扬州市2014年中考数学试题及答案扫描版
- 格式:doc
- 大小:7.29 MB
- 文档页数:10
2014年中考数学模拟试卷 201406一、选择题(本大题共有8小题,每小题3分,共24分) 1. 6-的相反数是……………………………………( ) A 、 6 B 、-6 C 、61 D 、61- 2.下列计算正确的是………………………………( ) A 、632a a a =⋅B 、633a a a =+C 、628a a a =÷ D 、632)(a a =-3. 下列图形中既是轴对称图形又是中心对称图形的是 …………( ) A、正六边形 B、正五边形 C、平行四边形 D、等腰三角形4.有长度分别为3cm ,5cm ,7cm ,9cm 的四条线段,从中任取三条线段能够组成三角形的概率 是……………………………………………………………………( ) A .43 B .32 C .21 D .41 5. 如下右图是一个由多个相同小正方体堆积而成的几何体的俯视图.图中所示数字为该位置小正方体的个数,则这个几何体的主视图...是……………………( )6.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是………………………………………………………………( )A . 外切B .相交C .内含D .内切 7.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等.....的是……( )8.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°点A 的坐标为 (1,2).将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲 线xky =(x >0)上,则k 的值为………………( ) A .2 B .3 C .4 D .6二、填空题(本大题共10个小题,每小题3分,共30分)9.我市去年约有9700人参加中考,这个数据用科学记数法可表示为 ________ _ . 10.分解因式42a a -= ___ __ 11.已知函数321xy x -=+,x 的取值范围是____________________________ 12.扬州某学校有四个绿化小组,在植树节这天种下松树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.13.一工厂计划2014年的成本比2012年的成本降低15%,如果每一年比上一年降低的百分率为x ,那么求平均每一年比上一年降低的百分率的方程是_______________________ 14.下列事件中:①掷一枚硬币,正面朝上;②若a 是实数,则|a |≥0;③两直线平行,同位角相等;④从车间刚生产的产品中任意抽取一个是次品.其中属于必然事件的有_______ (填序号). 15. 小明用下图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是 cm . 16. 如图,Rt △ABC 中,∠B =90°,AB =6cm ,AC =10cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于________cm.17.如图,A 、B 、C 三点在正方形网格线的交点处,则tan BAC ∠的值为 . 18. 若x 是不等于1的实数,我们把x -11称为x 的差倒数,如2的差倒数是1211-=-; 1-的差倒数为21)1(11=--,现已知311-=x ,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则=2014x _______________. 三、解答题(本大题共10个小题,共96分) 19、(本小题满分8分) (1)计算:︒-++-45sin 2)231(210(2) 化简,求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x 满足022=-x x .20、(本小题满分8分)解不等式组 并写出不等式组的整数解.21. (8分)某校九年级(1)班所有学生参加2014年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:⑴ 九年级(1)班参加体育测试的学生有________ _人; ⑵ 将条形统计图补充完整;⑶ 在扇形统计图中,等级B 部分所占的百分比是_____,等级C 对应的圆心角的度数为 ___ °; ⑷ 若该校九年级学生共有850人参加体育测试,估计达到A 级和B 级的学生共有多少人?D10%AC30%B 40512x x x -≥⎧⎪⎨-⎪⎩+1>22. (满分8分)如图,在△ABD和ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G。
江苏省扬州市2014年中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2014•扬州)下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0D.1考点:有理数大小比较.分析:根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选A.点评:本题考查实数大小的比较,是基础性的题目.2.(3分)(2014•扬州)若□×3xy=3x2y,则□内应填的单项式是()A.x y B.3xy C.x D.3x考点:单项式乘单项式专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:3x2y÷3xy=x,故选C点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.3.(3分)(2014•扬州)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)考点:反比例函数图象上点的坐标特征分析:先把P(﹣2,3)代入反比例函数的解析式求出k=﹣6,再把所给点的横纵坐标相乘,结果不是﹣6的,该函数的图象就不经过此点.解答:解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,3),∴k=﹣2×3=﹣6,∴只需把各点横纵坐标相乘,不是﹣6的,该函数的图象就不经过此点,四个选项中只有D不符合.故选D.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.4.(3分)(2014•扬州)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()A.﹣3 B.6C.7D.6或﹣3考点:极差分析:根据极差的定义分两种情况进行讨论,当x是最大值时,x﹣(﹣1)=7,当x是最小值时,4﹣x=7,再进行计算即可.解答:解:∵数据﹣1,0,2,4,x的极差为7,∴当x是最大值时,x﹣(﹣1)=7,解得x=6,当x是最小值时,4﹣x=7,解得x=﹣3,故选D.