初三数学下册知识点归纳
- 格式:doc
- 大小:885.50 KB
- 文档页数:17
初三数学下册重要知识点总结第26章二次函数1. 二次函数的一般形式:y=ax2+bx+c (a≠0)。
2.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式---待定系数法。
3.二次函数的顶点式:y=a(x-h)2+k (a≠0);由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k。
4.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式。
5. 二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式:6. 二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:(1) a>0 <=> 抛物线开口向上;a<0 <=> 抛物线开口向下。
(2) c>0 <=> 抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c<0 <=> 抛物线从原点下方通过。
(3) a, b异号<=> 对称轴在y轴的右侧;a, b同号<=> 对称轴在y轴的左侧;b=0 <=> 对称轴是y轴。
(4) b2-4ac>0 <=> 抛物线与x轴有两个交点;b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切);b2-4ac<0 <=> 抛物线与x轴无交点。
7.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上。
初三数学下册重要知识点总结第27章 相似形2.比例的基本性质: a:b=c:ddcb a = ad=bc ;ABC cba 初三数学下册重要知识点总结第28章 解三角形1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么sinA=c a =斜对; cosA=c b =斜对;tanA=ba=邻对; cotA=a b =对邻. 2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:sinA=cosB ; cosA=sinB ; tanA=cotB ;cotA=tanB. 3. 同角三角函数关系:sin 2A+cos 2A =1; tanA·co tA =1. tanA=Acos A sin 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数值,要熟练记忆它们.6.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.7.坡度: i = 1:m = h/l = tan α; 坡角: α.8. 方位角:9.仰角与俯角:北东北偏西30南偏东70仰角俯角水平线铅垂线lha i=1:mK3 KKKK2 K230°45°60°ABC ABC。
九年级下数学所有知识点一、代数与函数1. 整式与分式整式的定义与性质分式的定义与性质2. 一次函数与二次函数一次函数的概念及性质二次函数的概念及性质一次函数与二次函数的图像特征3. 指数与对数指数的概念与性质对数的概念与性质指数函数与对数函数的关系4. 平面直角坐标系与直线平面直角坐标系的引入直线的斜率与方程二、几何1. 四边形与圆四边形的性质与分类圆的概念与性质2. 相似与全等三角形相似三角形的定义与性质全等三角形的定义与性质3. 空间几何体立体几何体的概念与性质立体几何体的计算4. 平行线与比例平行线的性质与判定比例的概念与性质三、概率与统计1. 事件与概率事件的基本概念概率的计算与性质2. 数据的收集与整理数据的统计方式与方法数据的分析与解读3. 统计的图表与分布条形图、折线图、饼图的绘制与解读频率分布表的制作与分析4. 抽样与推断随机抽样的概念与方法样本与总体的关系与推断四、数与量1. 数集与数的性质数集的分类与表示奇偶性、整除与因数2. 分数与小数分数的四则运算与性质小数的运算与应用3. 数量关系与变化比例与比例关系速度与密度的计算4. 三角函数与图形正弦、余弦、正切的概念与性质图形的平移、旋转、翻折与对称以上是九年级下数学的所有知识点的简要概述,涵盖了代数与函数、几何、概率与统计以及数与量等方面的内容。
通过学习这些知识,同学们将能够熟练掌握数学中的基本概念、性质和应用技巧,为进一步的学习做好铺垫,并培养良好的数学思维能力和解决问题的能力。
希望同学们在学习过程中勤加练习,加强对知识的理解与应用,做到理论联系实际,努力提高数学水平。
【关键字】学生知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2. 2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0. 知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0. 3.直角坐标系中,点A(1,1)在第一象限. 4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数.2.函数y=4x+1是正比率函数.3.函数是反比率函数.4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2).7.反比率函数的图象在第一、三象限.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042=-x的根为.A.x=2 B.x=-2 C.x1=2,x2=-2 D.x=4 2.方程x2-1=0的两根为.A.x=1 B.x=-1 C.x1=1,x2=-1 D.x=2 3.方程(x-3)(x+4)=0的两根为.A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-44.方程x(x-2)=0的两根为.A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-25.方程x2-9=0的两根为.A.x=3 B.x=-3 C.x1=3,x2=-3 D.x1=+3,x2=-3知识点12:方程解的情况及换元法1.一元二次方程02342=-+xx的根的情况是 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x2-5x+3=0的根的情况初三数学下册知识点归纳是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x 2+4x+2=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4.不解方程,判别方程4x 2+4x-1=0的根的情况是 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x 2-7x+5=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6.不解方程,判别方程5x 2+7x=-5的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根7.不解方程,判别方程x 2+4x+2=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程,判断方程5y 2+1=25y 的根的情况是 A.有两个相等的实数根 B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用 换 元 法 解方 程 4)3(5322=---x x x x 时, 令 32-x x = y ,于是原方程变为 . A.y 2-5y+4=0 B.y 2-5y-4=0 C.y 2-4y-5=0 D.y 2+4y-5=010. 用换元法解方程4)3(5322=---x x x x 时,令23x x -= y ,于是原方程变为 .A.5y 2-4y+1=0B.5y 2-4y-1=0 C.-5y2-4y-1=0D. -5y 2-4y-1=0 11. 用换元法解方程(1+x x )2-5(1+x x )+6=0时,设1+x x=y ,则原方程化为关于y 的方程是 . A.y 2+5y+6=0 B.y 2-5y+6=0 C.y 2+5y-6=0 D.y 2-5y-6=0知识点13:自变量的取值范围1.函数2-=x y 中,自变量x 的取值范围是 . A.x ≠2 B.x ≤-2 C.x ≥-2 D.x ≠-2 2.函数y=31-x 的自变量的取值范围是 . A.x>3 B. x ≥3 C. x ≠3 D. x 为任意实数 3.函数y=11+x 的自变量的取值范围是 . A.x ≥-1 B. x>-1 C. x ≠1 D. x ≠-1 4.函数y=11--x 的自变量的取值范围是 . A.x ≥1 B.x ≤1 C.x ≠1 D.x 为任意实数 5.函数y=25-x 的自变量的取值范围是 . A.x>5 B.x ≥5 C.x ≠5 D.x 为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 .A. y=-8xB.y=-8x+1C.y=8x 2+1D.y=x8-2.下列函数中,反比例函数是 . A. y=8x 2 B.y=8x+1 C.y=-8x D.y=-x8 3.下列函数:①y =8x 2;②y =8x+1;③y =-8x ;④y =-x8.其中,一次函数有 个 .A.1个B.2个C.3个D.4个 知识点15:圆的基本性质1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .