《相似三角形的判定》导学案3
- 格式:doc
- 大小:51.50 KB
- 文档页数:3
《8.5 怎样判定三角形相似》导学案山东潍坊滨海第一初级中学王品学习目标:1、掌握三边对应成比例两个三角形相似的判定方法。
2、能够运用三角形相似的条件解决简单的问题。
3、通过互动,使学生在自学习中体验获取数学知识的乐趣,培养学生多方位思考问题的能力,在亲身参与数学活动的过程中,培养学生的学习兴趣和学好数学的信心,在观察图形的过程中,发现数学中相似图形的美。
重点、难点:重点:三角形相似的判定方法3难点:判定三角形相似方法3的导出过程。
学习形式:自主学习、小组合作、展示交流。
学习过程:课前预习学案【知识回顾】相似三角形的判定方法1、判定方法2课内探究学案【实验与探究】按照下列条件分别画出△ABC和△DEF,使AB=3厘米,BC=4.5厘米,AC=6厘米,DE=2厘米,EF=3厘米,DF=4厘米。
(1)分别计算,,,这三个比值相等吗?(2)剪下画出的三角形,利用叠合的方法,检验对应内角之间具有怎样的大小关系。
(3)△ABC和△DEF相似吗?为什么?(4)适当改变△ABC和△DEF的边长,并保持==,还能得到同样的结论吗?1、【结论】:判定方法3:2、【火眼金睛】:你能找出下列图中的相似三角形吗?【自主学习】:自学课本第45页例3、例4自学提示:1、理解利用判定方法3进行解题的方法和步骤。
2、如有不明白的地方,请标出来。
【小组合作】 合作要求:1. 小组长带领小组成员交流自学所得。
2. 小组长对于小组成员出现的问题,应及时给予帮助。
3. 对于感到疑惑、困难或有不同看法的问题用△标出。
【变式题】1、如图一已知 = = ,找出图中相等的角,并说明你的理由。
图一2、如图二已知AB=6, BE=3, EA=4.5, CD=4, DF=2, CF=3 ,6cm3cm5cm(3)AB CDEAB ∥CD 吗?说明你的理由。
图二【班级展示】1. 请同学们积极展示本组的学习成果,认真倾听,大胆发表看法。
2. 谈一谈你们在自学中遇到的问题,又是怎样解决的。
《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的周长比、面积比与相似比之间的关系。
3、能运用相似三角形的性质解决简单的实际问题。
二、学习重点1、相似三角形的性质的理解和应用。
2、相似三角形周长比、面积比与相似比的关系。
三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。
四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。
2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
(3)三边成比例的两个三角形相似。
五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。
解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。
解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。
设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。
(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。
解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。
六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。
《相似三角形(3)》教学设计教学评价评价量规:随堂提问、动手实践、操作演练、练习反馈;评价策略:坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励式点评有机结合,既有即兴评价,又有概要性评价;既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
教学流程活动流程活动内容及目的活动一创设情境,导入新课(3——5分钟)学生借助已有的知识和经验感知和体会数学的应用价值。
活动二演示操作,形成假设(10——15分钟)探究实践,总结发现自己观察到的结论。
并加以推理证明。
活动三验证假设,获得定论(10——15分钟)将自己发现的结论加以证明。
类比活动2探究结论,运用所学勾股定理加以证明。
活动四运用新知,解决问题(3——5分钟)应用所学知识来解决实际问题活动五回顾总结,推荐作业(3——5分钟)通过归纳、作业,巩固自己所学知识,形成技能技巧。
教学程序问题与情境师生互动媒体使用与设计意图活动1:创设情境导入新课问题:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)观察两副三角尺,同样角度的两个三角尺的三个内角有什么关系?这两个三角形相似吗?如果两个三角形有两组对应角相等,它们相似吗?——引出课题.教师通过提出问题,引导学生复习学过的知识,在此基础上激发学生学习新知的欲望。
学生思考回答,同时教师将学生的回答整理板书到黑板上。
本次活动教师应重点关注:学生能否熟练回答三角形相似的判定定理,相似三角形的判定方法和性质是否熟练。
用已学的知识能否顺利完成练习。
【媒体使用】播放图片,依次出示相关内容。
【设计意图】复习旧知,承前启后;通过本环节的复习和情景创设,让学生达到复习旧知,为新课做好铺垫的目的。
数学教案-三角形相似的判定第3课时教学目标:1.理解并掌握三角形相似的判定条件。
2.能够运用三角形相似的判定条件解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
教学重点:1.三角形相似的判定条件。
2.运用三角形相似的判定条件解题。
