)瞬时压力.混凝剂 coagulant为使胶体失去稳定性和脱稳胶体相互聚集所投加(de)药剂统称.助凝剂 coagulant aid在水(de)沉淀、澄清过程中,为改善絮凝效果,另投加(de)辅助药剂.术语(2)原水 raw water由水源地取来(de)原料水.沉淀 sedimentation利用重力沉降作用去除水中杂物(de)过程.石灰乳 milk of lime石灰浆用水稀释后(de)混浊液.药剂固定储备量 standby reserve为考虑非正常原因导致药剂供应中断,而在药剂仓库内设置(de)在一般情况下不准动用(de)储备量,简称药剂固定储备量.药剂周转储备量 current reserve考虑药剂消耗与供应时间之间(de)差异所需(de)储备量,简称药剂周转储备量. 饮用水除氟 drinking water defluorinate通过物理化学作用,将饮用水中过量(de)氟除去.混凝沉淀法 coagulation sedimentation采用在水中投加具有凝聚能力或与氟化物产生沉淀(de)物质,形成大量胶体物质或沉淀,氟化物也随之凝聚或沉淀,后再通过过滤作用将氟离子从水中除去(de)过程.活性氧化铝法 activated aluminum process采用活性氧化铝滤料吸附、交换氟离子将其从水中除去(de)过程.再生 regeneration离子交换剂或滤料失效后,用再生剂使其恢复到原型态交换能力(de)工艺过程. 反冲洗 backwash当滤料层截污到一定程度时,用较强(de)水流自下而上对滤料进行冲洗.冲洗强度 intensity of back washing冲洗滤池时,单位滤池面积在单位时间内通过(de)水量.其计量单位通常以L/(m2s).反冲洗滤层膨胀率 backwash bed expansion反冲洗时水流通过滤料层时,滤料层发生膨胀(de)程度,以滤料层厚度(de)百分比计.吸附容量 sorption capacity滤料或离子交换剂吸附某种物质或离子(de)能力.电渗析法 electrodialysis在外加直流电场(de)作用下,利用阴离子交换膜和阳离子交换膜(de)选择透过性,使一部分氟离子等透过离子交换膜而迁移到另一部分水中,从而使一部分水淡化而另一部分水浓缩.英文简称ED.电渗析器 electrodialyzer利用离子交换膜和直流电场,使水中电解质(de)离子产生选择性迁移,从而达到使水淡化(de)装置.脱盐率 rate of desalination在采用化学或离子交换法去除水中阴、阳离子过程中,它们去除(de)量占原量(de)百分数,是表明设备除盐能力(de)数值.脱氟率 rate of defluorinate除氟过程中氟离子去除(de)量占原量(de)百分数,是表明设备除氟能力(de)数值.倒极器 transition electrode unit在电渗析工艺中用于倒换电极极性(de)装置.浓水 concentrate在电渗析过程中,在相邻(de)阳离子交换膜与阴离子交换膜之间形成一隔室.在通直流电(de)情况下,水中(de)阳离子和阴离子各自会作定向迁移,阳离子向负极迁移,阴离子向正极迁移.由于离子交换膜(de)选择透过性,在这室内阴、阳离子不断进入而使离子数量增多,水溶液浓度增大,这隔室内(de)水称为浓水.电渗析过程中,阴、阳离子不断迁移出使离子数量减少,浓度降低(de)水称为淡水. 在电渗析过程中,在电极和膜之间隔室内(de)水称为极水.采用酸去除离子交换膜设备上(de)不溶于水(de)沉积物(de)过程.在膜(de)原水一侧施加比溶液渗透压高(de)外界压力,原水透过半透膜时,只允许水透过其他物质不能透过而被截留在膜表面(de)过程.英文简称RO.按一定技术要求将反渗透膜组装在一起(de)组合构件.水从过滤精度一般小于5μm(de)微滤滤芯(de)外侧进入内部,微量悬浮物或细小杂质颗粒物被挡在滤芯外部(de)过程.当反渗透膜被钙沉积物或氧化物或胶体或有机物沉积或细菌等污染到一定程度,去除这些污染物(de)过程.综合表示进料中悬浮物和胶体物质(de)浓度和过滤特性,是表征进料对微孔滤膜堵塞程度(de)一个指标.饮用水处理中完成消毒过程(de)全系统.将液氯气化后通过加氯机投入水中接触完成氧化和消毒目(de)(de)方法.氯和氨按一定比例和顺序投入水中生成一氯胺和二氯胺接触完成氧化和消毒目(de)(de)方法.将现场发生(de)二氧化氯通过投加装置投入水中接触完成氧化和消毒目(de)(de)方法.将臭氧通过投加装置投入水中接触完成氧化和消毒目(de)(de)方法.利用波长紫外线光在水中照射一定时间完成消毒目(de)(de)方法.液氯消毒系统中完成液氯气化向加氯机提供氯气(de)部分.液氯(氨)钢瓶库房发生氯(氨)泄漏事故时,将气化(de)氯(氨)气体吸收中和后按达标要求排放(de)全套装置.饮用水氯化消毒副产物,包括氯仿、溴仿、二溴一氯甲烷和一溴二氯甲烷四种化合物.。
中英文对照环保术语解析(排水)室外排水术语排水工程中排水制度和管渠附属构筑物的术语及其涵义发布人:水世界-中国城镇水网发布时间:2006-10-311.合流水量 ComBinedfloW在一个地区内收集和输送废水的方式。
它有合流制和分流制两种基本方式。
2.合流制 ComBinedsysTem用同一种管渠收集和输送废水的排水方式。
3.分流制 separaTesysTem用不同管渠分别收集和输送各种污水、雨水和生产废水的排水方式。
4.检查井 manhole排水管渠上连接其他管渠以及供养护工人检查、清通和出入管渠的构筑物。
5.跌水井 dropmanhole上下游管底跌差较大的检查井。
6.事故排出口 emerGenCyouTleT在排水系统发生故障时,把废水临时排放到天然水体或其它地点去的设施。
7.暴雨溢流井(截留井) sTor mov erf loW Wel l,inT erC epT inG W ell合流制排水系统中,用来截留、控制合流水量的构筑物。
8.潮门 TideGaTe在排水管出水口处设置的单向启闭的阀,以防止潮水倒灌。
排水工程中水和水处理的术语及其涵义发布人:水世界-中国城镇水网发布时间:2006-10-311.原污泥 raWsludGe居民在日常生活中排出的废水。
2.工业废水 indusTrialWasTeWaTer生产过程中排出的水。
它包括生产废水和生产污水。
3.生产污水 polluTedindusTrialWasTevaTer被污染的工业废水。
还包括水温过高,排放后造成热污染的工业废水。
4.生产废水 non polluTedindusTrialWasTeWaTer未受污染或受轻微污染以及水温稍有升高的工业废水。
5.城市污水 muniCipalseWaGe,muniCipalWasTeWaTer排入城镇污水系统的污水的统称。
在合流制排水系统中,还包括生产废水和截留的雨水。
6.旱流污水 dryWeaTherfloW合流制排水系统在晴天时输送的污水。
Biomass Energy Conversionis a process of converting organic materials, such as agricultural residues, wood waste, and sewage sludge, into energy. This renewable energy source is derived from living or recently living organisms and can be used to generate electricity, heat, and fuels. Biomass conversion technologies play a crucial role in reducing greenhouse gas emissions and dependence on fossil fuels.There are various methods of biomass energy conversion, including combustion, gasification, pyrolysis, anaerobic digestion, and fermentation. Combustion is the most common method, in which biomass is burned to produce heat that can be used to generate electricity or heat buildings. Gasification involves heating biomass at high temperatures in the absence of oxygen to produce synthesis gas, which can be used to generate electricity or produce liquid fuels. Pyrolysis is a thermal decomposition process that breaks down biomass into bio-oil, biochar, and syngas. Anaerobic digestion utilizes bacteria to decompose biomass in the absence of oxygen, producing biogas that can be used as a renewable fuel. Fermentation is a biochemical process that converts biomass into biofuels, such as ethanol and biogasoline.offers several environmental and economic benefits. It reduces greenhouse gas emissions by providing a carbon-neutral energy source, as the carbon dioxide released during biomass combustion is offset by the carbon dioxide absorbed during plant growth. Biomass energy also helps reduce reliance on imported fossil fuels, enhancing energy security and creating local jobs in the biomass supply chain. In addition, biomass conversion technologies can help manage waste materials and agricultural residues, reducing landfill waste and minimizing environmental pollution.Despite its advantages, biomass energy conversion faces some challenges that need to be addressed. One of the key challenges is the variability and seasonality of biomass feedstocks, which may affect the reliability and efficiency of biomass energy production. The costs of biomass conversion technologies can also be high, requiring significant upfront investments in infrastructure and equipment. In addition, the sustainability