•BOCADAA. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O中, 圆周角∠BAD=50°,则圆周角∠BCD的度数是 .A.100°B.130°C.80°D.50°3.已知:如图,⊙O中, 圆心角∠BOD=100°,则圆周角∠BCD的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD内接于⊙O,则下列结论中正确的是 .A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为.A.3cmB.4cmC.5cmD.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.50 7.已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是 .A.100°B.130°C.200°D.508. 已知:如图,⊙O中,圆周角∠BCD=130°,则圆心角∠BOD的度数是 .A.100°B.130°C.80°D.50°9. 在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径为cm.A.3B.4C.5D. 1010. 已知:如图,⊙O中,弧AB的度数为100°,则圆周角∠ACB的度数是 .A.100°B.130°C.200°D.50°12.在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为.A. 3cmB. 4 cmC.5 cmD.6 cm 知识点16:点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交3.已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4.已知圆的半径为 6.5cm,直线l和圆心的距离为 4.5cm,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离 C.相交 D. 不能确定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定6.5cm,7. 已知圆的半径为直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交 D. 相离或相交8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .A.点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D.内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D.外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D.内含•DBCAO••CBAO•BOCAD•BOCAD•CBAO4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是 .A.外离B. 外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长43,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条知识点19:正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.10cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A. 2B. 3C.1D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A. 2B. 1C.2D.34.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= .A.30°B.60°C.90°D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为 .A.21R B.R C.2R D.R36.圆的周长为C,那么这个圆的面积S= .A.2Cπ B.π2CC.π22CD.π42C7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:3C.3:2D.1:28. 圆的周长为C,那么这个圆的半径R= .A.2Cπ B. Cπ C.π2CD. πC9.已知,正方形的边长为2,那么这个正方形外接圆的半径为.A.2B.4C.22D.2310.已知,正三角形的半径为3,那么这个正三角形的边长为 .A. 3B. 3C.32D.33知识点20:函数图像问题1.已知:关于x 的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)3.一次函数y=x+1的图象在 . A.第一、二、三象限 B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限 4.函数y=2x+1的图象不经过 . A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.反比例函数y=x2的图象在 . A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 6.反比例函数y=-x10的图象不经过 . A 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2) 8.一次函数y=-x+1的图象在 .A .第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限 9.一次函数y=-2x+1的图象经过 . A .第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限 10. 已知抛物线y=ax 2+bx+c (a>0且a 、b 、c 为常数)的对称轴为x=1,且函数图象上有三点A(-1,y 1)、B(21,y 2)、C(2,y 3),则y 1、y 2、y 3的大小关系是 . A.y 3<y 1<y 2 B. y 2<y 3<y 1 C. y 3<y 2<y 1D. y 1<y 3<y 2知识点21:分式的化简与求值1.计算:)4)(4(yx xyy x y x xy y x +-+-+-的正确结果为 .A. 22x y -B. 22y x -C. 224y x -D. 224y x -2.计算:1-(121)11222+-+-÷--a a a a a a 的正确结果为 .A. a a +2B. a a -2C. -a a +2D. -a a -23.计算:)21(22x x x -÷-的正确结果为 .A.xB.x 1C.-x 1D.-x x 2-4.计算:)111()111(2-+÷-+x x 的正确结果为 .A.1B.x+1C.xx 1+ D.11-x 5.计算)11()111(-÷-+-xx x x 的正确结果是 .A.1-x xB.-1-x xC.1+x xD.-1+x x 6.计算)11()(yx x y y y x x -÷-+-的正确结果是 . A.y x xy - B. -y x xy - C.y x xy+D.- yx xy+ 7.计算:22222222222)(y xy x xy y x y x y x y x y x +++-+--⋅-的正确结果为 . A.x-y B.x+yC.-(x+y)D.y-x 8.计算:)1(1xx x x -÷-的正确结果为 .A.1B.11+x C.-1 D.11-x 9.计算xxx x x x -÷+--24)22(的正确结果是 . A.21-x B. 21+x C.- 21-x D.- 21+x知识点22:二次根式的化简与求值1. 已知xy>0,化简二次根式2x y x -的正确结果为 . A.y B.y - C.-yD.-y -2.化简二次根式21aa a +-的结果是 . A.1--a B.-1--a C.1+a D.1--a3.若a<b ,化简二次根式aba -的结果是 .A.ab B.-ab C.ab -D.-ab -4.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C. a - D.a --5. 化简二次根式23)1(--x x 的结果是 . A.x x x --1 B.xxx ---1 C.x x x --1D.1--x xx 6.若a<b ,化简二次根式a b a b a a 2)(---的结果是 . A.a B.-a C. a -D.a --7.已知xy<0,则y x 2化简后的结果是 .A.y xB.-y xC.y x -D.y x -8.若a<b ,化简二次根式ab a b a a 2)(---的结果是 .A.a B.-a C. a -D.a --9.若b>a ,化简二次根式a 2ab -的结果是 .A.ab aB.ab a --C.ab a -D.ab a -10.化简二次根式21aa a +-的结果是 . A.1--a B.-1--a C.1+aD.1--a11.若ab<0,化简二次根式321b a a-的结果文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.是 .A.b bB.-b bC. b b -D. -b b -知识点23:方程的根1.当m= 时,分式方程x x m x x --=+--2312422会产生增根. A.1 B.2 C.-1 D.2 2.