2016全国卷II(数学理)解析版
- 格式:doc
- 大小:2.23 MB
- 文档页数:20
2016年全国2卷数学答案及解析1) The format errors in the article have been removed.2) ___.3) ___.Part I1.Multiple Choice: This n contains 12 ns。
each worth 5 points。
Choose the one n that best answers the n from the four provided.1) Given z = (m+3) + (m-1)i。
where z corresponds to a point in the fourth quadrant of the complex plane。
what is the range of possible values for m?A) (-3,1) (B) (-1,3) (C) (1,∞) (D) (-∞,-3)Answer] AAnalysis] To ensure that the point corresponding to z is in the fourth quadrant。
we need to satisfy the n that:m+3>0m-1<0Solving this system of inequalities yields -3 < m < 1.so the answer is A.Concept] Geometric n of complex numbersInsight] Problems involving the n of complex numbers and the n of corresponding points can be ___ real and imaginary parts of the complex number must ___ the complex number to algebraic form and write a system of ns (inequalities) for the real and imaginary parts.2) Given sets A = {1,2,3}。
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。
2016年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。
5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257- (10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。
一、选择题(本大题共12小题,共60.0分)1.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.349.若cos(-α)=,则sin2α=()A. B. C.- D.-10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A. B. C. D.11.已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A. B. C. D.212.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0B.mC.2mD.4m二、填空题(本大题共4小题,共20.0分)13.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= ______ .14.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是 ______ (填序号)15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 ______ .16.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= ______ .三、解答题(本大题共8小题,共94.0分)17.S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险0 1 2 3 4 ≥5次数保费0.85a a 1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险0 1 2 3 4 ≥5次数概率0.30 0.15 0.20 0.20 0.10 0.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B-D′A-C的正弦值.20.已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.22.如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.24.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)答案和解析【答案】1.A2.C3.D4.A5.B6.C7.B8.C9.D 10.C 11.A 12.B13.14.②③④15.1和316.1-ln217.解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.18.解:(Ⅰ)∵某保险的基本保费为a(单位:元),上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,∴由该险种一续保人一年内出险次数与相应概率统计表得:一续保人本年度的保费高于基本保费的概率:p1=1-0.30-0.15=0.55.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意P(A)=0.55,P(AB)=0.10+0.05=0.15,由题意得若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率:p2=P(B|A)===.(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:=1.23,∴续保人本年度的平均保费与基本保费的比值为1.23.19.(Ⅰ)证明:∵ABCD是菱形,∴AD=DC,又AE=CF=,∴,则EF∥AC,又由ABCD是菱形,得AC⊥BD,则EF⊥BD,∴EF⊥DH,则EF⊥D′H,∵AC=6,∴AO=3,又AB=5,AO⊥OB,∴OB=4,∴OH=,则DH=D′H=3,∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,又OH∩EF=H,∴D′H⊥平面ABCD;(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,∵AB=5,AC=6,∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),,,设平面ABD′的一个法向量为,由,得,取x=3,得y=-4,z=5.