ofbiomass feedstocks is important to ensure that land use practices do not cause deforestation or competition with food production.To overcome these challenges, research and development efforts are underway to improve the efficiency and cost-effectiveness of biomass energy conversion technologies. Innovation in biomass pretreatment, conversion processes, and integrated biorefinery systems can help optimize the use of biomass feedstocks and increase energy output. Incentives and policies that support the development of biomass energy projects, such as feed-in tariffs and renewable energy mandates, can also help accelerate the transition to a more sustainable energy future.In conclusion, biomass energy conversion is a promising renewable energy solution that can help reduce greenhouse gas emissions, enhance energy security, and promote economic development. By leveraging the diverse range of biomass conversion technologies and addressing key challenges, we can unlock the full potential of biomass energy and contribute to a more sustainable and resilient energy system.。
Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed culturesS.Suneethi a ,*,Kurian Joseph ba Centre for Environmental Studies,Anna University,Chennai 600025,IndiabEnvironmental Engineering,Centre for Environmental Studies,Anna University,Chennai 600025,Indiaa r t i c l e i n f o Article history:Received 27March 2010Received in revised form 30July 2010Accepted 31July 2010Available online xxxx Keywords:ANAMMOX EnrichmentNitrogen removal Aerobic seed culture Anaerobic seed culturea b s t r a c tDischarge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication,and contribute to aquatic toxicity.Anaerobic ammonium oxidation process (ANAMMOX)is a novel bio-logical nitrogen removal alternative to nitrification–denitrification,that removes ammonia using nitrite as the electron acceptor.The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper.ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia,nitrite and nitrate along with forma-tion of hydrazine and hydroxylamine.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionAmmoniacal nitrogen rich wastewaters arise from municipal solid waste landfills (500–3000mg/L),starch production (800–1100mg/L),domestic sewage (100mg/L),swine wastewater (115–175mg/L),sludge liquor (100–2000mg/L),yeast effluent (180–450mg/L),fertilizer manufacture,and agricultural activities (500–1000mg/L)(Berge et al.,2005;Schmidt et al.,2003).Discharge of nitrogen from wastewater into surface water bodies results in increased algal biomass (eutrophication),emissions of nitrous oxide to atmosphere during oxidation of ammonia,and toxicity to aquatic invertebrate and vertebrate species (Philips et al.,2002).For example,the tolerance limit for Salomonid fish is 0.5mg NH 3-N/L,and LC 50(96h)for Tiger prawn and Australian Crayfish is 14and 26mg NO 2À/L,respectively (Paredes et al.,2007;Philips et al.,2002).Nitrite nitrogen let out into water bodies with-out treatment may cause methaemoglobinemia and gastric cancer among human populations (Philips et al.,2002;Guo and Qi,2006).Removal of nitrogen from wastewaters by biological methods involving autotrophic nitrification and heterotrophic denitrifica-tion requires separate oxic and anoxic units for treatment and depends on external addition of carbon source (methanol –3kg/kgN)(Jin et al.,2008).It results in high production of sludge (1kgVSS/kgN)with substantial requirement of resources in termsof energy (2.8kWh/kgN)and space (Ganigue et al.,2008).Pro-cesses such as partial nitrification,ANAMMOX (ANaerobic AMMo-nium OXidation),SHARON (single reactor system for high activity ammonia removal over nitrite),CANON (complete autotrophic nitrogen removal over nitrite)and OLAND (oxygen limited autotrophic nitrification and denitrification)have the potential to overcome the shortcomings of conventional treatments (Ganigue et al.,2008).These processes operate in a single reactor unit,with reduced aeration (1kWh/kgN)and organic load requirements,with 90%savings in operational costs (Wang et al.,2009).Development of ANAMMOX bacteria is needed,when scaling up larger and complicated reactor configurations like membrane bio-reactor (MBR)to achieve better acclimatization favoring high nitrogen removal performance,especially under ammonia shock loads (Wang et al.,2009).Enrichment of ANAMMOX bacteria had been carried out by monitoring chemical nitrogen transformations (Yamamoto et al.,2008)and/or by studying the microbial eco-physiology through molecular biology techniques (Cho et al.,2010;Wang et al.,2009).This investigation describes the success-ful enrichment in batch cultures of ANAMMOX bacteria from seed cultures of anaerobic and aerobic origin by observing the chemical changes in nitrogen profile.ANAMMOX (ANaerobic AMMonium OXidation)is an innovative technological advancement in removal of ammonia nitrogen from wastewater,carried out by microbial oxidation of ammonia with nitrite occurring under anoxic conditions (Wang et al.,2009;Schmidt et al.,2003;Shivaraman and Shivaraman,2003).ANAM-MOX process combines ammonia and nitrite directly to dinitrogen0960-8524/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.biortech.2010.07.121*Corresponding author.Tel.:+914422301283;fax:+914422354717/22201480.E-mail addresses:sundar.suneethi@ (S.Suneethi),kuttiani@ (K.Joseph).gas(Shivaraman and Shivaraman,2003).Start up of ANAMMOX process is considered difficult owing to the slow growth rate(dou-bling time–11days)of ANAMMOX bacteria(Chamchoi and Nitis-oravut,2007).The ANAMMOX reaction is carried out by autotrophic Plancto-mycetes,such as‘Candidatus Brocadia anammoxidans’and‘Candid-atus Kuenenia Stuttgartiensis’,which makes use of ammonium as the electron donor(energy source)and nitrite as the electron acceptor as indicated in Eq.