分式方程x x x x --=+--23121422的解为 .A.x=-2或x=0B.x=-2C.x=0D.方程无实数根3.用换元法解方程05)1(2122=--++x x x x ,设xx 1-=y ,则原方程化为关于y 的方程 .A.y 2+2y-5=0 B.y 2+2y-7=0 C.y 2+2y-3=0D.y 2+2y-9=04.已知方程(a-1)x 2+2ax+a 2+5=0有一个根是x=-3,则a 的值为 . A.-4 B. 1 C.-4或1 D.4或-15.关于x 的方程0111=--+x ax 有增根,则实数a为 . A.a=1 B.a=-1 C.a=±1 D.a= 26.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是 .A.x 2+23x-1=0B.x 2+23x+1=0C.x 2-23x-1=0D.x 2-23x+1=07.已知关于x 的一元二次方程(k-3)x 2-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是 . A.k>-23 B.k>-23且k ≠3 C.k<-23 D.k>23且k ≠3知识点24:求点的坐标1.已知点P 的坐标为(2,2),PQ ‖x 轴,且PQ=2,则Q 点的坐标是 .A.(4,2)B.(0,2)或(4,2)C.(0,2)D.(2,0)或(2,4)2.如果点P 到x 轴的距离为3,到y 轴的距离为4,且点P 在第四象限内,则P 点的坐标为 .A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3.过点P(1,-2)作x 轴的平行线l 1,过点Q(-4,3)作y 轴的平行线l 2, l 1、l 2相交于点A ,则点A 的坐标是 .A.(1,3)B.(-4,-2)C.(3,1)D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y 1)、B(-41,y 2)、C(21,y 3)在反比例函数y=xk(k<0)的图象上,则下列各式中不正确的是 .A.y 3<y 1<y 2B.y 2+y 3<0C.y 1+y 3<0D.y 1•y 3•y 2<02.在反比例函数y=x m 63-的图象上有两点A(x 1,y 1)、B(x 2,y 2),若x 2<0<x 1 ,y 1<y 2,则m 的取值范围是 . A.m>2 B.m<2 C.m<0 D.m>03.已知:如图,过原点O 的直线交反比例函数y=x 2的图象于A 、B 两点,AC ⊥x 轴,AD ⊥y 轴,△ABC的面积为S,则 . A.S=2 B.2<S<4 C.S=4 D.S>44.已知点(x 1,y 1)、(x 2,y 2)在反比例函数y=-x2的图象上, 下列的说法中:①图象在第二、四象限;②y 随x 的增大而增大;③当0<x 1<x 2时, y 1<y 2;④点(-x 1,-y 1) 、(-x 2,-y 2)也一定在此反比例函数的图象上,其中正确的有 个.A.1个B.2个C.3个D.4个 5.若反比例函数x ky =的图象与直线y=-x+2有两个不同的交点A 、B ,且∠AOB<90º,则k 的取值范围必是 .A. k>1B. k<1C. 0<k<1D. k<06.若点(m ,m1)是反比例函数x n n y 122--=的图象上一点,则此函数图象与直线y=-x+b (|b|<2)的交点的个数为 .A.0B.1C.2D.47.已知直线b kx y +=与双曲线x k y =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1·x 2的值 . A.与k 有关,与b 无关 B.与k 无关,与b 有关 C.与k 、b 都有关 D.与k 、b 都无关 知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 . A. 正三边形 B.正四边形 C.正五边形 D.正六边形 2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是 . A.2,1 B.1,2 C.1,3 D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是 . A.正四边形、正六边形 B.正六边形、正十二边形 C.正四边形、正八边形 D.正八边形、正十二边形 4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是 . A.正三边形 B.正四边形 C. 正五边形 D.正六边形 5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有 种不同的设计方案. A.2种 B.3种 C.4种 D.6种 6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是 . A.正三边形、正四边形 B.正六边形、正八边形C.正三边形、正六边形 D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是 (所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是 . A.正三边形 B.正四边形 C.正六边形 D.正十二边形 9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是 . A.正四边形 B.正六边形 C.正八边形D.正十二边形 知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为 公斤. A.2×105 B.6×105 2.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为 . 知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 . A. 45 B. 51 C. 54 D. 57 2.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是.A.①②B.②③C.①③D.①②③3.某学校按年龄组报名参加乒乓球赛,规定“n岁年龄组”只允许满n岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是.A.报名总人数是10人;B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有.①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖,则获一等奖的学生有5人.A ①②③B ①②C ②③D ①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数 .A.43B.44C.45D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A 45B 51C 54D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分析,各分数段人数如图所示,下列结论,其中正确的有()①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组;分以上)的学生占全班人56%.A.①②③④ B.①②④ C.②③④ D.①③④8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格,则下列结论:其中正确的有个 .①初三(1)班共有60名学生;②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%.A.①②③B.②③C.①③D.①②知识点29:增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为%918.12万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是.A. ①②B. ①③C. ②③D.①2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸绩易总额为 亿美元. A.%)101(3.16+ B.%)101(3.16- C. %1013.16+D. %1013.16-3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为 .A.71500B.82500C.59400D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为 元. 78元 B.100元 C.156元 D.200元 5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是 元.( ) A.700元 B.800元 C.850元 D.1000元 6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是 元. A.44 B.45 C.46 D.487.某商品的价格为a 元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是 元. A.a 元 8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是 . A.先涨价m%,再降价n% B.先涨价n%,再降价m% C.先涨价2n m +%,再降价2n m +% D.