点评:此题考查了极差,求极差的方法是用最大值减去最小值,本题注意分两种情况讨论.5.(3分)(2014•扬州)如图,圆与圆的位置关系没有()A.相交B.相切C.内含D.外离考点:圆与圆的位置关系分析:由其中两圆有的位置关系是:内切,外切,内含、外离.即可求得答案.解答:解:∵如图,其中两圆有的位置关系是:内切,外切,内含、外离.∴其中两圆没有的位置关系是:相交.故选A.点评:此题考查了圆与圆的位置关系.注意掌握数形结合思想的应用.6.(3分)(2014•扬州)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.0.1 B.0.2 C.0.3 D.0.4考点:估算无理数的大小分析:先估算出圆的面积,再根据S阴影=S正方形﹣S圆解答.解答:解:∵正方形的边长为1,圆与正方形的四条边都相切,∴S阴影=S正方形﹣S圆=1﹣0.25π≈﹣0.215.故选B.点评:本题考查的是估算无理数的大小,熟知π≈3.14是解答此题的关键.7.(3分)(2014•扬州)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6考点:含30度角的直角三角形;等腰三角形的性质专题:计算题.分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.(3分)(2014•扬州)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2考点:全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析:连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠MCN.解答:解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(LH)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥ON于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选A.点评:此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题(共10小题,每小题3分,满分30分)9.(3分)(2014•扬州)据统计,参加今年扬州市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为 3.68×104.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将36800用科学记数法表示为:3.68×104.故答案为:3.68×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2014•扬州)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35 cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为35.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.(3分)(2014•扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.考点:由三视图判断几何体.分析:首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.解答:解:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18,故答案为:18.点评:本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.12.(3分)(2014•扬州)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.考点:用样本估计总体;扇形统计图.分析:先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.解答:解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280(人).故答案为:280.点评:本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.13.(3分)(2014•扬州)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5°.考点:等腰梯形的性质;多边形内角与外角分析:首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.14.(3分)(2014•扬州)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A 落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40cm3.考点:翻折变换(折叠问题);三角形中位线定理分析:根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.解答:解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=40cm2.故答案为:40.点评:本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.15.(3分)(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质.分析:首先根据三角形内角和求得∠B+∠C的度数,然后求得其二倍,然后利用三角形的内角和求得∠BOD+∠EOC,然后利用平角的性质求得即可.解答:解:∵∠A=65°,∴∠B+∠C=180°﹣65°=115°,∴∠BDO=∠DBO,∠OEC=∠OCE,∴∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°,∴∠BOD+∠EOC=2×180°﹣230°=130°,∴∠DOE=180°﹣130°=50°,故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.16.(3分)(2014•扬州)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.考点:抛物线与x轴的交点分析:依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.解答:解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.点评:本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.17.