(1).NHþ4þ1:32NOÀ2þ0:066HCOÀ3þ0:13Hþ!1:02N2þ0:26NOÀ3þ0:066CH2O0:5N0:15þ2:03H2Oð1ÞIn the ANAMMOX process N2gas is the primary reaction prod-uct along with a small amount of nitrate.They utilize dissolvedcarbon dioxide or bicarbonate for the cell biosynthesis resultingin hydrazine and hydroxylamine as intermediary metabolites.Presence of hydrazine and hydroxylamine in traces adds proof ofANAMMOX process(Shivaraman and Shivaraman,2003).ANAM-MOX process is generally favorable in environments with longsludge retention time(30–50days),stable operation,presence ofnitrite(<70mg/L),and the absence of electron donors(such asammonium ion)that would cause nitrite reduction via denitrifica-tion are absent(Berge et al.,2005).Optimum temperature of32–35°C and neutral pH works well for ANAMMOX activity.TheTable1Configurations of ANAMMOX enrichment units.S.no.Source of seedculture ReactorcapacityReactorlabelsFood/seed ratio(%)Seed Amm-N concentration(mg/L)SamplingfrequencyStudy period1Anaerobic 2.6L R160/406750Once in10days200days(tilldate) 2R260/4071003R360/4025,0004A160/40700070days(till date) 5A260/4020156100mL B160/402900Once in a day30days 7B240/6016808B360/4011209B440/60112010B550/50196011Aerobic5L C150/50199Once in10days70days(till date) 12C250/50enrichment units(A)2.6and2S.Suneethi,K.Joseph/Bioresource Technology xxx(2010)xxx–xxxprerequisite of ANAMMOX process is the preceding partial nitrifi-cation step,which converts ammonium to nitrite.To obtain high removal efficiency,ammonium and nitrite need to be fed to the reactor in the ratio of 1:1.3(Trigo et al.,2006).The desired ammonium/nitrite mixture is obtained because after 50%of the ammonium is oxidized,the decrease in pH to 6.7prevents the oxi-dation of the remnant ammonium.Sludge retention is important owing to the slow growth rates of the bacteria (0.003h À1;0.072/days at 32°C)and low biomass yield (0.13g dry weight/g Amm-N oxidized)(Chamchoi and Nitisoravut,2007;Trigo et al.,2006;Third et al.,2005).2.Methods2.1.Experimental setupEnrichment of ANAMMOX bacteria from the anaerobic and aer-obic seeds were carried out in batch culture.Biosludge from the anaerobic digester of a vegetable waste biomethanation plant and from activated sludge process were used as seed cultures.Twelve ANAMMOX enrichment units (B1,B2,B3,B4,B5,R1,R2,R3,A1,A2,C1,C2)filled with different ratios of seed and enrichment med-ium as food,along with NH 4Cl/NaNO 2as supplement,as presented in Table 1,were prepared using 100mL,2.6and 5L capacity jars sealed with rubber cork.The experimental setup used for R1–R3,A1–A2,C1–C2is presented in Fig.1(A)and that of B1–B5is pre-sented in Fig.1(B).Varying dilutions of seed culture were adopted based on its initial characteristics.The composition of the enrich-ment medium used was as specifically described by van de Graaf et al.(1996).It contains (mg/L):KH 2PO 425,CaCl 2ÁH 2O 300,FeSO 412,EDTA 7,NaHCO 31050,MgCl 2165,and trace metals 1.25mL/L.The trace element solution was (mg/L):EDTA 15,000,ZnSO 4Á7H 2O 430,CoCl 2Á6H 2O 240,MnCl 2Á4H 2O 990,CuSO 4Á5H 20250,NiCl 2Á2H 2O 190,NaSeO 4Á10H 2O 320,H 3BO 414,and NaMO 4Á2H 2O 220.2.2.Strategy of operationThe batch cultures were maintained at neutral pH using 1M HCl/NaOH solution.Mixing was done manually once a day.Light interference was avoided by covering the enrichment units in dark cloth and aluminum foil.Nitrogen compounds such as ammonia,nitrite and nitrate were analyzed every 10days and whenever ammonium or nitrite was found consumed,the Ammonia and ni-trite ratio was maintained at 1:1by external supplements of NH 4Cl/NaNO 2along with the enrichment medium.During the start up period NaNO 3(10ppm)was added along with the medium to favor the elimination of denitrifiers and to prevent the generation of H 2S by sulfur reducing bacteria (Wang et al.,2009).Periodical replenishment of the medium was performed to avoid issues re-lated to lack of nutrients.Batch cultures R1–R3,A1–A2,C1–C2sys-tems were operated for 200days in fed batch mode.Anoxic condition was maintained by suffocation (i.e.cutting the supply of oxygen)method and gas generation was monitored by water displacement method.The ANAMMOX enrichment units B1–B5of 100mL capacity were operated with regular medium addition every day,but with no supplement.So sampling frequency was reduced to once a day and nitrogen compound analysis such as ammonia,nitrite and nitrate were performed.These systems were operated in fed batch mode for a period of 30days.2.3.Sampling and