先涨价mn %,再降价mn % 9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为 . A.1600元 B.3200元 C.6400元 D.8000元 10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为 2.25%,到期时银行向储户支付现金 元. 16360元 B.16288 C.16324元 D.16000元 知识点30:圆中的角1.已知:如图,⊙O 1、⊙O 2外切于点C ,AB 为外公切线,AC 的延长线交⊙O 1于点D,若AD=4AC,则∠ABC 的度数为 .A.15°B.30°C.45°D.60° 2.已知:如图,PA 、PB 为⊙O 的两条切线,A 、B 为切点,AD ⊥PB 于D 点,AD 交⊙O 于点E,若∠DBE=25°,则∠P= . A.75° B.60° C.50° D.45°3.已知:如图, AB 为⊙O 的直径,C 、D 为⊙O 上的两点,AD=CD ,∠CBE=40°,过点B 作⊙O 的切线交DC 的延长线于E 点,则∠CEB= . A. 60° B.65° C.70° D.75°4.已知EBA 、EDC 是⊙O 的两条割线,其中EBA 过圆心,已知弧AC 的度数是105°,且AB=2ED ,则∠E 的度数为 . A.30° B.35° C.45° D.755.已知:如图,Rt △ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 为半径作⊙O 与BC 相切于点D, 与AC 相交于点E,若∠ABC=40°,则∠CDE= .A.40°B.20°C.25°D.30°6.已知:如图,在⊙O 的内接四边形ABCD 中,AB 是直径, ∠BCD=130º,过D 点的切线PD 与直线AB 交于P点,则∠ADP 的度数为 . A.40º B.45º C.50º D.65º 7.已知:如图,两同心圆的圆心为O ,大圆的弦AB 、 AC 切小圆于D 、E 两点,弧DE 的度数为110°, 则弧AB 的度数为 . A.70° B.90° C.110° D.130 8. 已知:如图,⊙O 1与⊙O 2外切于点P ,⊙O 1的弦AB 切⊙O 2于C 点,若∠APB=30º, 则∠BPC= .· B A CD OP • o AP B DE•E OADBC • E DB OA C AB C •D B OA C E• A B OE DCA.60ºB.70ºC.75ºD.90º知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈1.4 ,3≈1.7) 2.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为 米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.54 3.已知:如图,P 为⊙O 外一点,PA 切⊙O 于点A,直线PCB 交⊙O 于C 、B, AD ⊥BC 于D,若PC=4,PA=8,设∠ABC=α,∠ACP=β,则sin α:sin β= .A.31B.21C.2D. 4 4.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为 米.A. 23米B. 3米C. 3.2米D. 233米5.已知△ABC 中,BD 平分∠ABC ,DE ⊥BC 于E点,且DE:BD=1:2,DC:AD=3:4,CE=76,BC=6,则△ABC 的面积为 .A.3B.123C.243D.12知识点32:圆中的线段1.已知:如图,⊙O 1与⊙O 2外切于C 点,AB 一条外公切线,A 、B 分别为切点,连结AC 、BC.设⊙O 1的半径为R ,⊙O 2的半径为r ,若tan ∠ABC=2,则r R的值为 . A .2 B .3 C .2 D .32.已知:如图,⊙O 1、⊙O 2内切于点A ,⊙O 1的直径AB 交⊙O 2于点C ,O 1E ⊥AB 交⊙O 2于F 点,BC=9,EF=5,则CO 1= A.9 B.13 C.14D.163.已知:如图,⊙O 1、⊙O 2内切于点P, ⊙O 2的弦AB 过O 1点且交⊙O 1于C 、D 两点,若AC :CD :DB=3:4:2,则⊙O 1与⊙O 2的直径之比为 .A.2:7B.2:5C.2:3D.1:3 4.已知:如图,⊙O 1与⊙O 2外切于A 点,⊙O 1的半径为r ,⊙O 2的半径为R,且r:R=4:5,P为⊙O 1一点,PB 切⊙O 2于B 点,若PB=6,则PA= .A.2B.3C.4D.56.已知:如图,PA 为⊙O 的切线,PBC 为过O 点的割线,PA=45,⊙O 的半径为3,则AC 的长为为 .A.413B.13133C.13265D.1326154.已知:如图, Rt ΔABC ,∠C=90°,AC=4,BC=3,⊙O 1内切于ΔABC ,⊙O 2切BC ,且与AB 、AC 的延长线都相切,⊙O 1的半径R 1, ⊙O 2的半径为R 2,则21R R = . A.21 B.32 C.43 D.545.已知⊙O 1与边长分别为18cm 、25cm 的矩形三边相切,⊙O 2与⊙O 1外切,与边BC 、CD 相切,则⊙O 2的半径为 .A.4cm C.7cm D.8cm 6.已知:如图,CD 为⊙O 的直径,AC 是⊙O 的切线,AC=2,过A 点的割线AEF 交CD 的延长线于B 点,且AE=EF=FB ,则⊙O 的半径为 .A.7145B.14145C.714D.14147.已知:如图, ABCD ,过B 、C 、B E DAC•O BPAC •┑αβ O AD BC P· ·O 1O 2BAC • • BECAO 2O1F••O 2O 1A PBDPC •BAO CD E ••O 2 O 1 ADBC•ODCBAEFD 三点作⊙O ,⊙O 切AB 于B 点,交AD 于E 点.若AB=4,CE=5,则DE 的长为 . A.2 B.59 C.516D.1 8. 如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21 D.41知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A 地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B 地返回学校时的平均速度为 百米/分.34110 B.27 C.43110 D.932102.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升. A.15 B.16 C.17 D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 . A.12天 B.13天 C.14天 D.15天 4. 某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示. 现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是 分钟. A.16分钟 B.20分钟 C.24分钟 D.44分钟 5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y 是时间t 的函数,则这个函数的大致图像只能是 . A B C D6. 如图,某航空公司托运行李的费用y(元)与托运行李的重量x(公斤)数,由图中可知,行李不超过 斤时,可以免费托运.A.18 C.20D.217. 小明利用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,后走平路,再走下坡路到小姨家.行程情况如图所示.星期日小明又沿原路返回自己家.若两天中,小明上坡、平路、下坡行驶的速度相对不变,则星期日,小明返回家的时间是 分钟. A. 30分钟 B.3831分钟 C.4132分钟 D.4331分钟8. 有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进不出水,在随后的15分钟内既进水又出水,容器中的水量y(升)与时间t(分)之间的函数关系图像如图,若20分钟后只出水不进水,则需 分钟可将容器内的水放完.A .20分钟 B.25分钟 C .335分钟 D .395分钟9. 一学生骑自行车上学,最初以某一速度匀速前进, 中途由于自行车发生故障,停下修车耽误了几分钟.为了按时到校,这位学生加快了速度,仍保持匀速前进,结果准时到达学校,这位学生的自行车行进路程S(千米)与行进时间 t(分钟)的函数关系如右图所示,则这位学生修车后速度加快了 千米/分. A.5 B.7.5 C.10 D.12.5 10. 某工程队接受一项轻轨建筑任务,计划从2002年6月初至2003年5月底(12个月) 完成,施工3个月后,实行倒计时,提高工作效率,施工情况如图所示,那么按提高工作效率后的速度做完全部工程,可提) ))。
