数值分析 第六章 习题
- 格式:pdf
- 大小:180.03 KB
- 文档页数:2
习题61.求解初值问题y x y +=' )10(≤≤x 1)0(=y取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解xe x y 21+-=相比较。
解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.4599242) 用改进的Euler 公式进行计算,具体形式如下: 10=y)()(1i i i D i y x h y y ++=+ )()(11)(1D i i i C i y x h y y +++++= )(21)(1)(11c i D i i y y y ++++= 4,3,2,1,0=i计算结果列表如下i i x i y )(1D i y + )(1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.0311473. 对初值问题1)0(=-='y y y)0(>x ,证明用梯形公式所求得的近似值为ii hh y ih y )22()(+-=≈ ),2,1,0( =i并证明当0→h 时,它收敛于准确解ix e y -=,其中ih x i =为固定点。
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式()(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?〔1〕〔2〕解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
〔1〕〔2〕4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1与n=2的Lagrange插值或Newton插值,并应用误差估计〔5.8〕。
线性插值时,用0.5与0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式〔5.8〕,令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048与cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式〔5.17〕得其中计算时用Newton后插公式〔 5.18)误差估计由公式〔5.19〕得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
第六章习题解答1、设函数01(),(),,()n x x x φφφ 在[,]a b 上带权()x ρ正交,试证明{}()nj j x φ=是线性无关组。
证明:设0()nj jj l x φ==∑,两端与01()(,,,)kx k n φ= 作内积,由()jx φ的正交性可知,200(),()((),())((),())()()n n b k j j j k j k k k k k a j j x l x l x x l x x l x x dx φφφφφφρφ==⎛⎫==== ⎪⎝⎭∑∑⎰, 于是有001(,,,)k l k n == ,即{}()nj j x φ=是线性无关组。
2、试确定系数,a b 的值使22(()cos )ax b x dx π+-⎰达到最小。
解:定义02,[,]f g C π∈上的内积为20fgdx π⎰,取011(),()x x x ϕϕ==,()s x ax b =+,()cos f x x =,则法方程为0001010111(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中()2000112,dx ππϕϕ=⨯=⎰,()2201018,xdx ππϕϕ=⨯=⎰,()3211024,x xdx ππϕϕ=⨯=⎰,()2001,cos f xdx πϕ==⎰,()21012,cos f x xdx ππϕ==-⎰,于是方程组为22312812824a b πππππ⎛⎫⎛⎫ ⎪⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,解之得1158506644.,.a b ==-。
3、已知函数11()(,)f x x =∈-,试用二类Chebyshev 多项式()n U x 构造此函数的二次最佳平方逼近元。
解:法一、取20121(),(),(),x x x x x ϕϕϕ===()()()00112222235,,,,,ϕϕϕϕϕϕ===,()()()011202203,,,,ϕϕϕϕϕϕ===,同时由二类Chebyshev 多项式的性质知 ()()()11101211028,,,,,f f f x ππϕϕϕ---======⎰⎰⎰于是可得法方程为0122203220003220835c c c ππ⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭ ⎪⎝⎭,解之得0121.0308,0,0.7363c c c ===-, 于是()f x 的二次最佳逼近元是2001122() 1.03080.7363x c c c x ϕϕϕϕ=++=-法一、二类Chebyshev 多项式2012()1,()2,()41U x U x x U x x ===-,取内积权函数()()x f x ρ==,于是11200114(,)(1)3f U fU dx x dx ρ--==-=⎰⎰,1121111(,)2(1)0f U fU dx x x dx ρ--==-=⎰⎰,112222114(,)(41)(1)15f U fU dx x x dx ρ--==--=-⎰⎰ 由()n U x 正交性及(,)2n n U U π=可得0000(,)8(,)3f U c U U π==,1111(,)0(,)f U c U U ==,2222(,)8(,)15f U c U U π==-, 于是()f x 的二次最佳逼近元为001122()x c U c U c U ϕ=++=21632515x ππ- 4、设012{(),(),()}L x L x L x 是定义于[0,)+∞上关于权函数()xx eρ-=的首项系数为1的正交多项式组,若已知01()1,()1L x L x x ==-,试求出二次多项式2()L x 。
第六章 习 题1. 计算下列矩阵的1A ,2A ,A ∞三种范数。
(1)1101A −⎛⎞=⎜⎟⎝⎠,(2)312020116A ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠. 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组1231231238322041133631236x x x x x x x x x −+=⎧⎪+−=⎨⎪++=⎩ 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。
3. 用Gauss-Seidel 迭代求解1231231235163621122x x x x x x x x x −−=⎧⎪++=⎨⎪−+=−⎩ 以(0)(1,1,1)T x =−为初值,当(1)()310k k x x +−∞−<时,迭代终止。
4. 已知方程组121122,2,x x b tx x b +=⎧⎨+=⎩ (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。
(2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件.5. 设有系数矩阵122111221A −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠ , 211111112B −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛.(2)对于矩阵B ,.6. 讨论方程组112233302021212x b x b x b −⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.7. 对下列方程组进行调整,使之对Gauss-Seidel 迭代收敛,并取初始向量(0)(0,0,0)T x =,求解1213123879897x x x x x x x −+=⎧⎪−+=⎨⎪−−=⎩ 试将Jacobi 迭代前后的老值与新值加权平均,设计出一种基于Jacobi 迭代的松弛迭代格式.8.分别取松弛因子 1.03ω=,1ω=, 1.1ω=,用SOR 方法解下列方程组1212323414443x x x x x x x −=⎧⎪−+−=⎨⎪−+=−⎩要求()(1)610k k xx −−∞−≤时,迭代终止.。
第六章习题解答2、利用梯形公式和Simpson 公式求积分21ln xdx ⎰的近似值,并估计两种方法计算值的最大误差限。