analysisThe primary characterization of the seed culture was carried out after double filtration using muslin cloth,followed by centrifuga-tion at 5000rpm for 15min 100mL samples were collected every 10days,from the sampling port after complete shaking from R1–R3,A1–A2,and C1–C2.Likewise 1mL samples were collected every day from B1–B5using syringe from the common sampling/medium addition port.The samples were filtered through 0.45l filter paper (Whatman).Nitrogen transformations were studied from the anal-yses of NO À2and NO À3performed by spectrophotometric method and Amm-N by Buchi distillation apparatus.ANAMMOX biomass development was determined from the metabolites namely hydra-zine and hydroxylamine (Watt and Chrisp,1952;Frear and Burrell,1955)and indirectly by the TSS,MLVSS and MLSS estimations,which was carried out as per standard methods (APHA,1998).Table 2Initial characteristics of seed cultures.S.No.ParametersValuesAnaerobic seedAerobic seed 1pH7.37.02Total suspended solids 34,27013,8503Nitrate 60544Nitrite254BDL 5Ammoniacal nitrogen 25,0402806COD 36,40013607MLSS 34,29014,5008MLVSS 18,60090009Hydrazine2BDL 10Hydroxylamine244All values are expressed as mg/L except pH.Table 3Performance of ANAMMOX enrichment units from anaerobic seed.S.no.Enrichment units Time (days)Nitrate (mg/L)Nitrite (mg/L)Ammmoniacal nitrogen (mg/L)1A1111281472674521024153682146532041432599100043088268219154045352316565093107143760595319887035131509A21168958201510101170240016601120632914579521230822685590134065460251145020BDL 81156010BDL 16516702BDL189Table 4Performance of ANAMMOX enrichment units from aerobic seed.S.no.Enrichment units Time (days)Nitrate (mg/L)Nitrite (mg/L)Ammmoniacal nitrogen (mg/L)1C11448711992107226711573209568961004301300652135407564524565037073967601485219087049132699C212043200101065631415911204579638012301154784813407535079145040125111156028851541670616200S.Suneethi,K.Joseph /Bioresource Technology xxx (2010)xxx–xxx33.Results and discussion 3.1.Characteristics of seed cultureThe initial characteristics of seed culture used from both anaer-obic and aerobic systems are presented in Table 2.The anaerobicseed used was highly thick,viscous and dark green in color,whereas the aerobic seed was grayish with significant settleable biomass.pH was in the range of 7–anic load was in the range of 30,400–42,400mg/L (as COD)for anaerobic seed and 1290–1434mg/L for aerobic seed.Ammoniacal nitrogen was 25times higher than nitrite concentration in anaerobic seed,while nitrite4S.Suneethi,K.Joseph /Bioresource Technology xxx (2010)xxx–xxxlevels were very low in aerobic seed.The anaerobic seed culture used had MLSS and MLVSS of about 34,000and 18,000mg/L respectively,while that of aerobic seed had MLSS and MLVSS of 14,500and 9000mg/L.Hydrazine and hydroxylamine were also detected in the seed cultures.The type of biomass inside the ANAMMOX enrichment unit was a suspension of free cells during the trial period.3.2.ANAMMOX enrichment performance using both anaerobic and aerobic seedsThe enrichment units of A1–A2and C1–C2were performed to study if the source of seed culture plays a role in nitrogen removalperformance.As earlier indicated in Table 1,the seeds were taken from anaerobic and aerobic origins.The levels of ammonia varied from 6700–2000mg/L in A1–A2,while in C1–C2it was around 200mg/L.Over the duration of study the nitrite levels reduced to less than 50mg/L,whereas significant levels of nitrate were main-tained throughout even when nitrite levels went insignificant.The changes in nitrogen species observed are presented in Tables 3and 4.It is inferred that the changes in nitrogen levels in the form of ammonia,nitrite and nitrate varies depending upon the source of seed.In this case,anaerobic seed achieved the highest ammonium removal of 98%(A1)and 90%(A2)on 70th day,when compared to the aerobic seed,which was 94%(C1)and 76%(C2)by 30th day itself.This rapid efficiency of the aerobic seed did not sustain throughout,S.Suneethi,K.Joseph /Bioresource Technology xxx (2010)xxx–xxx 5leading to instability of the system.The levels of hydrazine and hydroxylamine during the study period in A1–A2and C1–C2were around 0.01–0.002mg/L and 0.08–4.64mg/L respectively,confirm-ing the ANAMMOX activity in the system.Hence with an improved sustained stabilization to higher nitrogen loads,further studies on anaerobic seed in different scales of reactor were adopted.3.3.ANAMMOX enrichment from anaerobic seedNitrogen transformations in three configurations of ANAMMOX enrichment units using anaerobic seed vis-à-vis R1,R2and R3at the end of 200days trial,are depicted in Fig.2.For better under-standing,the experimental period is divided into three stages:Stage 1(day 1–70),Stage 2(day 71–140)and Stage 3(day 140–200).In the first 70days (Stage 1)denitrifying activity was the pre-ferred process in R1and R2,in presence of nitrite and lack of oxy-gen.No ANAMMOX activity was noticed as evident from high levels of nitrite and ammonia concentration in R1(6750and 11,480mg/L)and in R2(11,379and 15,960mg/L),which is indica-tive of denitrification.This could be mainly attributed to formation of ammonium ion,at low pH (3–5).Similar trends were also re-ported by Dapena-Mora et al.