初三数学下册知识点总结一、平面图形的认识1. 点、线、面的基本概念2. 角的概念及角的分类3. 直线的分类及直线的性质4. 平行线的判定方法及平行线的性质5. 三角形的分类及三角形的性质6. 等腰三角形、等边三角形的性质7. 直角三角形、等腰直角三角形的性质8. 平行四边形、菱形、矩形、正方形的性质二、数据处理1. 平均数的概念及计算2. 中位数的概念及计算3. 众数的概念及计算4. 极差的概念及计算5. 百分数及其应用6. 棒形图、折线图、饼图的绘制及解读7. 统计调查设计三、方程式与不等式1. 一元一次方程的解法及应用2. 一元一次方程的解集及解集图的绘制3. 度量图形的方程式4. 解一元一次方程的应用题5. 一元一次不等式的认识及解法6. 一元一次不等式的应用题7. 二元一次方程组的解法及应用四、几何变换与成分比例1. 平移的性质及计算2. 旋转的性质及计算3. 对称的性质及计算4. 两个全等图形之间的性质及计算5. 两个相似三角形之间的性质及计算6. 成分比例的概念及计算7. 成分比例在几何形体中的应用五、平面向量1. 向量的概念及表示法2. 平面向量的加减法及性质3. 向量的数量积与性质4. 平面向量的数量积的性质及应用5. 平面向量的夹角和垂直的判定与计算6. 向量、点及直线的共线关系及应用7. 用平面向量解决平面几何问题六、三角函数1. 角度制与弧度制的相互转换2. 弧度的概念及性质3. 任意角与标准角的关系4. 正弦定理及应用5. 余弦定理及应用6. 正切定理及应用7. 三角函数基本关系式及应用8. 三角函数在直角三角形中的定值七、概率与统计1. 随机事件、样本空间及基本事件的认识2. 频率、概率的概念及计算3. 事件的复合及事件的计算4. 独立事件及概率的计算5. 试验次数的期望及概率模型6. 渐近性及概率的计算7. 初步了解贝叶斯公式及应用以上是初三数学下册的知识点总结,每个知识点都应掌握其概念、性质、计算方法及应用。
九年级数学下册知识点总结(最新最全)九年级下册知识点第一章直角三角形边的关系1、正切:定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边。
①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。
(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边;3、余弦:定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边;4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则①sinA=cos(90°?∠A)等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
(P4-13、P5-15,16、P10-11、P12-3)7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sinα≤1,0≤cosα≤1。
同角的三角函数间的关系:tαnα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=18、在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有:(1)三边之间的关系:a2+b2=c2;(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:sinα等;(4)面积公式;(5)直角三角形△ABC内接圆⊙O的半径为(a+b-c)/2;(6)直角三角形△ABC外接圆⊙O的半径为c/2。
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
第七单元图形与变换第24讲平移、对称、旋转与位似中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.2.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=4【答案】D【解析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.3.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°【答案】D【解析】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A .1个B .2个C .3个D .4个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0 即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( ) A .12B .13C .14D .16【答案】D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【答案】C【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.7.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A .115°B .120°C .130°D .140°【答案】A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A . 8.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( )A .1B .3C .14-D .74【答案】D【解析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解.【详解】解:3,354,x y x y +=⎧⎨-=⎩①② +①②,得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 9.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形; ②球的主视图与左视图都是圆; ③圆锥主视图与左视图都是三角形; ④圆柱的主视图和左视图都是长方形; 故选D .10.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. 详解:∵y=2x 2+4x-1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误, 当x <-1时,y 随x 的增大而减小,故选项C 错误, 当x=-1时,y 取得最小值,此时y=-3,故选项D 正确, 故选D .点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本题包括8个小题)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.【答案】13【解析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答. 【详解】∵共有15个方格,其中黑色方格占5个, ∴这粒豆子落在黑色方格中的概率是515=13, 故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键. 12.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围. 【详解】方程两边同乘以x-1,得,m-1=x-1, 解得x=m-2, ∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0, 即m-2>0且m-2-1≠0, ∴m >2且m ≠1, 故答案为m >2且m≠1. 13.若分式的值为零,则x 的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1. 考点:分式的值为零的条件.14.写出一个大于3且小于4的无理数:___________. 【答案】如10π,等,答案不唯一.【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16都是完全平方数,10,11,12,,15都是无理数.15.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.【答案】同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行 考点:平行线的判定16.不等式组2x+1x{4x 3x+2>≤的解集是 ▲ . 【答案】﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此, 解第一个不等式得,x >﹣1, 解第二个不等式得,x≤1, ∴不等式组的解集是﹣1<x≤1.17.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+. 其中正确的序号是 (把你认为正确的都填上).【答案】①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。
初三下学期数学知识点归纳漫长的学习生涯中,相信大家一定都接触过知识点吧!知识点也可以通俗的理解为重要的内容。
掌握知识点是我们提高成绩的关键!下面是店铺为大家收集的初三下学期数学知识点归纳,希望对大家有所帮助。