(3分)(2014•扬州)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a ﹣b+5的值为23.考点:因式分解的应用;一元二次方程的解;根与系数的关系专题:计算题.分析:根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.18.(3分)(2014•扬州)设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是165.考点:规律型:数字的变化类.分析:首先根据(a1+1)2+(a2+1)2+…+(a2014+1)2得到a12+a22+…+a20142+2152,然后设有x个1,y个﹣1,z个0,得到方程组,解方程组即可确定正确的答案.解答:解:(a1+1)2+(a2+1)2+…+(a2014+1)2=a12+a22+…+a20142+2(a1+a2+…+a2014)+2014 =a12+a22+…+a20142+2×69+2014=a12+a22+…+a20142+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.点评:本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,难度较大.三、解答题(共10小题,满分96分)19.(8分)(2014•扬州)(1)计算:(3.14﹣π)0+(﹣)﹣2﹣2sin30°;(2)化简:﹣÷.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算即可得到结果.解答:解:(1)原式=1+4﹣1=4;(2)原式=﹣•=﹣=.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则是解本题的关键.20.(8分)(2014•扬州)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.考点:根的判别式;一元二次方程的定义分析:根据根的判别式令△=0,建立关于k的方程,解方程即可.解答:解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.(8分)(2014•扬州)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.考点:方差;加权平均数;中位数;众数.分析:(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.解答:解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:(10×4+8×2+7+9×3)=9,则方差是:[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.点评:本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(8分)(2014•扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.考点:列表法与树状图法;概率公式分析:(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.解答:解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)(2014•扬州)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质分析:(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG+∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.24.(10分)(2014•扬州)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?考点:分式方程的应用.分析:设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.解答:解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.点评:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.25.(10分)(2014•扬州)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.考点:切线的性质;弧长的计算.分析:(1)要证明DE∥BC,可证明∠EDA=∠B,由弧DE的长度为4π,可以求得∠DOE 的度数,再根据切线的性质可求得∠EDA的度数,即可证明结论.(2)根据90°的圆周角对的弦是直径,可以求得EF,的长度,借用勾股定理求得AE 与CF的长度,即可得到答案.解答:解:(1)证明:连接OD、OE,∵OD是⊙O的切线,∴OD⊥AB,∴∠ODA=90°,又∵弧DE的长度为4π,∴,∴n=60,∴△ODE是等边三角形,∴∠ODE=60°,∴∠EDA=30°,∴∠B=∠EDA,∴DE∥BC.(2)连接FD,∵DE∥BC,∴∠DEF=90°,∴FD是⊙0的直径,由(1)得:∠EFD=30°,FD=24,∴EF=,又因为∠EDA=30°,DE=12,∴AE=,又∵AF=CE,∴AE=CF,∴CA=AE+EF+CF=20,又∵,∴BC=60.点评:本题考查了勾股定理以及圆的性质的综合应用,解答本题的关键在于900的圆周角对的弦是直径这一性质的灵活运用.26.(10分)(2014•扬州)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?考点:分式的混合运算;解二元一次方程组;一元一次不等式组的整数解专题:新定义.分析:(1)①已知两对值代入T中计算求出a与b的值;②根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;(2)由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.解答:解:(1)①根据题意得:T(1,﹣1)==﹣2,即a﹣b=﹣2;T=(4,2)==1,即2a+b=5,解得:a=1,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有3个整数解,即m=0,1,2,∴2≤<3,解得:﹣2≤p<﹣;(2)由T(x,y)=T(y,x),得到=,整理得:(x2﹣y2)(2b﹣a)=0,∵T(x,y)=T(y,x)对任意实数x,y都成立,∴2b﹣a=0,即a=2b.点评:此题考查了分式的混合运算,解二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键.27.(12分)(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?考点:二次函数的应用;一次函数的应用.