∴.同理可求得平面A D′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,则|cosθ|=.∴二面角B-D′A-C的正弦值为sinθ=.20.解:(Ⅰ)t=4时,椭圆E的方程为+=1,A(-2,0),直线AM的方程为y=k(x+2),代入椭圆方程,整理可得(3+4k2)x2+16k2x+16k2-12=0,解得x=-2或x=-,则|AM|=•|2-|=•,由AN⊥AM,可得|AN|=•=•,由|AM|=|AN|,k>0,可得•=•,整理可得(k-1)(4k2-k+4)=0,由4k2-k+4=0无实根,可得k=1,即有△AMN的面积为|AM|2=(•)2=;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,可得(3+tk2)x2+2t k2x+t2k2-3t=0,解得x=-或x=-,即有|AM|=•|-|=•,|AN|═•=•,由2|AM|=|AN|,可得2•=•,整理得t=,由椭圆的焦点在x轴上,则t>3,即有>3,即有<0,可得<k<2,即k的取值范围是(,2).21.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(-∞,-2)∪(-2,+∞)时,f'(x)>0∴f(x)在(-∞,-2)和(-2,+∞)上单调递增∴x>0时,>f(0)=-1即(x-2)e x+x+2>0(2)g'(x)==a∈[0,1]由(1)知,当x>0时,f(x)=的值域为(-1,+∞),只有一解使得,t∈[0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].22.(Ⅰ)证明:∵DF⊥CE,∴Rt△DFC∽Rt△EDC,∴=,∵DE=DG,CD=BC,∴=,又∵∠GDF=∠DEF=∠BCF,∴△GDF∽△BCF,∴∠CFB=∠DFG,∴∠GFB=∠GFC+∠CFB=∠GFC+∠DFG=∠DFC=90°,∴∠GFB+∠GCB=180°,∴B,C,G,F四点共圆.(Ⅱ)∵E为AD中点,AB=1,∴DG=CG=DE=,∴在Rt△DFC中,GF=CD=GC,连接GB,Rt△BCG≌Rt△BFG,∴S四边形BCGF=2S△BCG=2××1×=.23.解:(Ⅰ)∵圆C的方程为(x+6)2+y2=25,∴x2+y2+12x+11=0,∵ρ2=x2+y2,x=ρcosα,y=ρsinα,∴C的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l的参数方程是(t为参数),∴直线l的一般方程y=tanα•x,∵l与C交与A,B两点,|AB|=,圆C的圆心C(-6,0),半径r=5,∴圆心C(-6,0)到直线距离d==,解得tan2α=,∴tanα=±=±.∴l的斜率k=±.24.解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】1. 解:z=(m+3)+(m-1)i在复平面内对应的点在第四象限,可得:,解得-3<m<1.故选:A.利用复数对应点所在象限,列出不等式组求解即可.本题考查复数的几何意义,考查计算能力.2. 解:∵集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故选:C.先求出集合A,B,由此利用并集的定义能求出A∪B的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.3. 解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.4. 解:圆x2+y2-2x-8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y-1=0的距离d==1,解得:a=,故选:A.求出圆心坐标,代入点到直线距离方程,解得答案.本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.5. 解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42=6种走法.同理从F到G,最短的走法,有C31=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选:B.从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题6. 解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.7. 解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.利用函数y= A sin(ωx+ φ)(A>0,ω>0)的图象的变换及正弦函数的对称性可得答案.本题考查函数yy= A sin(ωx+ φ)(A>0,ω>0)的图象的变换规律的应用及正弦函数的对称性质,属于中档题.8. 解:∵输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9. 解:∵cos(-α)=,∴sin2α=cos(-2α)=cos2(-α)=2cos2(-α)-1=2×-1=-,故选:D.利用诱导公式化sin2α=cos(-2α),再利用二倍角的余弦可得答案.本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.10. 解:由题意,,∴π=.故选:C.以面积为测度,建立方程,即可求出圆周率π的近似值.古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.11.解:设|MF1|=x,则|MF2|=2a+x,∵MF1与x轴垂直,∴(2a+x)2=x2+4c2,∴x=∵sin∠MF2F1=,∴3x=2a+x,∴x=a,∴=a,∴a=b,∴c=a,∴e==.故选:A.设|MF1|=x,则|MF2|=2a+x,利用勾股定理,求出x=,利用sin∠MF2F1=,求得x=a,可得=a,求出a=b,即可得出结论.本题考查双曲线的定义与方程,考查双曲线的性质,考查学生分析解决问题的能力,比较基础.12. 解:函数f(x)(x∈R)满足f(-x)=2-f(x),即为f(x)+f(-x)=2,可得f(x)关于点(0,1)对称,函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,(x2,y2)为交点,即有(-x2,2-y2)也为交点,…则有(x i+y i)=(x1+y1)+(x2+y2)+…+(x m+y m)=[(x1+y1)+(-x1+2-y1)+(x2+y2)+(-x2+2-y2)+…+(x m+y m)+(-x m+2-y m)]=m.故选B.由条件可得f(x)+f(-x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(-x1,2-y1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.13. 