(2004)and Third et al.(2005).High level of ammonia (87,500mg/L)with no trace of nitrite was ob-served in R3.Breakdown of organic nitrogen in biomass by cell ly-sis would have resulted in the accumulation of ammonia (Wang et al.,2009).The COD of 3048mg/L was used as carbon source and electron donor by denitrifiers,with nitrite in influent as elec-tron acceptor.Since the denitrifiers (heterotrophs)grow faster than ANAMMOX (autotrophs),denitrifying bacteria might predom-inate in the 1st stage.ANAMMOX activity was initiated in Stage 2,this period,with both ammonia and nitrite getting removed simultaneously.The ammonia levels decreased to 1680mg/L in R3.The ammonia con-centration was 560and 1960mg/L in R1and R2,respectively.It was also noticed that nitrite concentrations soared (R1–89,057mg/L;R2–61,800mg/L;R3–14,429mg/L)showing decreasing activity of denitrifying bacteria.Thus it is conjectured that ANAMMOX bacteria may have carried out all ammonia re-moval,while the nitrite presence could be due to the activity of aerobic ammonia oxidizers.The possibility of nitrite oxidizing bac-teria (NOB)and ammonia oxidizing bacteria (AOB)activities are also not omitted (Third et al.,2005).The ANAMMOX process stabilized in Stage 3.At the end of 200days trial,reduction and stabilization of ammonia and nitrite with rise in nitrate is a definitive proof of ANAMMOX activity.The utilization of ammonia could be due to the activities of AOBs living on the oxygen leakage into the ANAMMOX enrichment unit.In R1,R2and R3nitrate levels were 1308,1585and 62mg/L respectively,which could be attributed to ANAMMOX growth and propagation.However,a small part of denitrifiers surviving might reduce nitrate generated by ANAMMOX metabolism (Wang et al.,2009).Presence of hydrazine and hydroxylamine in traces adds proof of ANAMMOX process along with indirect support from TSS estimations.The mean levels of hydrazine in R1,R2and R3over the trial period were 0.004,0.010and 0.008mg/L,respec-tively.While the hydroxylamine levels were 1.56, 2.05and 4.59mg/L,respectively.At the end of 200days trial,the color of the biomass suspension changed from dark green to brownish green,indicating a transition of microbial populations,since the color characteristic of ANAMMOX populations is reddish brown (Trigo et al.,2006).3.3.1.ANAMMOX enrichment performance in smaller biological systemsThe performance of the 100mL ANAMMOX enrichment units can be used to comprehend better the changes occurring in thebiological system in a smaller scale.The changes in ammonia,ni-trate and nitrite during the 30days of study period is presented in the Fig.3.It is observed that the levels of ammonia reached its high be-tween 13and 19days in B2–B4.Highest ammonia concentration of 3920mg/L was achieved in B1at day 5,while the level of nitrate was 9988mg/L at day 17.Nitrite levels were too low throughout the study period in B1,likewise in B4and B5till day 10and 12,respectively.An unexpected low level of ammonia in B3after day 14was noticed.Highest level of nitrite in B2was achieved at day 18(about 7200mg/L)while that of ammonia and nitrate was 4760and 1240mg/L at day 5and 3,respectively.The lowest level of nitrate was recorded for B1at day 14with 4mg/L followed by B4at day 30with 20mg/L.The rapid changes in ammonia,nitrate and nitrite got stabilized after day 18,except in B3where only ammonia levels were stabi-lized,while the nitrate and nitrite started getting reduced only from day 20.Since there was no nitrogen supplement given except fresh medium everyday,the changes in nitrogen profile can only be attributed to microbial activity (Wang et al.,2009).The type of microbial populations involved could be a mixed group of ANAM-MOX,AOBs,NOBs and denitrifiers.The molecular ecology and diversity of microbes involved (data not included)are yet to be explored.4.ConclusionsThis study proved that anoxic conditions with a suitable ratio (1:1)of NH 4Cl/NaNO 2created an environmental stress to success-fully enrich ANAMMOX populations from anaerobic and aerobic seeds.Anaerobic seed showed better stabilization and ammonium removal efficiency than aerobic seed.During stabilization,denitri-fiers were initially dominant but gradually ANAMMOX populations were established by microbial community succession process.Small scale reactors achieved stabilization of ANAMMOX process in 18–20days,whereas large scale reactors took 130–140days.The study should be extended by including gas composition anal-ysis,molecular ecological studies for ANAMMOX activity confirma-tion and continuous operation to reduce the long start up time.AcknowledgementsThe authors thank the support given by the University Grants Commission Research Fellowship for meritorious scholars in sci-ences to carry out this study.ReferencesAPHA,1998.Standard Methods for the Examination of Water and Wastewater,20thed.United Book Press,USA.Berge,N.D.,Reinhart,D.R.,Townsend,T.G.,2005.The fate of nitrogen in bioreactorlandfills.Crit.Rev.Environ.Sci.Technol.35,365–399.Chamchoi,N.,Nitisoravut,S.,2007.ANAMMOX enrichment from differentconventional sludges.Chemosphere 