初三下学期数学知识点归纳1知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限2、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的`坐标的特征点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数点P与点p’关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于初三下学期数学知识点归纳2一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!-(x-a)+f''(a)/2!-(x-a)2+...f(n)(a)/n!-(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°. 2.矩形是正多边形.3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042=-x 的根为 . A .x=2 B .x=-2 C .x 1=2,x 2=-2 D .x=4初三数学下册知识点归纳2.方程x2-1=0的两根为.A.x=1 B.x=-1 C.x1=1,x2=-1 D.x=2 3.方程(x-3)(x+4)=0的两根为.A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-44.方程x(x-2)=0的两根为.A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-25.方程x2-9=0的两根为.A.x=3 B.x=-3 C.x1=3,x2=-3 D.x1=+3,x2=-3知识点12:方程解的情况及换元法1.一元二次方程02342=-+xx的根的情况是 .A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x2-5x+3=0的根的情况是.A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x2+4x+2=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4.不解方程,判别方程4x2+4x-1=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x2-7x+5=0的根的情况是.A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6.不解方程,判别方程5x2+7x=-5的根的情况是.A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根7.不解方程,判别方程x2+4x+2=0的根的情况是. A.有两个相等的实数根 B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程,判断方程5y2+1=25y的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用换元法解方程4)3(5322=---xxxx时,令32-xx= y,于是原方程变为 .A.y2-5y+4=0B.y2-5y-4=0C.y2-4y-5=0D.y2+4y-5=010. 用换元法解方程4)3(5322=---xxxx时,令23xx-= y ,于是原方程变为 .A.5y2-4y+1=0B.5y2-4y-1=0C.-5y2-4y-1=0D. -5y2-4y-1=011. 用换元法解方程(1+xx)2-5(1+xx)+6=0时,设1+xx=y,则原方程化为关于y的方程是.A.y2+5y+6=0B.y2-5y+6=0C.y2+5y-6=0D.y2-5y-6=0知识点13:自变量的取值范围1.函数2-=xy中,自变量x的取值范围是 .A.x≠2B.x≤-2C.x≥-2D.x≠-22.函数y=31-x的自变量的取值范围是.A.x>3B. x≥3C. x≠3D. x为任意实数3.函数y=11+x的自变量的取值范围是.A.x≥-1B. x>-1C. x≠1D. x≠-14.函数y=11--x的自变量的取值范围是.A.x≥1B.x≤1C.x≠1D.x为任意实数5.函数y=25-x的自变量的取值范围是.A.x>5B.x ≥5C.x ≠5D.x 为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 . A. y=-8x B.y=-8x+1 C.y=8x 2+1D.y=x 82.下列函数中,反比例函数是 . A. y=8x 2 B.y=8x+1 C.y=-8x D.y=-x83.下列函数:①y =8x 2;②y =8x+1;③y =-8x ;④y =-x 8.其中,一次函数有 个 . A.1个 B.2个 C.3个 D.4个 知识点15:圆的基本性质 1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. A.3 B.4 C.5 D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100°B.130°C.200°D.50°12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm 知识点16:点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离B.相切C.相交D.相交或相离 2.已知圆的半径为 6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内C. 点在圆外D.不能确定 4.已知圆的半径为 6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个C.2个D.不能确定 5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 不能确定 6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D.不能确定•DB C A O• •BO CAD•C BA O• BO CA D•BOC AD•BO C AD•CBAO7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .A.点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是 .A.外离B. 外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长43,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条知识点19:正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.10cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A. 2B. 3C.1D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A. 2B. 1C.2D.34.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= .A.30°B.60°C.90°D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为 .A.21R B.R C.2R D.R36.圆的周长为C,那么这个圆的面积S= .A.2Cπ B.π2CC.π22CD.π42C 7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:3C.3:2D.1:28. 圆的周长为C,那么这个圆的半径R= . A.2C π B. C π C.π2CD. πC9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 . A.2 B.4 C.22D.2310.已知,正三角形的半径为3,那么这个正三角形的边长为 . A. 3 B. 3 C.32 D.33知识点20:函数图像问题1.已知:关于x 的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2) 3.一次函数y=x+1的图象在 .A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4.函数y=2x+1的图象不经过 . A.第一象限 B. 第二象限 C. 第三象限D. 第四象限5.反比例函数y=x2的图象在 .A.第一、二象限B. 第三、四象限C. 第一、三象限D. 第二、四象限 6.反比例函数y=-x10的图象不经过 . A 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2) 8.一次函数y=-x+1的图象在 .A .第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限9.一次函数y=-2x+1的图象经过 . A .第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限10. 已知抛物线y=ax 2+bx+c (a>0且a 、b 、c 为常数)的对称轴为x=1,且函数图象上有三点A(-1,y 1)、B(21,y 2)、C(2,y 3),则y 1、y 2、y 3的大小关系是 . A.y 3<y 1<y 2 B. y 2<y 3<y 1 C. y 3<y 2<y 1 D. y 1<y 3<y 2知识点21:分式的化简与求值1.计算:)4)(4(yx xyy x y x xy y x +-+-+-的正确结果为 .A. 22x y -B. 22y x -C. 224y x -D. 224y x -2.计算:1-(121)11222+-+-÷--a a a a a a 的正确结果为 .A. a a +2B. a a -2C. -a a +2D. -a a -23.计算:)21(22x x x -÷-的正确结果为 .A.xB.x 1C.-x 1D. -xx 2-4.计算:)111()111(2-+÷-+x x 的正确结果为 .A.1B.x+1C.xx 1+D.11-x 5.计算)11()111(-÷-+-xx x x 的正确结果是 . A.1-x x B.-1-x x C.1+x xD.-1+x x 6.计算)11()(y x x y y y x x -÷-+-的正确结果是 . A.y x xy - B. -y x xy - C.y x xy +D.- yx xy+ 7.计算:22222222222)(y xy x xy y x y x y x y x y x +++-+--⋅-的正确结果为 . A.x-y B.x+yC.