解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.14. 解:①如果m⊥n,m⊥α,n∥β,那么α∥β,故错误;②如果n∥α,则存在直线l⊂α,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正确;③如果α∥β,m⊂α,那么m与β无公共点,则m∥β.故正确④如果m∥n,α∥β,那么m,n与α所成的角和m,n与β所成的角均相等.故正确;故答案为:②③④根据空间直线与平面的位置关系的判定方法及几何特征,分析判断各个结论的真假,可得答案.本题以命题的真假判断与应用为载体,考查了空间直线与平面的位置关系,难度中档.15. 解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.16. 解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1-ln2.先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题17.(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;(Ⅱ)找出数列的规律,然后求数列{b n}的前1000项和.本题考查数列的性质,数列求和,考查分析问题解决问题的能力,以及计算能力.18.(Ⅰ)上年度出险次数大于等于2时,续保人本年度的保费高于基本保费,由此利用该险种一续保人一年内出险次数与相应概率统计表根据对立事件概率计算公式能求出一续保人本年度的保费高于基本保费的概率.(Ⅱ)设事件A表示“一续保人本年度的保费高于基本保费”,事件B表示“一续保人本年度的保费比基本保费高出60%”,由题意求出P(A),P(AB),由此利用条件概率能求出若一续保人本年度的保费高于基本保费,则其保费比基本保费高出60%的概率.(Ⅲ)由题意,能求出续保人本年度的平均保费与基本保费的比值.本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.19.(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得E F⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B-D′A-C的平面角为θ,求出|cosθ|.则二面角B-D′A-C的正弦值可求.本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.20.(Ⅰ)求出t=4时,椭圆方程和顶点A,设出直线AM的方程,代入椭圆方程,求交点M,运用弦长公式求得|AM|,由垂直的条件可得|AN|,再由|AM|=|AN|,解得k=1,运用三角形的面积公式可得△AMN的面积;(Ⅱ)直线AM的方程为y=k(x+),代入椭圆方程,求得交点M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由椭圆的性质可得t>3,解不等式即可得到所求范围.本题考查椭圆的方程的运用,考查直线方程和椭圆方程联立,求交点,以及弦长公式的运用,考查化简整理的运算能力,属于中档题.21.从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,中档题.22.(Ⅰ)证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知∠BCD=90°,因此问题可转化为证明∠GFB=90°;(Ⅱ)在Rt△DFC中,GF=CD=GC,因此可得△GFB≌△GCB,则S四边形BCGF=2S△BCG,据此解答.本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.23.(Ⅰ)把圆C的标准方程化为一般方程,由此利用ρ2=x2+y2,x=ρcosα,y=ρsinα,能求出圆C 的极坐标方程.(Ⅱ)由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.24.(I)分当x<时,当≤x≤时,当x>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.。
2016年高考数学理科全国二卷一、设函数f(x) = ax2 + bx + c (a ≠ 0),若f(x)的图像经过点(1,0)且对称轴为直线x = -1,则f(x)的表达式可能为:A. f(x) = x2 - 2x - 3B. f(x) = x2 + 2x - 3C. f(x) = -x2 - 2x + 3D. f(x) = -x2 + 2x + 3(答案:B)二、已知等差数列{an}的前n项和为Sn,且a1 = 1,S3 = 9,则a2 + a4等于:A. 8B. 9C. 10D. 12(答案:C)三、设复数z = 1 + i(i为虚数单位),则复数(1 + z) / (1 - z)的实部为:A. -1B. 0C. 1D. 2(答案:A)四、已知向量a = (1,2),b = (2,1),c = (1,n),若(a - 2b) ⊥ c,则n的值为:A. -2B. -1C. 1D. 2(答案:D)五、设函数f(x) = { x + 1, x ≤ 0; 2x, x > 0 },则不等式f(x) > 2的解集为:A. (-∞,1)B. (1, +∞)C. (-1,1) ∪ (1, +∞)D. (1,2) ∪ (2, +∞)(答案:B)六、已知椭圆C的方程为x2/4 + y2 = 1,F1, F2分别为椭圆的左、右焦点,P为椭圆C上一点,且PF1 ⊥ PF2,则△PF1F2的面积为:A. 1B. √2C. 2D. 2√2(答案:A)七、设数列{an}满足a1 = 1,且an+1 = 2an + 3,n ∈ N*,则数列{an}的通项公式为:A. an = 2n - 1B. an = 2n + 1C. an = 2(n-1) + 3(n-1)D. an = 2n - 3(答案:D,注:通过递推关系式变形可得an+1 + 3 = 2(an + 3),进而得出an = 2n - 3)八、已知函数f(x) = sin(x + π/6) + cos(x - π/3),则f(x)的最小正周期为:A. π/2B. πC. 3π/2D. 2π (答案:B,注:利用三角函数的和差化积公式,可将f(x)化简为√3sin(x + π/6),其周期为2π/√3的绝对值,即π的2倍除以3的绝对值的两倍,等于π,因为sin函数的周期为2π)。
绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答案卡一并交回。
第I 卷一、 选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