教学难点:1.理解并运用三角形相似的判定条件。
2.空间想象能力的培养。
教学过程:一、导入新课1.复习三角形相似的定义和性质。
2.提问:如何判定两个三角形相似?二、探究三角形相似的判定条件1.引导学生回顾已学的三角形相似的判定条件(AA、SSS、SAS)。
2.通过例题,让学生尝试运用这些条件判定两个三角形是否相似。
例题1:已知三角形ABC中,AB=6cm,BC=8cm,AC=10cm;三角形DEF中,DE=9cm,EF=12cm,DF=15cm。
求证:三角形ABC∽三角形DEF。
3.学生分组讨论,尝试运用判定条件证明三角形相似。
三、巩固练习1.学生独立完成练习题,巩固三角形相似的判定条件。
练习1:已知三角形ABC中,AB=5cm,BC=7cm,AC=9cm;三角形DEF中,DE=10cm,EF=14cm,DF=18cm。
求证:三角形ABC∽三角形DEF。
2.教师选取部分学生作业进行展示,共同分析解答过程。
四、拓展提高1.提问:在实际问题中,如何运用三角形相似的判定条件?2.出示实际应用题,让学生思考并解答。
应用题1:小明想测量一个高不可攀的旗杆的高度,他站在离旗杆底部10m的地方,用一根长度为3m的木棒测量出旗杆顶部与木棒顶端的夹角为30°。
求旗杆的高度。
3.学生分组讨论,尝试运用三角形相似的判定条件解题。
五、课堂小结2.强调在实际问题中运用三角形相似的判定条件的方法。
六、课后作业1.完成课后练习题,巩固三角形相似的判定条件。
2.思考:如何将三角形相似的判定条件应用于生活中的实际问题?教学反思:本节课通过引导学生回顾已学的三角形相似的判定条件,通过例题和实际应用题让学生尝试运用这些条件,巩固了三角形相似的判定方法。
27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
三角形相似的判定第三课时教案一、教学目标1. 知识与技能:理解三角形相似的判定方法,能够运用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否相似。
2. 过程与方法:通过小组合作、讨论交流,培养学生的合作意识与解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点1. 教学重点:三角形相似的判定方法。
2. 教学难点:如何运用判定方法判断两个三角形相似。
三、教学准备1. 教师准备:教材、多媒体教具、三角板。
2. 学生准备:笔记本、彩笔。
四、教学过程1. 导入新课1.1 复习上节课的内容,提问学生三角形相似的定义。
1.2 引入新课,讲解三角形相似的判定方法。
2. 自主学习2.1 学生自主学习教材,了解SSS、SAS、ASA、AAS四种判定方法。
2.2 学生尝试解答教材中的例题,巩固判定方法。
3. 合作交流3.1 学生分组讨论,分享各自的解题心得。
3.2 教师选取小组代表进行讲解,点评解题方法。
4. 课堂练习4.1 学生独立完成课堂练习题,巩固所学知识。
4.2 教师讲解答案,解析解题思路。
5. 拓展延伸5.1 学生运用判定方法,判断给出的三角形是否相似。
5.2 教师选取典型的题目进行讲解,指导学生运用判定方法。
6. 总结反馈6.1 学生总结本节课所学内容,分享自己的收获。
6.2 教师点评学生的表现,对课堂进行总结。
五、课后作业1. 完成课后练习题,巩固三角形相似的判定方法。
2. 结合生活实际,寻找三角形相似的应用实例。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题评价:检查学生完成的练习题,评估学生对三角形相似判定方法的掌握程度。
3. 课后作业评价:审阅学生的课后作业,了解学生对课堂内容的消化吸收情况。
七、教学反思1. 教师反思:课堂讲解是否清晰易懂,学生是否能跟上教学进度。
2. 学生反思:学习过程中是否遇到了困难,如何解决这些问题。
三角形相似的判定第三课时教案一、教学目标:知识与技能:1. 学生能够理解三角形相似的判定方法。
2. 学生能够运用三角形相似的判定方法解决实际问题。
过程与方法:1. 学生通过观察和操作,培养直观思维能力。
2. 学生通过合作交流,提高解决问题的能力。
情感态度价值观:1. 学生培养对数学的兴趣,激发学习热情。
2. 学生在解决问题过程中,培养耐心和自信心。
二、教学重难点:重点:三角形相似的判定方法。
难点:如何运用三角形相似的判定方法解决实际问题。
三、教学准备:教师准备教学PPT,包括三角形相似的判定方法及相关例题。
学生准备教科书、练习本和文具。
四、教学过程:1. 导入:教师通过一个实际问题引入三角形相似的概念,引导学生回顾已学的相似三角形的性质。
2. 新课讲解:教师讲解三角形相似的判定方法,包括:(1) AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
(2) SSS相似定理:如果两个三角形的三边分别成比例,则这两个三角形相似。
(3) SAS相似定理:如果两个三角形的两边及其夹角分别相等,则这两个三角形相似。
教师通过PPT展示相关例题,引导学生理解和运用判定方法。
3. 课堂练习:学生独立完成PPT上的练习题,巩固所学知识。
教师挑选部分学生的作业进行讲解和评价。
4. 小组讨论:教师提出一个实际问题,引导学生分组讨论,运用三角形相似的判定方法解决问题。
每组分享讨论成果,教师进行点评和指导。
学生分享学习收获和感受,提出疑问。
五、课后作业:教师布置课后作业,包括教科书上的练习题和拓展题,巩固所学知识,提高解决问题的能力。
教师及时批改作业,给予反馈和指导。
六、教学反思:本节课结束后,教师应反思教学效果,包括:1. 学生对三角形相似的判定方法的理解和掌握程度。
2. 学生运用三角形相似的判定方法解决实际问题的能力。
3. 教学过程中是否存在不足或需要改进的地方。
4. 学生的学习兴趣和参与度如何。