-(x+y)D.y-x 8.计算:)1(1x x x x -÷-的正确结果为 . A.1 B.11+x C.-1D.11-x 9.计算x x x x x x -÷+--24)22(的正确结果是 . A.21-x B. 21+x C.- 21-x D.- 21+x 知识点22:二次根式的化简与求值1. 已知xy>0,化简二次根式2x y x -的正确结果为 . A.y B.y - C.-y D.-y -2.化简二次根式21aa a +-的结果是 . A.1--a B.-1--a C.1+aD.1--a 3.若a<b ,化简二次根式aba -的结果是 . A.ab B.-ab C.ab -D.-ab -4.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C. a -D.a --5. 化简二次根式23)1(--x x 的结果是 . A.x x x --1 B.x x x ---1 C.x x x --1D.1--x xx 6.若a<b ,化简二次根式a b a b a a 2)(---的结果是 . A.a B.-a C. a -D.a --7.已知xy<0,则y x 2化简后的结果是 .A.y xB.-y xC.y x -D.y x -8.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C. a -D.a --9.若b>a ,化简二次根式a2ab-的结果是 . A.ab a B.ab a -- C.ab a -D.ab a -10.化简二次根式21aa a +-的结果是 . A.1--a B.-1--a C.1+aD.1--a11.若ab<0,化简二次根式321b a a-的结果是 .A.b bB.-b bC. b b -D. -b b -知识点23:方程的根1.当m= 时,分式方程x x m x x --=+--2312422会产生增根. A.1 B.2 C.-1 D.2 2.分式方程x x x x --=+--23121422的解为 .A.x=-2或x=0B.x=-2C.x=0D.方程无实数根3.用换元法解方程05)1(2122=--++x x x x ,设xx 1-=y ,则原方程化为关于y 的方程 .A.y 2+2y-5=0 B.y 2+2y-7=0 C.y 2+2y-3=0D.y 2+2y-9=04.已知方程(a-1)x 2+2ax+a 2+5=0有一个根是x=-3,则a 的值为 . A.-4 B. 1 C.-4或1 D.4或-15.关于x 的方程0111=--+x ax 有增根,则实数a 为 .A.a=1B.a=-1C.a=±1D.a= 2 6.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是 .A.x 2+23x-1=0 B.x 2+23x+1=0C.x 2-23x-1=0D.x 2-23x+1=07.已知关于x 的一元二次方程(k-3)x 2-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是 .A.k>-23B.k>-23且k ≠3C.k<-23D.k>23且k ≠3知识点24:求点的坐标1.已知点P 的坐标为(2,2),PQ ‖x 轴,且PQ=2,则Q 点的坐标是 .A.(4,2)B.(0,2)或(4,2)C.(0,2)D.(2,0)或(2,4)2.如果点P 到x 轴的距离为3,到y 轴的距离为4,且点P 在第四象限内,则P 点的坐标为 .A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3.过点P(1,-2)作x 轴的平行线l 1,过点Q(-4,3)作y 轴的平行线l 2, l 1、l 2相交于点A ,则点A 的坐标是 .A.(1,3)B.(-4,-2)C.(3,1)D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y 1)、B(-41,y 2)、C(21,y 3)在反比例函数y=xk(k<0)的图象上,则下列各式中不正确的是 .A.y 3<y 1<y 2B.y 2+y 3<0C.y 1+y 3<0D.y 1•y 3•y 2<02.在反比例函数y=x m 63-的图象上有两点A(x 1,y 1)、B(x 2,y 2),若x 2<0<x 1 ,y 1<y 2,则m 的取值范围是 . A.m>2 B.m<2 C.m<0 D.m>03.已知:如图,过原点O 的直线交反比例函数y=x2的图象于A 、B 两点,AC ⊥x 轴,AD ⊥y 轴,△ABC 的面积为S,则 . A.S=2 B.2<S<4 C.S=4 D.S>44.已知点(x 1,y 1)、(x 2,y 2)在反比例函数y=-x 2的图象上, 下列的说法中: ①图象在第二、四象限;②y 随x 的增大而增大;③当0<x 1<x 2时, y 1<y 2;④点(-x 1,-y 1) 、(-x 2,-y 2)也一定在此反比例函数的图象上,其中正确的有 个. A.1个 B.2个 C.3个 D.4个 5.若反比例函数x k y =的图象与直线y=-x+2有两个不同的交点A 、B ,且∠AOB<90º,则k 的取值范围必是 . A. k>1 B. k<1 C. 0<k<1 D. k<06.若点(m ,m 1)是反比例函数xn n y 122--=的图象上一点,则此函数图象与直线y=-x+b (|b|<2)的交点的个数为 . A.0 B.1 C.2D.47.已知直线b kx y +=与双曲线x k y =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1²x 2的值 . A.与k 有关,与b 无关 B.与k 无关,与b 有关 C.与k 、b 都有关 D.与k 、b 都无关 知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 . A. 正三边形 B.正四边形 C.正五边形 D.正六边形 2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是 . A.2,1 B.1,2 C.1,3 D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是 . A.正四边形、正六边形 B.正六边形、正十二边形 C.正四边形、正八边形 D.正八边形、正十二边形 4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是 .A.正三边形B.正四边形C. 正五边形D.正六边形 5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有 种不同的设计方案. A.2种 B.3种 C.4种D.6种 6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是 . A.正三边形、正四边形 B.正六边形、正八边形C.正三边形、正六边形 D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是 (所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是 . A.正三边形 B.正四边形 C.正六边形 D.正十二边形 9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是 . A.正四边形 B.正六边形 C.正八边形D.正十二边形 知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2³105B.6³105C.2.02³105D.6.06³1052.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.A.4.2³108B.4.2³107C.4.2³106D.4.2³105知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A. 45B. 51C. 54D. 572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是.A.①②B.②③C.①③D.①②③3.某学校按年龄组报名参加乒乓球赛,规定“n岁年龄组”只允许满n岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是.A.报名总人数是10人;B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有.①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖,则获一等奖的学生有5人.A ①②③B ①②②③ D ①③5将参赛学生的成绩(进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数 .A.43B.44C.45D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A 45B 51C 54D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分析,各分数段人数如图所示,下列结论,其中正确的有()①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组;生本次测验成绩优秀(80的学生占全班人数的56%.A.①②③④ B.①②④ C.②③④ D.