2016年普通高等学校招生全国统一考试〔天津卷〕数学〔理科〕参考公式:• 如果事件A ,B 互斥,那么()()()P AB P A P B =+;• 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷〔共40分〕一、选择题:本大题共8小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的. 〔1〕【2016年天津,理1,5分】已知集合}{1,2,3,4A =,}{32,B y y x x A ==-∈,则AB =〔 〕〔A 〕}{1 〔B 〕}{4 〔C 〕{}1,3 〔D 〕{}1,4 【答案】D 【解析】把1,2,3,4x =分别代入32y x =-得:1,4,7,10y =,即{}1,4,7,10B =,∵{}1,2,3,4A =,∴{}1,4AB =,故选D .【点评】此题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基此题,难点系数较小.一要注意培养良好的答题习惯,防止出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.〔2〕【2016年天津,理2,5分】设变量x ,y 满足约束条件2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为〔 〕〔A 〕4- 〔B 〕6 〔C 〕10 〔D 〕17 【答案】B【解析】作出不等式组2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩表示的可行域,如右图中三角形的区域,作出直线0:250l x y +=,图中的虚线,平移直线0l ,可得经过点()3,0时,25z x y =+取得最小值6,故选B .【点评】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 〔3〕【2016年天津,理3,5分】在ABC ∆中,假设13AB =,3BC =,120C ∠=,则AC =〔 〕〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4 【答案】A【解析】在ABC ∆中,假设13AB =,3BC =,120C ∠=,2222cos AB BC AC AC BC C =+-⋅,得:21393AC AC =++,解得1AC =或4AC =-〔舍去〕,故选A .【点评】〔1〕正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.〔2〕利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而到达知三求三的目的.(4)〔4〕【2016年天津,理4,5分】阅读右边的程序框图,运行相应的程序,则输出S 的值为〔 〕 〔A 〕2 〔B 〕4 〔C 〕6 〔D 〕8 【答案】B【解析】第一次判断后:不满足条件,248S =⨯=,2n =,4i >;第二次判断不满足条件3n >;第三次判断满足条件:6S >,此时计算862S =-=,3n =,第四次判断3n >不满足条件,第五次判断6S >不满足条件,4S =.4n =,第六次判断满足条件3n >,故输出4S =,故选B .【点评】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.〔5〕【2016年天津,理5,5分】设{}n a 是首项为正数的等比数列,公比为q 则“0q <”是“对任意的正整数n ,2120n n a a -+<”的〔 〕〔A 〕充要条件 〔B 〕充分而不必要条件 〔C 〕必要而不充分条件 〔D 〕既不充分也不必要条件 【答案】C【解析】{}n a 是首项为正数的等比数列,公比为q ,假设“0q <”是“对任意的正整数n ,2120n n a a -+<”不一定成立,例如:当首项为2,12q =-时,各项为2,1-,12,14-,…,此时()2110+-=>,1110244⎛⎫+-=> ⎪⎝⎭; 而“对任意的正整数n ,2120n n a a -+<”,前提是“0q <”,则“0q <”是“对任意的正整数n ,2120n n a a -+<” 的必要而不充分条件,故选C .【点评】充分、必要条件的三种判断方法.〔1〕定义法:直接判断“假设p 则q ”、“假设q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.〔2〕等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否认式的命题,一般运用等价法.〔3〕集合法:假设A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;假设A =B ,则A 是B 的充要条件.〔6〕【2016年天津,理6,5分】已知双曲线()222104x y b b-=>,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为〔 〕 〔A 〕223144x y -= 〔B 〕224143x y -= 〔C 〕222144x y -= 〔D 〕221412x y -= 【答案】D【解析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为224x y +=,双曲线两条渐近线方程为2by x =±,设,2b A x x ⎛⎫ ⎪⎝⎭,则∵四边形ABCD 的面积为2b ,∴22x bx b ⋅=,∴1x =±,将1,2b A ⎛⎫⎪⎝⎭代入224x y +=,可得2144b +=,∴212b =,∴双曲线的方程为221412x y -=,故选D .【点评】求双曲线的标准方程关注点:〔1〕确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.〔2〕利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以防止讨论.①假设双曲线的焦点不能确定时,可设其方程为()2210Ax By AB =<+.②假设已知渐近线方程为0mx ny +=,则双曲线方程可设为()22220m x n y λλ-=≠.〔7〕【2016年天津,理7,5分】已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为〔 〕〔A 〕58- 〔B 〕18 〔C 〕14 〔D 〕118【答案】B【解析】由DD 、E 分别是边AB 、BC 的中点,2DE EF =,()()AF BC AD DF AC AB ⋅=+⋅-()()2213133112224442AB DE AC AB AB AC AC AB AC AB AC AB ⎛⎫⎛⎫=+⋅-=+⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭,311111144228=-⋅⋅⋅-=,故选B .【点评】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.