分析:(1)根据待定系数法,可得函数解析式;(2)根据收入等于指出,可得一元一次方程,根据解一元一次方程,可得答案;(3)分类讨论40≤x≤58,或58≤x≤71,根据收入减去支出大于或等于债务,可得不等式,根据解不等式,可得答案.解答:解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.点评:本题考查了二次函数的应用,利用待定系数法求函数解析式,一次方程的应用,不等式的应用,分类讨论是解题关键.28.(12分)(2014•扬州)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.考点:相似形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;矩形的性质;特殊角的三角函数值.专题:综合题;动点型;探究型.分析:(1)只需证明两对对应角分别相等即可证到两个三角形相似,然后根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP 长,从而求出AB长.(2)由DP=DC=AB=AP及∠D=90°,利用三角函数即可求出∠DAP的度数,进而求出∠OAB的度数.(3)由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.解答:解:(1)如图1,①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO.∠APO=∠B.∴∠APO=90°.∴∠APD=90°﹣∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.②∵△OCP与△PDA的面积比为1:4,∴====.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x,则OB=x,CO=8﹣x.在Rt△PCO中,∵∠C=90°,CP=4,OP=x,CO=8﹣x,∴x2=(8﹣x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.(2)如图1,∵P是CD边的中点,∴DP=DC.∵DC=AB,AB=AP,∴DP=AP.∵∠D=90°,∴sin∠DAP==.∴∠DAP=30°.∵∠DAB=90°,∠PAO=∠BAO,∠DAP=30°,∴∠OAB=30°.∴∠OAB的度数为30°.(3)作MQ∥AN,交PB于点Q,如图2.∵AP=AB,MQ∥AN,∴∠APB=∠ABP,∠ABP=∠MQP.∴∠APB=∠MQP.∴MP=MQ.∵MP=MQ,ME⊥PQ,∴PE=EQ=PQ.∵BN=PM,MP=MQ,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF.在△MFQ和△NFB中,.∴△MFQ≌△NFB.∴QF=BF.∴QF=QB.∴EF=EQ+QF=PQ+QB=PB.由(1)中的结论可得:PC=4,BC=8,∠C=90°.∴PB==4.∴EF=PB=2.∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2.点评:本题是一道运动变化类的题目,考查了相似三角形的性质和判定、全等三角形的性质和判定、矩形的性质、等腰三角形的性质和判定、勾股定理、特殊角的三角函数值等知识,综合性比较强,而添加适当的辅助线是解决最后一个问题的关键.21。
扬州市邗江区2014—2015学年第二学期八年级数学期中试卷(满分:150分时间:120分钟)一、选择题(每题3分,共24分)题号 1 2 3 4 5 6 7 8答案1.下列调查中,适合用普查方式的是(▲)A.了解瘦西湖风景区中鸟的种类B.了解扬州电视台《关注》栏目的收视率C.了解学生对“扬农”牌牛奶的喜爱情况D.航天飞机发射前的安全检查2.下列事件是随机事件的是(▲)A.没有水分,种子发芽 B.367人中至少有2人的生日相同C.三角形的内角和是180° D.小华一出门上学,天就下雨3.在一个不透明的布袋中装有2个白球和1个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是(▲)A.B.C.D.4. 分式的值为0,则(▲)A.x=-2 B.x=±2 C.x=2 D.x=05. 计算的结果是(▲)A. B. C. D.6. 矩形具有而菱形不具有的性质是(▲)A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等7. 如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。
连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC定是..(▲)A. 矩形B. 正方形C.菱形D. 梯形(第8题) 8.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论中正确结论的个数是(▲)①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.A.1B.2C.3D.4二、填空题(每题3分,共30分)9.某校为了解该校500名初二学生的期中数学考试成绩,从中抽查了100名学生的数学成绩.在这次调查中,样本容量是10.当时,分式有意义.11.分式的最简公分母是_ .12.化简:a=.13.在下列图形:①菱形②等边三角形③矩形④平行四边形中,既是中心对称图形又是轴对称图形的是_ (填写序号).14顺次连接矩形四边中点所形成的四边形是.学校的一块菱形花园两对角线的长分别是6 m和8 m,则这个花园的面积为.15.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是_ .(第15题)(第16题)16.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_ .17 .如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是(第17题)(第18题)18.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是_ .三、解答下列各题(共96分)19.化简:(每小题5分,共20分)(1)(2)(1-) (m+1)(3)(4)20.(本题6分)先化简,再求值:,其中21.(10分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?。
江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+=故答案为:【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE ﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x的取值范围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使。