66,2225–2232.Cho,S.,Takahashi,Y.,Fujii,N.,Yamada,Y.,Satoh,H.,Okabe,S.,2010.Nitrogenremoval performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor.Chemosphere 78,1129–1135.Dapena-Mora,A.,Campos,J.L.,Mosquerra-Corral,A.,Jetten,M.S.M.,Mendez,R.,2004.Stability of the ANAMMOX process in a gas-lift reactor and a SBR.J.Biotechnol.110,159–170.Frear, D.S.,Burrell,R.C.,1955.Spectrophotometric method for determininghydroxylamine reductase activity in higher plants.Anal.Chem.27(10),1664–1665.Ganigue,R.,Lopez,H.,Ruscalleda,M.,Balaguer,M.D.,Colprim,J.,2008.Operationalstrategy for a partial nitratation –sequence batch reactor treating urban landfill leachate to achieve a stable influent for an ANAMMOX reactor.J.Chem.Technol.Biotechnol.83,365–371.Guo,Z.H.,Qi,Z.S.,2006.Treating leachate mixture with anaerobic ammoniumoxidation technology.J.Central South Univ.Technol.6,663–667.6S.Suneethi,K.Joseph /Bioresource Technology xxx (2010)xxx–xxxJin,R.,Hu, B.L.,Zheng,P.,Qaisar,M.,Hu, A.H.,Islam, E.,2008.Quantitativecomparison of stability of ANAMMOX process in different reactor configurations.Bioresour.Technol.99,1603–1609.Paredes,D.,Kuschk,P.,Mbwette,T.S.A.,Stange,F.,Muller,R.A.,Koser,H.,2007.Newaspects of microbial nitrogen transformations in the context of wastewater treatment –a review.Eng.Life Sci.7(1),13–25.Philips,S.,Laanbroek,H.J.,Verstraete,W.,2002.Origin,causes and effects ofincreased nitrite concentrations in aquatic environments.Rev.Environ.Sci.Biotechnol.1,115–141.Schmidt,I.,Sliekers,O.,Schmid,M.,Bock,E.,Fuerst,J.,Kuenen,J.G.,Jetten,M.S.M.,Strous,M.,2003.New concepts of microbial treatment processes for the nitrogen removal in wastewater.FEMS Microbiol.Rev.27,481–492.Shivaraman,N.,Shivaraman,G.,2003.ANAMMOX –a novel microbial process forammonium removal.Curr.Sci.84(12),1507–1508.Third,K.A.,Paxman,J.,Schmid,M.,Strous,M.,Jetten,M.S.M.,Cord-Ruwisch,R.,2005.Enrichment of ANAMMOX from activated sludge and its application in the CANON process.Microb.Ecol.459,236–244.Trigo,C.,Campos,J.L.,Garridio,J.M.,Mendez,R.,2006.Start-up of the ANAMMOXprocess in a membrane bioreactor.J.Biotechnol.126,475–487.Van de Graaf,A.A.,Bruijn,P.D.,Robertson,L.A.,Jetten,M.S.M.,Kuenen,J.G.,1996.Autotrophic growth of anaerobic ammonium oxidizing microorganisms in a fluidized bed reactor.Microbiology 142,2187–2196.Watt,G.W.,Chrisp,J.D.,1952.A spectrophotometric method for the determinationof hydrazine.Anal.Chem.24(12),2006–2008.Wang,T.,Zhang,H.,Yang,F.,Liu,S.,Fu,Z.,Chen,H.,2009.Start up of the ANAMMOXprocess from the conventional activated sludge in a membrane bioreactor.Bioresour.Technol.100,2501–2506.Yamamoto,T.,Takaki,K.,Koyama,T.,Furukawa,K.,2008.Long-term stability ofpartial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox.Bioresour.Technol.99,6419–6425.S.Suneethi,K.Joseph /Bioresource Technology xxx (2010)xxx–xxx7。
沼液灌溉对作物生长土壤质量的影响李萍;蒋滔;陈云跃;龙翰威;韦秀丽;高立洪【摘要】沼液作为有机固体废弃物厌氧发酵的残留物,富含能被作物快速吸收利用的N、P、K以及多种氨基酸、维生素、微量元素和其他有益的生物活性等物质.合理的沼液施灌不但可以有效促进农作物产量的增加、改善蔬菜品质,而且可以提高土壤pH、防止酸化、减少盐害、提高肥效.虽然沼液的长期施灌会不同程度地造成抗生素及部分重金属污染物的积累,但其危害程度也远远低于单一化肥的施用.然而,我国的沼液安全利用目前还处于初级阶段.社会还没形成对沼液的安全处理和安全施用的意识.建设适合于不同区域、不同土壤类型的沼液施灌制度及沼液质量监控体系势在必行.%As the residue from the anaerobic fermentation of organic solid wastes, biogas slurry have abundant N, P, K, amino acids, vitamin , mineral elements and other beneficial biology active matters. Application of solution of biogas slurry can not only effectively promote the yield of crop, change the qualities of vegetables, but also increase the soil pH to a certain degree, prevent soil acidification, reduce salt damage, improve fertilizer efficiency. Although, long-term applying fertilizer would cause the accumulation of antibiotics and heavy metal pollute, but comparing chemical fertilizer, it was harmless. Biogas slurry utilization in China was still in exploration phase at present; society has not a safety conscious on process and utilization of biogas slurry. So, constructing irrigation and biogas slurry monitoring system which is suitable for different regions and different soil types is imperative.【期刊名称】《安徽农业科学》【年(卷),期】2013(041)004【总页数】3页(P1501-1503)【关键词】沼液;灌溉;作物产量;环境安全【作者】李萍;蒋滔;陈云跃;龙翰威;韦秀丽;高立洪【作者单位】重庆市农业科学院农业工程研究所,重庆401329【正文语种】中文【中图分类】S216.4随着我国畜禽养殖业集约化、规模化的快速发展,为了减少成倍增加的畜禽养殖废弃物对环境的危害和破坏,利用沼气工程技术将养殖废物减量化、资源化、无害化已成为畜牧业可持续发展不可或缺的重要组成部分。
水处理术语中英文翻译表广州清都环保工业循环冷却水处理设计规范Code for design of industrial recirculating cooling water treatment1、循环冷却水系统Recirculating cooling water system2、敞开式系统Open system3、密闭式系统Closed system4、药剂Chemicals5、异养菌数Count of heterotrophic bacteria6、粘泥Slime7、粘泥量Slime content8、腐蚀率Corrosion rate9、系统容积System capacity volume10、预膜Prefilming11、旁流水Side stream12、补充水量Amount of makeup water13、排污水量Amount of blowdown14、热流密度Heat load intensity建筑与市政降水工程技术规范Technical code for Groundwater Lowering Engineering in Building and Municipal1、降水工程Engineering dewatering2、降水地质条件dewatering geological condition3、降水工程勘察dewatering geological condition4、降水工程地质参数dewatering geological parameters5、降水深度ground water level after lowering6、滞水detained ground water7、降水出水量yield water during lowering.