〔8〕【2016年天津,理8,5分】已知函数2(43)3,0()log (1)1,0a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩〔0a >,且1a ≠〕在R 上单调递减,且关于x 的方程()2f x x =-恰好有两个不相等的实数解,则a 的取值范围是〔 〕〔A 〕20,3⎛⎤ ⎥⎝⎦ 〔B 〕23,34⎡⎤⎢⎥⎣⎦〔C 〕123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭ 〔D 〕123,334⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭【答案】C【解析】()log 11a y x =++在[)0,+∞递减,则01a <<,函数()f x 在R 上单调递减,则()()234020104303log 011a a a a a -⎧≥⎪⎪<<⎨⎪+-⋅+≥++⎪⎩;解得,1334a ≤≤;由图象可知,在[)0,+∞上,()2f x x =-有且仅有一个解,故在(),0-∞上,()2f x x =-同样有且仅有一个解,当32a >即23a >时,联立()24332x a a x +-+=-,则()()2424320a a ∆=---=,解得34a =或1〔舍去〕,当132a ≤≤时,由图象可知,符合条件,综上:a 的取值范围为123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭,故选C .【点评】已知函数有零点求参数取值范围常用的方法和思路:〔1〕直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围〔2〕别离参数法:先将参数别离,转化成求函数值域问题加以解决;〔3〕数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第II 卷〔共110分〕二、填空题:本大题共6小题,每题5分,共30分.〔9〕【2016年天津,理9,5分】已知a ,R b ∈,i 是虚数单位,假设()()1i 1i b a +-=,则ab的值为 . 【答案】2【解析】∵()()()1i 1i 11i b b b a +-=++-=,,R a b ∈,∴110b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,∴2a b =.【点评】此题重点考查复数的基本运算和复数的概念,属于基此题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,.)++=-++∈a b c d ac bd ad bc a b c d R ,22i ()()ii +++-=++a b ac bd bc ad c d c d(,,.)∈a b c d R ,其次要熟悉复数相关基本概念,如复数i(,)+∈a b a b R 的实部为a 、虚部为b 、模为22+a b 、共轭为i -a b .〔10〕【2016年天津,理10,5分】821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为 .〔用数字作答〕【答案】56-【解析】()()8216318811r rr r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令1637r -=,解得3r =.∴821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为()338156C -=-.【点评】〔1〕求特定项系数问题可以分两步完成:第一步是根据所给出的条件〔特定项〕和通项公式,建立方程来确定指数〔求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n r ≥〕;第二步是根据所求的指数,再求所求解的项.〔2〕有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.〔11〕【2016年天津,理11,5分】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如下图〔单位:m 〕,则该四棱锥的体积为 3m .【答案】2【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积2212m S =⨯=,棱锥的高3m h =,312m 3V Sh ==.【点评】〔1〕解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.〔2〕三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图 的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.〔12〕【2016年天津,理12,5分】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22BE AE ==,BD ED =,则线段CE 的长为 .【答案】233【解析】过D 作DH AB ⊥于H ,∵22BE AE ==,BD ED =,∴1BH HE ==,2AH =,1BH =, ∴2•2DH AH BH ==,则2DH =,在Rt DHE ∆中,则 22213DE DH HE =+=+=,由相交弦定理得:CE DE AE EB ⋅=⋅,∴122333AE EB CE DE ⋅⨯===. 【点评】1、解决与圆有关的成比例线段问题的两种思路:〔1〕直接应用相交弦、切割线定理及其推论;〔2〕当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相 似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2、应用相交 弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关 的相似三角形等.〔13〕【2016年天津,理13,5分】已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增.假设实数a 满足()()122a f f ->-,则a 的取值范围是 .【答案】13,22⎛⎫ ⎪⎝⎭【解析】∵()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增,∴()f x 在区间()0,+∞上单调递减,则()()122a f f ->-,等价为()()122a f f ->,即1222a --<<,则112a -<,即1322a <<.【点评】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:〔1〕借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.〔2〕借助 函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代 数式的几何意义实现“数”向“形”的转化.〔14〕【2016年天津,理14,5分】设抛物线222x pt y pt ⎧=⎨=⎩〔t 为参数,0p >〕的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .假设2CF AF =,且ACE ∆的面积为32,则p 的值为 . 