七、评价与反馈:教师对学生的学习情况进行评价,包括:1. 学生对三角形相似的判定方法的理解和运用能力。
27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(3)学习目标:1.记住“三边成比例的两个三角形相似”的判定方法,以及“两边成比例且夹角相等的两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点 : 记住两种判定方法,会运用两种判定方法判定两个三角形相似.难点 : 1. 三角形相似的条件归纳、证明;2. 会准确的运用两个三角形相似的条件来判定三角形是否相似.预学案【回顾】1.两个三角形全等有哪些判定方法?2.我们学习过哪些判定三角形相似的方法?3.全等三角形与相似三角形有怎样的关系?4.如果要判定△ABC 与△A ′B ′C ′相似,是不是一定需要一一验证所有的对应角和对应边的关系?(自主学习)1. 三边________的两个三角形相似.如下图,如果AB A ′B ′=BC B ′C ′=AC A ′C ′,则△ABC ________△A ′B ′C ′.2. 两边___________且夹角________的两个三角形相似. 如下图,如果''''C A AC B A AB ,△A =△A ′ 则△ABC △A ′B ′C ′探究案【探究一】探究三边成比例的两个三角形相似.在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?猜测:如果两个三角形的三边 , 那么这两个三角形相似.已知:求证:证明:归纳: 三角形相似的判定定理 :三边 的两个三角形相似.符号语言:△ ,△△ABC △ △DEF .【探究二】:探究两边成比例且夹角相等的两个三角形相似.类似判定三角形全等的SAS 方法,能不能通过两边和夹角判定两个三角形相似呢?事实上,我们有利用两边和夹角判定两个三角形相似的定理:△''''C A AC B A AB ,△A =△A ′ △△ABC △△A ′B ′C ′归纳:两边___________且夹角________的两个三角形相似.怎样证明这个定理呢?它的证明思路与证明前面定理的思路类似,先用同样的方法作一个与△A ′B ′C ′_______的三角形,再用相似三角形____________和已知条件证明所作三角形与△ABC __________.【探究三】 根据下列条件,判断△ABC 和△A ′B ′C ′是否相似,并说明理由.(1) AB =4 cm , BC =6 cm , AC =8 cm ,A ′B ′ =12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm .(2)△A =120°, AB =7 cm ,AC =14 cm ,△A '=120°,A ′B ′ =3 cm ,A ′C ′=6 cm .检测案1. 如图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为 ( )2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值 ( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.如图,△ABC 与 △ADE 都是等腰三角形,AD=AE ,AB=AC ,△DAB=△CAE. 求证:△ABC △△ADE.4.如图,△ABC 中,点 D ,E ,F 分别是 AB ,BC ,CA 的中点,求证:△ABC ∽△EF D .A .B .C .D . 第1题 A C B。
23.3.2相似三角形的判定(2)
【学习目标】
1.掌握三角形相似的判定方法2和3;
2.会用相似三角形的判定方法2和3来判断、证明及计算.
【学习重点】相似三角形判定方法2和3的推导过程,掌握判定方法2和3,并能灵活运用.
【学习难点】判定方法的推导及运用。
【课标要求】探索两个三角形相似的条件。
【知识回顾】
如图,12∠=∠,添加一个条件使得ADE ∆∽ACB ∆ .
【合作学习】 1、画△ABC 与△A ′B
′C ′,使∠A =∠A ′,
B A AB ''和
C A AC ''都等于与∠B ′的大小(或∠C 与∠C ′的大小)、△′相似吗?
改变k 值的大小,再试一试.
判定方法2: 2、画△ABC 与△A ′B ′C ′,使
B A AB ''、
C B BC ''和A C CA ''都等于给定的值k .
(1)设法比较∠A 与∠A ′的大小、∠B 与∠B ′的大小、∠C
与∠C ′的大小. (2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.改变k 值的大小,再试一试.
2
1E
D C B A
判定方法3:
【例题学习】
1、已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长.
2、在△ABC 与△A ′B ′C ′中,已知AB =6
cm,BC =14 cm,AC=10 cm,A ′B ′=18cm,
B ′
C ′=24 cm ,A ′C ′=30cm ,证明△ABC 与△A ′B ′C ′相似。
【巩固练习】
1、如图,AB•A E =AD•A C ,且∠1=∠2,求证:△ABC ∽△ADE .
2、依据下列条件,证明△ABC 与△A ′B ′C ′
相似
AB =10 cm,BC =8cm,AC=16cm,A ′B ′=16cm,B ′C ′=12.8 cm ,A ′
C ′=25.6cm ,
有公共点A ,∠DAB=∠CAE ,试添加一个条
C
【归纳小结】
【作业】
1、已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD ,
求证:△ADC ∽△CDP .
2、在△ABC 中,D
2,∠BCA=45°,∠垂足,连结CE 。
(1)写出图中相等的线段;(2并加以证明
【教学反思】。