污水稳定搪设计规范1、稳定塘stabilization ponds(氧化塘)oxidation pond2、厌氧塘anaerobic pond3、兼性塘facultative pond4、好氧塘aerobic pond5、曝气塘aeration pond6、生物塘biological pond7、水生植物塘macrohydrophyte pond8、养鱼塘fish pond9、生态塘ecological pond10、深度处理塘maturationy pond工业用水软化除盐术语1、软化水softened water2、除盐水demineralized water3、高纯水high-purity water , ultra-high purity water4、除硅desilication , silica removal5、脱碱dealkalization6、酸洗acid cleaning7、石灰浆lime slurry8、石灰乳milk of lime9、树脂污染resin fouling10、树脂降解resin degradation11、离子交换剂ion exchanger12、离子交换树脂ion exchange resin13、弱碱性阴离子交换树脂weak-base anion exchange resin14、弱酸性阳离子交换树脂weak-acid cation exchange resin15、强碱性阴离子交换树脂strong-base anion exchange resin16、强酸性阳离子交换树脂strong-acid cation exchange resin17、凝胶型离子交换树脂gel-type ion exchange resin18、大孔型离子交换树脂macro-reticular type ion exchange resin 20、后处理post-treatment22、再生液置换rinse displacement23、二级钠离子交换two stage sodium ion exchange24、顺流再生co-current regeneration25、对流再生counter-current regeneration26、逆流再生up-flow regeneration27、浮动床fluidized bed28、混合离子交换器mixed bed29、空气顶压逆流再生air hold down C.C.R , air blanket C.C.R30、水顶压逆流再生water hold down C.C.R , water blanket C.C.R31、无顶压逆流再生atmospheric press bed C.C.R32、离子交换剂床层膨胀率ion exchange bed expansion33、移动床moving bed34、再生剂耗量chemical measurement35、再生剂量regeneration level36、再生剂计量chemical measurement37、超滤器ultrafiler38、微孔过滤microporous filter39、双层床stratabed , multibed40、双室床double bed41、分布再生stepwise regeneration42、工作交换容量operating capacity43、树脂捕捉器resin trapper44、电渗析器electrodialyzer45、反渗透器reverse osmosis unit46、一级除盐系统primary demineralization system47、单塔单周期移动床monobed and single cycle moving bed48、双塔连续再生移动床dual bed continuous contactor49、单床离子交换器mono-bed ion exchanger工业循环水冷却术语2、湿式冷却塔wet cooling tower3、干式冷却塔dry cooling tower4、干—湿式冷却塔dry-wet cooling tower5、自然通风冷却塔natural draft cooling tower6、机械通风冷却塔mechanical draft cooling tower7、风筒式冷却塔chimney cooling tower8、开放式冷却塔atmospheric cooling tower9、抽风式机械通风冷却塔induced draft mechanical cooling tower10、鼓风式机械通风冷却塔forced draft mechanical cooling tower11、横流式冷却塔crossflow cooling tower12、逆流式冷却塔counterflow cooling tower13、淋水填料packing14、点滴式淋水填料splash packing15、薄膜式淋水填料film packing16、点滴薄膜式淋水填料splash-film packing17、冷却塔配水系统cooling tower distribution system18、槽式配水系统troughing distribution system19、管式配水系统piping distribution system20、管—槽结合式配水系统pipe-troughing distribution system21、池式配水系统hot water distribution system22、旋转布水器rotating distributor23、溅水喷嘴spray nozzle24、冷却塔配水竖井vertical well of water distribution25、淋水面积area of water drenching26、淋水密度water drenching density27、逼近度approach28、冷却水温差cooling range29、除水器drift eliminator30、漂滴drift31、湿空气回流recirculation of wet air33、冷却池cooling pond34、深水型冷却池deep cooling pond35、浅水型冷却塔shallow cooling pond36、挡热墙skimmer wall37、潜水堰submerged weir38、蒸发损失evaporation loss39、风吹损失windage loss40、渗漏损失seepage loss41、温差异重流thermal density flow42、水面综合散热系数heat transfer coefficient室外排水术语1、排水制度sewer system2、合流制combined system3、分流制separate system4、检查井manhole5、跌水井drop manhole6、事故排水口emergency outlet7、暴雨溢流井(截留井)storm overflow well, intercepting well8、潮门tide gate9、生活污水domestic sewage, domestic wastewater10、工业废水industrial wastewater11、生产污水polluted industrial wastewater12、生产废水non-polluted industrial wastewater13、城市污水municipal sewage, municipal wastewater14、旱流污水dry weather flow15、水体自净self-purification of water bodies16、一级处理primary treatment17、二级处理secondary treatment18、生物处理biological treatment19、生活污泥法activated sludge process20、生物膜法biomem brane process21、双层沉淀池(隐化池)imhoff tank22、初次沉淀池primary sedimentation tank23、二池沉淀池secondary sedimetation tank24、生物滤池biological filter , trickling filter25、塔式生物滤池biotower26、生物转盘votating biological clisk27、生物接触氧化bio-contact oxidation28、曝气池aeration tank29、推流曝气plugflow aeration30、完全混合曝气complete-mixing aeration31、普通曝气conventional aeration32、阶段曝气step aeration33、吸附再生曝气biosorption process, contact stabilization34、高负荷曝气high-rate aeration35、延时曝气extended aeration36、氧化沟oxidation ditch37、稳定塘(氧化塘)stabilization pond, oxidation pond38、灌溉田sewage farming39、隔油池oil separator40、固定布水器fixed distributor41、活动布水器movable distributor42、空气扩散曝气diffused air aeration43、浅层曝气inka aeration44、机械表面曝气mechanical surface aeration45、混合液mixed liquor46、堰门weir gate47、原污泥raw sludge48、初沉污泥primary sludge49、二沉污泥secondary sludge50、活性污泥activated sludge51、消化污泥digested sludge52、回流污泥returned sludge53、剩余污泥excess activated sludge54、污泥气sludge gas55、污泥消化sludge digestion56、好氧消化aerobic digestion57、厌氧消化anaerobic digestion58、中温消化mesophilic digestion59、高温消化thermophilic digestion60、污泥浓缩sludge thickening61、污泥淘洗elutriation of sludge62、污泥脱水sludge dewatering63、需氧量oxygen demand64、供氧量oxygen supply65、氧转移率oxygen transfer efficiency66、充氧能力oxygenation capacity67、污泥回流比return sludge ration68、生化需氧量biochemical oxygen demand(BOD)69、化学需氧量chemical oxygen demand(COD)70、耗氧量oxygen consumption(OC或COD Mn)71、悬浮固体suspended solid(SS)通用术语1、给水工程water supply engineering2、排水工程sewerage, wastewater engineering3、给水系统water supply system4、排水系统sewerage system5、给水水源water source6、原水raw water7、地表水surface8、地下水ground water9、苦咸水(碱性水)brackish water, alkaline water10、淡水fresh water11、冷却水cooling water12、废水wastewater13、污水sewage, wastewater14、用水量water consumption15、供水量output16、污水量wastewater flow, sewage flow17、用水定额water consumption norm18、排水定额wastewater flow norm19、水质water quality20、渠道channel, conduit21、干管main22、泵房pumping house23、给水处理water treatment24、泵站pumping station25、污水处理sewage treatment, wastewater