【答案】6【解析】抛物线222x pt y pt⎧=⎨=⎩〔t 为参数,0p >〕的普通方程为:22y px =焦点为,02p F ⎛⎫⎪⎝⎭,如图:过抛物线上一点A 作l 的垂线,垂足为B ,设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .2CF AF =,3CF p =,32AB AF p ==,(),2A p p ,ACE ∆的面积为32,12AE AB EF CF ==,可得13AFC ACE S S ∆∆=.即:11323232p p ⨯⨯⨯=,解得6p =.【点评】〔1〕凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.〔2〕假设()00,P x y 为抛物线()220y px p =>上一点,由定义易得02pPF x =+;假设过焦点的弦AB 的端点坐标为()11,A x y ,()22,B x y ,则弦长为12AB x x p =++,12x x +可由根与系数的关系整体求出;假设遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.〔15〕【2016年天津,理15,13分】已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭〔1〕求()f x 的定义域与最小正周期;〔2〕讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性.解:〔1〕()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭214sin cos 2sin cos 2x x x x x x ⎛⎫=+- ⎪ ⎪⎝⎭)()sin 21-cos2sin 2=2sin 23x x x x x π==-.所以, ()f x 的最小正周期22T ππ==. 〔2〕令23z x π=-,函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦. 所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【点评】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为()sin y A x k ωϕ=++的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的表达;降次是一种三角变换的常用技巧,要灵活运用降次公式.〔16〕【2016年天津,理16,13分】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. 〔1〕设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;〔2〕设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:〔1〕由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. 〔2〕随机变量X 的所有可能取值为0,1,2.()2223342104015C C C P X C ++===,()111133342107115C C C C P X C +===, ()113424215C C P X C ===.所以,随机变量X 分布列为: 随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=.【点评】求均值、方差的方法〔1〕已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;〔2〕已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;〔3〕如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.〔17〕【2016年天津,理17,13分】如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,2AB BE ==. 〔1〕求证://EG 平面ADF ;〔2〕求二面角O EF C --的正弦值;〔3〕设H 为线段AF 上的点,且23AH HF =,求直线BH 和平面CEF 所成角的正弦值.解:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),A B C ----(11,0),D ,(1,1,2),E --(0,0,2),F (1,0,0)G -.〔1〕()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面. 〔2〕易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有2226cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为33. 〔3〕由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭, 从而284,,555BH ⎛⎫= ⎪⎝⎭,因此2227cos ,21BH n BH n BH n ⋅<>==-⋅.直线BH 和平面CEF 所成角的正弦值为721.【点评】1、利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2、利用数量积可解决有关垂直、夹角、长度问题.〔1〕0a ≠,0b ≠,·0a b a b ⊥⇔=;〔2〕2a a =;〔3〕cos ,a ba b a b ⋅=.〔18〕【2016年天津,理18,13分】已知{}n a 是各项均为正数的等差数列,公差为d .对任意的N n *∈,n b 是na和1n a +的等比中项.〔1〕设221n n n c b b +=-,N n *∈,求证:数列}{n c 是等差数列;〔2〕设1a d =,221(1)nk n k k T b ==-∑,N n *∈,求证21112nk kT d =<∑. 解:〔1〕由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.〔2〕()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nnnk k k kT d k k d k k dn d===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 【点评】分组转化法求和的常见类型〔1〕假设n n n a b c ±=,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和.〔2〕通项公式为n a =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和.〔19〕【2016年天津,理19,14分】设椭圆22213x y a +=(a >的右焦点为F ,右顶点为A .已知113e OF OA FA+=,其中O 为原点,e 为椭圆的离心率.〔1〕求椭圆的方程;〔2〕设过点A 的直线l 与椭圆交于点B 〔B 不在x 轴上〕,垂直于l 的直线与l 交于点M ,与y 轴交于点H .