解:①由梯形公式:21ln 2()[()()][ln1ln 2]0.3466222b a T f f a f b --=+=+=≈ 最大误差限3''2()111()()0.0833********T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式:13()[()4()()][ln14ln()ln 2]0.38586262b a b a S f f a f f b -+=++=++≈ 最大误差限5(4)4()66()()0.0021288028802880S b a R f f ηη-=-=≤≈,其中,(1,2)η∈。
4、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'',()()2222a b a b a b a b P f P f ++++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a bP x f x f +++=-+ 且'()()()()222bbaa a ba b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()b a P x dx Z =⎰现分析截断误差:令'()()()()()()-()222a b a b a b r x f x P x f x f x f +++=-=-- 由'''()()()2a b r x f x f +=-易知2a b x +=为()r x 的二重零点,所以可令2()()()2a b r x x x ϕ+=-,构造辅助函数2()()()()()2a b K t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 ∴由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- ∴截断误差[]''2()()()()()()()22b bb baaa af a b R f f x dx Z f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰ 2()2a b x +-Q 在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()224baa b b a f x dx Z R f b a f f ξ+-=+=-+⎰证毕6、计算积分1x e dx ⎰,若分别用复化梯形公式和复化Simpson 公式,问应将积分区间至少剖分多少等分才能保证有六位有效数字?解:①由复化梯形公式的误差限32''522()1()()101212122T b a b a e R f h f e n n η---=-≤=≤⨯可解得:212.85n ≥即至少剖分213等分。
]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。
第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析第六章整合版(黑组) 一、填空题1、已知()01P x =,()1P x x=,()()22312x P x -=,根据勒让德多项式的递推关系,则求()3P x =(3532x x - )解:勒让德多项式的递推关系为()()()()()11121n n n n P x n xP x nP x +-+=+-,n=1,2…….将()1P x x =,()()22312x Px -=代入上式即可求出()3P x =3532x x- 2、若)(x P 是],[)(b a C x f ∈的最佳3次逼近多项式,则)(x P 在],[b a 上存在5 个交替为正、负偏差点。
(考点:切比雪夫定理)3、切比雪夫正交多项式可表示为(x)cos(narcosx)n T =,(x)n T 是最高次幂系数为12n -的n 次多项式。
(考点:切比雪夫多项式性质)4、最佳一致问题同时存在正偏差点和负偏差点 (考点:最佳一致逼近定理3) 二、选择题1、求函数3)1()(+=x x f 在区间[0,1],],[,21b a x x ∈上的一次最佳一致逼近多项式(D )A x +4358.0B x 34358.0+C x 54358.0+D x 74358.0+2、设的2-其中 为定义在[a,b]上的(A )A 权函数B 反函数C 幂函数D 函数3、xe =)(xf ,-1≤x ≤1,且设=p(x)x a a 1+,求a a 1,0使得)(x p 为)(x f 于[]1,0上的最佳平方逼近多项式(A ) A:()1021--=e e a ,311e a -= B:()e a e a e 111031,2---==)(x ρ],[)(b a C x f ∈()f xC:()2,311110e a e a e --=-= D:()2,211110e a e a e --=-=解: {}()()()()ee e e dx xf e dx f xx1112111111-22211-11-,10,02,,,32dx ,0xdx 22dx x 1span x ----==-======⎪⎭⎫ ⎝⎛===⎰⎰⎰⎰⎰ϕϕϕϕϕϕϕϕϕ,,,,,,设方程组为:⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎣⎡--e e a a e 1110232002 解得:()3,211110e a e a e --=-=三、计算题1.计算下列函数)(x f 关于[]1,0C 的21,,ff f ∞(1)3(x)(x 1)f =-;(2).21)(-=x x f 解:(1)301()max (1)1x f x x ∞≤≤=-=,13101()(1)4f x x dx =-=⎰,1221320()(1)f x x dx ⎡⎤⎡⎤=-=⎣⎦⎢⎥⎣⎦⎰ (2)2121max )(10=-=≤≤∞x x f x ,112110012111111()222884f x x dx xdx x dx =-=-+-=+=⎰⎰⎰,1212201()()2f x x dx ⎡⎤=-=⎢⎥⎣⎦⎰。
第六章 习 题
1. 计算下列矩阵的1A ,2A ,A ∞三种范数。
(1)1101A −⎛⎞=⎜⎟⎝⎠,(2)312020116A ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠
. 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组
1231231
238322041133631236x x x x x x x x x −+=⎧⎪+−=⎨⎪++=⎩ 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。
3. 用Gauss-Seidel 迭代求解
12312312
35163621122x x x x x x x x x −−=⎧⎪++=⎨⎪−+=−⎩ 以(0)(1,1,1)T x =−为初值,当(1)()
310k k x x +−∞−<时,迭代终止。
4. 已知方程组121122,2,x x b tx x b +=⎧⎨
+=⎩ (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。
(2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件.
5. 设有系数矩阵
122111221A −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠ , 211111112B −⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠
,
证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛.
(2)对于矩阵B ,.
6. 讨论方程组
112233302021212x b x b x b −⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠
用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.
7. 对下列方程组进行调整,使之对Gauss-Seidel 迭代收敛,并取初始向量(0)(0,0,0)T x =,求解
1213123
879897x x x x x x x −+=⎧⎪−+=⎨⎪−−=⎩ 试将Jacobi 迭代前后的老值与新值加权平均,设计出一种基于Jacobi 迭代的松弛迭代格式.
8.分别取松弛因子 1.03ω=,1ω=, 1.1ω=,用SOR 方法解下列方程组
1212323414443x x x x x x x −=⎧⎪−+−=⎨⎪−+=−⎩
要求()(1)610k k x
x −−∞−≤时,迭代终止.。