①③④8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整绩理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五 小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格, 则下列结论:其中正确的有 个 . ①初三(1)班共有60名学生; ②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%. A.①②③ B.②③ C.①③ D.①②知识点29: 增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为%918.12+万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是 . A. ①② B. ①③ C. ②③ D. ① 2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸易总额为 亿美元. A.%)101(3.16+ B.%)101(3.16- C. %1013.16+D. %1013.16-3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为 .A.71500B.82500C.59400D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为 元. 78元 B.100元 C.156元 D.200元 5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是 元.( ) A.700元 B.800元 C.850元 D.1000元 6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是 元.A.44B.45C.46D.487.某商品的价格为a 元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是 元.A.a 元B.1.08a 元C.0.96a 元D.0.972a 元 8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是 .A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价2n m +%,再降价2nm +% D.先涨价mn %,再降价mn %9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为 . A.1600元 B.3200元 C.6400元 D.8000元 10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金 元.16360元 B.16288 C.16324元 D.16000元 知识点30:圆中的角1.已知:如图,⊙O 1、⊙O 2外切于点C ,AB 为外公切线,AC 的延长线交⊙O 1于点D,若AD=4AC,则∠ABC 的度数为 .A.15°B.30°C.45°D.60° 2.已知:如图,PA 、PB 为⊙O 的两条切线,A 、B 为切点,AD ⊥PB 于D 点,AD 交⊙O 于点E,若∠DBE=25°,则∠P= . A.75° B.60° C.50° D.45°3.已知:如图, AB 为⊙O 的直径,C 、D 为⊙O 上的两点,AD=CD ,∠CBE=40°,过点B 作⊙O 的切线交DC 的延长线于E 点,则∠CEB= . A. 60° B.65° C.70° D.75°4.已知EBA 、EDC 是⊙O 的两条割线,• o AP B DE• E DB OA C • • O 2 O 1BC A D•ABOEDC其中EBA 过圆心,已知弧AC 的度数是105°,且AB=2ED ,则∠E 的度数为 . A.30° B.35° C.45° D.755.已知:如图,Rt △ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 为半径作⊙O 与BC 相切于点D, 与AC 相交于点E,若∠ABC=40°,则∠CDE= . A.40° B.20° C.25° D.30°6.已知:如图,在⊙O 的内接四边形ABCD 中,AB 是直径, ∠BCD=130º,过D 点的切线PD 与直线AB 交于P 点,则∠ADP 的度数为 . A.40º B.45º C.50º D.65º7.已知:如图,两同心圆的圆心为O ,大圆的弦AB 、 AC 切小圆于D 、E 两点,弧DE 的度数为110°, 则弧AB 的度数为 .A.70°B.90°C.110°D.1308. 已知:如图,⊙O 1与⊙O 2外切于点P ,⊙O 1的弦AB 切⊙O 2于C 点,若∠APB=30º, 则∠BPC= .A.60ºB.70ºC.75ºD.90º知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈1.4 ,3≈1.7) A.8.66 B.8.67 C.10.67 D.16.67 2.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为 米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.54 3.已知:如图,P 为⊙O 外一点,PA 切⊙O 于点A,直线PCB 交⊙O 于C 、B, AD ⊥BC 于D,若PC=4,PA=8,设∠ABC=α,∠ACP=β,则sin α:sin β= . A.31 B.21C.2D. 4 4.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为 米.A. 23米B. 3米C. 3.2米D. 233米5.已知△ABC 中,BD 平分∠ABC ,DE ⊥BC于E 点,且DE:BD=1:2,DC:AD=3:4,CE=76,BC=6,则△ABC 的面积为 . A.3 B.123 C.243D.12知识点32:圆中的线段1.已知:如图,⊙O 1与⊙O 2外切于C 点,AB 一条外公切线,A 、B 分别为切点,连结AC 、BC.设⊙O 1的半径为R ,⊙O 2的半径为r ,若tan ∠ABC=2,则r R的值为 . A .2 B .3 C .2 D .32.已知:如图,⊙O 1、⊙O 2内切于点A ,⊙O 1的直径AB 交⊙O 2于点C ,OE ⊥AB 交⊙O 于F 点,BC=9,EF=5,则CO1B.13 C.14 D.163.已知:如图,⊙O 1、⊙O 2内切点P, ⊙O 2的弦AB 过O 1点且交⊙于C 、D 两点,若AC :CD :4:2,则⊙O 1与⊙O 2为 .A.2:7B.2:5C.2:3D.1:34.已知:如图,⊙O 1与⊙O 2外切于A 点,⊙O 1的半径为r ,⊙O 2的半径为R,且为⊙O 1一点,PB 切⊙O 2于B 点,若PB=6,则PA= . A.2 B.3 C.4 D.5 6.已知:如图,PA 为⊙O 的切²BA CDOP•EOADB C• •O 1O 2ABCP•DB OACE BE DAC•O BPAC² ² O 1O 2BAC • •BE C AO 2O 1F线,PBC 为过O 点的割线,PA=45,⊙O 的半径为3,则AC 的长为为 .A.413B.13133C.13265 D.132615 4.已知:如图, Rt ΔABC ,∠C=90°,AC=4,BC=3,⊙O 1内切于ΔABC ,⊙O 2切BC ,且与AB 、AC 的延长线都相切,⊙O 1的半径R 1, ⊙O 2的半径为R 2,则21R R = . A.21 B.32 C.43 D.545.已知⊙O 1与边长分别为18cm 、25cm 的矩形三边相切,⊙O 2与⊙O 1外切,与边BC 、CD 相切,则⊙O 2的半径为 .A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD 为⊙O 的直径,AC 是⊙O 的切线,AC=2,过A 点的割线AEF 交CD 的延长线于B 点,且AE=EF=FB ,则⊙O 的半径为 . A.7145 B.14145 C.714 D.14147.已知:如图, ABCD ,过B 、C 、D 三点作⊙O ,⊙O 切AB 于B 点,交AD 于E 点.若AB=4,CE=5,则DE 的长为 . A.2 B.59 C.516D.1 8. 如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= .A.1B.2C.21D.41知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A 地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B 地返回学校时的平均速度为 百米/分.B.2734110 C.43110D.932102.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升.A.15B.16C.17D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 .A.12天B.13天C.14天D.15天4. 某油库有一储油量为40罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示. 现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是 分钟.A.16分钟B.20分钟C.24分钟D.44分钟5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产••O 1 O 2BC •O DCBAEFO 1016分) ))。