假设BF HF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.解:〔1〕设(),0F c ,由113cOF OA FA+=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.〔2〕设直线l 的斜率为k ()0k ≠,则直线l 的方程为()2y k x =-.设(),B B B x y ,由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩, 消去y ,整理得()2222431616120k x k x k +-+-=.解得2x =,或228643k x k -=+,由题意得228643B k x k -=+,从而21243B ky k -=+.由〔1〕知,()1,0F ,设()0,H H y ,有()1,H FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭.由BF HF ⊥,得0BF HF ⋅=,所以222129404343H ky k k k -+=++,解得29412H k y k-=.因此直线MH 的方程为219412k y x k k -=-+.设(),M M M x y ,由方程组219412(2)k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,解得2220912(1)M k x k +=+.在MAO ∆中,||||MOA MAO MA MO ∠≤∠⇔≤,即()22222M MMMx y x y -+≤+,化简得1M x ≥,即22209112(1)k k +≥+,解得k ≤或k ≥l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭. 【点评】在利用代数法解决最值与范围问题时常从以下五个方面考虑:〔1〕利用判别式来构造不等关系,从而确定参数的取值范围;〔2〕利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间 建立等量关系;〔3〕利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;〔4〕利用基本 不等式求出参数的取值范围;〔5〕利用函数的值域的求法,确定参数的取值范围.〔20〕【2016年天津,理20,14分】设函数()3()1f x x ax b =---,x ∈R ,其中a ,b ∈R .〔1〕求()f x 的单调区间;〔2〕假设()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,求证:1023x x +=;〔3〕设0a >,函数()()g x f x =,求证:()g x 在区间[]0,2上的最大值不小于...14. 解:〔1〕由()()31f x x ax b =---,可得()()2'31f x x a =--.下面分两种情况讨论:①当0a ≤时,有()()2'310f x x a =--≥恒成立,所以()f x 的单调递增区间为(),-∞+∞. ②当0a >时,令()'0fx =,解得1x =+1x = 当x 变化时,()'f x ,()f x 的变化情况如下表:所以⎝⎭⎝⎭⎫+∞⎪⎪⎝⎭. 〔2〕因为()f x 存在极值点,所以由〔1〕知0a >,且01x ≠,由题意,得()()200'310f x x a =--=,即()2013a x -=,进而()()300002133a a f x x axb x b =---=---. ()()()()()3000000082322222123333a a a f x x a xb x ax a b x b f x -=----=-+--=---=,且0032x x -≠,由题意及〔1〕知,存在唯一实数满足()()10f x f x =,且10x x ≠,因此1032x x =-,所以1023x x +=.〔3〕设()g x 在区间[]0,2上的最大值为M ,{}max ,x y 表示,x y 两数的最大值.下面分三种情况同理:①当3a ≥时,1021≤<≤,由〔1〕知,()f x 在区间[]0,2上单调递减,所以()f x 在区间 []0,2上的取值范围为()()2,0f f ⎡⎤⎣⎦,因此()(){}{}max 2,0max 12,1M f f a b b ==----{}max 1(),1()a a b a a b =-++--+1(),01(),0a a b a b a a b a b -+++≥⎧=⎨--++<⎩,所以12M a a b =-++≥.②当334a ≤<时,101121≤<<+<≤+1〕和〔2〕知,()011f f f ⎛⎛≥-=+ ⎝⎭⎝⎭,()211f f f ⎛⎛≤+= ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为1,1ff ⎡⎤⎛⎛+⎢⎥ ⎢⎥⎝⎭⎝⎭⎣⎦,max 1,1M f f ⎧⎫⎛⎫⎛⎪⎪=+- ⎪ ⎨⎬ ⎪ ⎝⎭⎝⎭⎪⎪⎩⎭max a b a b ⎧⎫=---⎨⎬⎩⎭()()max a b a b ⎧⎫=++⎨⎬⎩⎭231944a b =+≥⨯=.③当304a <<时,0112<<<,由〔1〕和〔2〕知,()011f f f ⎛⎛<=+ ⎝⎭⎝⎭,()211f f f ⎛⎛>=- ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为()()0,2f f ⎡⎤⎣⎦,因此 ()(){}{}max 0,2max 1,12M f f b a b ==----()(){}max 1,1a a b a a b =-++--+11||4a ab =-++>. 综上所述,当0a >时,()g x 在区间[]0,2上的最大值不小于14. 【评析】1、求可导函数单调区间的一般步骤:〔1〕确定函数()f x 的定义域〔定义域优先〕;〔2〕求导函数()f x ';〔3〕在函数()f x 的定义域内求不等式()0f x '>或()0f x '<的解集.〔4〕由()()()00f x f x >'<'的解集确定函数()f x 的单调增〔减〕区间.假设遇不等式中带有参数时,可分类讨论求得单调区间.2、由函数()f x 在(),a b 上的单调性,求参数范围问题,可转化为()0f x '≥ 〔或()0f x '≤〕恒成立问题,要注意“=”是否可以取到.。