treatment26、废水处理wastewater disposal27、格栅bar screen28、曝气aeration29、沉淀sedimentation30、澄清clarification31、过滤filtration32、离子交换法ion exchange33、消毒disinfection34、氯化chlorination35、余氯residual36、游离性余氯free residual chlorine37、结合性余氯combinative residual chlorine38、污泥sludge39、污泥处理sludge treatment40、污泥处置sludge disposal41、水头损失head loss42、贮水池storage reservoir , storage tank43、过河管river crossing44、倒虹管inverted siphon45、稳定stabilization46、异重流density current室外给水术语1、直流水系统once through system2、复用水系统water reuse system3、循环水系统recirculation system4、生活用水domestic water5、生产用水process water6、消防用水fire demand7、浇洒道路用水street flushing demand, road watering8、绿化用水green belt sprinkling, green plot sprinkling9、未预见用水量unforeseen demand10、自用水量water consumption in waterworks11、管网漏失水量leakage12、平均日供水量average daily output13、最高日供水量maximum daily output14、日变化系数daily variation coefficient15、时变化系数hourly variation coefficient16、最小服务水头minimum service head给水工程中取水构筑物的术语及其涵义1、管井deep well, drilled well2、管井滤水管deep well screen3、管井沉淀管grit compartment4、大口井dug well, open well5、井群battery of wells6、渗渠infiltration gallery7、地下水取水构筑物反滤层inverted layer8、泉室spring chamber9、取水构筑物intake strcture10、取水口(取水头部)intake11、进水间intake chamber12、格网screen13、吸水井suction well给水工程中净水构筑物的术语1、净水构筑物purification structure2、投药chemical dosing3、混和mixing4、凝聚coagulation5、絮凝flocculation6、自然沉淀plain sedimentation7、凝聚沉淀coagulation sedimentation8、凝聚剂coagulant9、助凝剂coagulant aid10、药剂周转储备量current reserve11、药剂固定储备量standby reserve12、沉砂池desilting basin, grit chamber13、预沉池pre-sedimentation tank14、平流沉淀池horizontal flow sedimentation tank15、异向流斜管(或斜板)沉淀池tube (plate) settler16、同向流斜板沉淀池lamella17、机械搅拌澄清池accelerator18、水力循环澄清池circulator clarifier19、脉冲澄清池pulsator20、悬浮澄清池sludge blanket clarifier21、液面负荷surface load22、气浮池floatation tak23、气浮溶气罐dissolved air vessel24、气浮接触池contact chamber25、快滤池rapid filter26、虹吸滤池siphon filter27、无阀滤池valveless filter28、压力滤池pressure filter29、移动罩滤池movable hood backwashing filter30、滤料filtering media]31、承托层graded gravel layer32、滤速rate of filtration33、滤池配水系统filter underdrain system34、表面冲洗surface washing35、反冲洗backwash36、气水冲洗air-water washing37、滤池冲洗水量filter wash water consumption38、冲洗强度intensity of back washing39、膨胀率percentage of bed-expansion40、除铁接触氧化法contact-oxidation41、清水池clear-water reservoir42、配水管网distribution system, pipe system43、环状管网pipe network44、枝状管网branch system45、水管支墩buttress, anchorage11。
建筑给水排水基本术语中英对照翻译(中德工程建筑设施智能技术093132 张伟)1、给水工程water supply engineering 原水的取集和处理以及成品水输配的工程。
2、排水工程sewerage ,wastewater engineering 收集、输送、处理和处置废水的工程。
3、给水系统water supply system 给水的取水、输水、水质处理和配水等设施以一定方式组合成的总体。
4、排水系统sewerage system 排水的收集、输送、水质处理和排放等设施以一定方式组合成的总体。
5、给水水源water source 给水工程所取用的原水水体。
6、原水raw water 由水源地取来的原料水。
7、地表水surface water 存在于地壳表面,暴露于大气的水。
8、地下水ground water 存在于地壳岩石裂缝或土壤空隙中的水。
9、苦咸水(碱性水) brackish water ,alkaline water 碱度大于硬度的水,并含大量中性盐,PH值大于7。
10、淡水fresh water 含盐量小于500mg/L的水。
11、冷却水cooling water 用以降低被冷却对象温度的水。
12、废水wastewater 居民活动过程中排出的水及径流雨水的总称。
它包括生活污水、工业废水和初雨径流以及流入排水管渠的其它水。
13、污水sewage ,wastewater 受一定污染的来自生活和生产的排出水。
14、用水量water consumption 用水对象实际使用的水量。
15、污水量wastewater flow ,sewage flow 排水对象排入污水系统的水量。
16、用水定额water flow norm 对不同的排水对象,在一定时期内制订相对合理的单位排水量的数值。
17、排水定额wastewater flow norm 对不同的排水对象,在一定时期内制订相对合理的单位排水量的数值。
11规则大连海事最新轮机英语题库翻译(十)作者:系统管理员来源:发布时间: [2014-04-02] 点击数: 918样章第2章船舶辅助机械第4节船舶防污染设备【知识点】船舶防污染设备(pollution prevention equipment)主要包括以下三种设备:1. 油水分离器oily water separator2. 焚烧炉 incinerator3. 生活污水处理装置 sewage treatment equipment【词汇记忆】Aaeration tank 曝气柜aerobic 好氧的anaerobic 厌氧的agitate 搅动Bbacteria 细菌ballast water 压载水bilge water舱底水bio-filter tank 生物滤池bubble 气泡Ccatch plate捕集板clog 堵塞coalescer 聚合过滤器coalescence 聚合coalescing insert 聚合滤芯coarse separating compartment 粗分离室contamination 污染demulsibility 抗乳化性detect v. 探测detector 探测器disinfection 消毒disinfection agent 消毒剂dump chute 投料口Eemulsify v. 乳化emulsification n. 乳化Gglobule 水滴Iimpurity 杂质incinerator 焚烧炉inert 惰性interval 间隔Mmaceration 粉粹monitor监测器Ooil/water mixture油水混合物oil collecting space集油室oily water separator油水分离器organic matter 有机物overhaul 大修oxygen 氧气Ppollution prevention equipment 防污染设备purity 净化Ssensor 感应器sewage 生活污水slop tank 污水舱sludge 油渣,污油solenoid valve 电磁阀sterilization compartment 消毒室,灭菌室surface tension 表面张力【习题详解】2.4.1 油水分离器的工作原理及运行管理1. Would an increase in flow rate through the separator improve the separation of oil and water?A. NoB. YesC. It makes no differenceD. The separator works under all condition答案为A。
给水排水工程的通用术语及其涵义应符合下列规定:1、给水工程 water supply engineering 原水的取集和处理以及成品水输配的工程。
2、排水工程 sewerage ,wastewater engineering 收集、输送、处理和处置废水的工程。
3、给水系统 water supply system 给水的取水、输水、水质处理和配水等设施以一定方式组合成的总体。
4、排水系统 sewerage system 排水的收集、输送、水质处理和排放等设施以一定方式组合成的总体。
5、给水水源 water source 给水工程所取用的原水水体。
6、原水raw water 由水源地取来的原料水。
7、地表水surface water 存在于地壳表面,暴露于大气的水。
8、地下水ground water 存在于地壳岩石裂缝或工壤空隙中的水。
9、苦咸水(碱性水) brackish water ,alkaline water 碱度大于硬度的水,并含大量中性盐,PH值大于7。
10、淡水fresh water 含盐量小于500mg/L的水。
11、冷却水cooling water 用以降低被冷却对象温度的水。
12、废水 wastewater 居民活动过程中排出的水及径流雨水的总称。
它包括生活污水、工业废水和初雨径流以及流入排水管渠的其它水。
13、污水sewage ,wastewater 受一定污染的来自生活和生产的排出水。
14、用水量 water consumption 用水对象实际使用的水量。
15、污水量 wastewater flow ,sewage flow 排水对象排入污水系统的水量。
16、用水定额 water flow norm 对不同的排水对象,在一定时期内制订相对合理的单位排水量的数值。
17、排水定额 wastewater flow norm 对不同的排水对象,在一定时期内制订相对合理的单位排水量的数值。