2016高考全国II 卷理数(1)已知(3)(1)i zm m 在复平面内对应的点在第四象限,则实数m 的取值范围是()(A )(31),(B )(13),(C )(1,)+(D )(3)-,【答案】A 考点:复数的几何意义.(2)已知集合{1,}A2,3,{|(1)(2)0,}B x x x x Z ,则A B ()(A ){1}(B ){12},(C ){0123},,,(D ){10123},,,,【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1},而A {1,2,3},所以A B {0,1,2,3},故选 C.考点:集合的运算.(3)已知向量(1,)(3,2)am a ,=,且()a b b +,则m=()(A )-8(B )-6 (C )6 (D )8 【答案】D【解析】试题分析:向量a b (4,m 2),由(a b )b得43(m 2)(2)0,解得m 8,故选D.考点:平面向量的坐标运算、数量积. (4)圆2228130x yx y 的圆心到直线10ax y 的距离为1,则a=()(A )43(B )34(C )3(D )2【答案】A 考点:圆的方程、点到直线的距离公式. (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A )24(B )18 (C )12 (D )9【答案】B【解析】试题分析:由题意,小明从街道的E 处出发到F 处最短有24C 条路,再从F 处到G 处最短共有13C 条路,则小明到老年公寓可以选择的最短路径条数为214318C C 条,故选 B.考点:计数原理、组合.。
绝密★启用前2015年普通高等学校招生全国统一考试课标II理 科 数 学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=( )(A ){--1,0} (B ){0,1} (C ){-1,0,1} (D ){,0,,1,2}【答案】A【解析】由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A (2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( ) (A )-1 (B )0 (C )1 (D )2 【答案】B(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关. (4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84 【答案】B(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12 【答案】C【解析】由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 【答案】D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51. CBADD 1C 1B 1A 1(7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8(C )46 (D )10 【答案】C(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=A.0B.2C.4D.14 【答案】B【解析】程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B .(9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为A .36π B.64π C.144π D.256π 【答案】C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为 24144S R ππ==,故选C .BOAC10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为【答案】B的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为(A )√5 (B )2 (C )√3 (D )√2【答案】D(12)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是(A ) (B )(C ) (D )【答案】A 【解析】记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞- ,故选A .二、填空题(13)设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=. (14)若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.【答案】32xy–1–2–3–41234–1–2–3–41234DCBO(15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 【答案】1n-【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n n S S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)nS n n =---=-,所以1n S n =-.三.解答题(17)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC 面积的2倍。
(Ⅰ)求CB∠∠sin sin ;(Ⅱ) 若AD =1,DC =22求BD 和AC 的长.(18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”。
假设两地区用户的评价结果相互独立。
根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率19.(本小题满分12分)如图,长方体ABCD—A1B1C1D1中,AB = 16,BC = 10,AA1 = 8,点E,F分别在A1B1,D1C1上,A1E = D1F = 4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形。
(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成的角的正弦值。
DD1C1 A1 EFA BCB120.(本小题满分12分)已知椭圆C :2229(0)x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。
(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由。
21.(本小题满分12分)设函数2()mx f x e x mx =+-。
(1)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)若对于任意12,[1,1]x x ∈-,都有12|()()|1f x f x e -≤-,求m 的取值范围。
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分。
作答时请写清题号22.(本小题满分10分)选修4 - 1:几何证明选讲如图,O为等腰三角形ABC内一点,⊙O与ΔABC的底边BC 交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点。
(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE MN==四边形EBCF的面积。
GAE FONDB CM23.(本小题满分10分)选修4 - 4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。