FlashEA 1112元素分析仪
- 格式:pdf
- 大小:87.23 KB
- 文档页数:1
中国科学 B 辑:化学 2009年 第39卷 第4期: 357 ~ 364 357《中国科学》杂志社SCIENCE IN CHINA PRESS高选择性比色识别碘离子的氨基硫脲类阴离子 受体林奇, 魏太保, 李艳, 秦霄萍, 张有明*西北师范大学化学化工学院 甘肃省高分子材料重点实验室, 兰州 730070 * 通讯作者, E-mail: zhangnwnu@ 收稿日期:2009-02-23; 接受日期:2009-02-27摘要 设计合成了一系列基于氨基硫脲的阴离子受体(M1~M4). 此类受体以氨基硫脲基团为识别位点, 以硝基苯基为信号报告基团, 其中受体M1和M3可在乙腈溶液中高选择性的比色识别碘离子. 在受体M1或M3的乙腈溶液中加入I –时, 溶液的颜色由浅红色变成无色, 而加入其他离子如F –, Cl –, Br –, AcO –, HSO 4–, H 2PO 4–, ClO 4–等阴离子时, 受体溶液不会褪色. 通过紫外滴定和核磁滴定等方法研究了受体选择性比色识别碘离子的机理. 结果表明, 受体通过其氨基硫脲基团上的三个NH 质子与碘离子形成的三重氢键选择性的结合碘离子. 在此过程中, 受体构型发生转变, 从而导致了颜色变化, 产生了比色识别的效果. 此类阴离子受体具有合成方法简便, 产率高, 识别效果好等优点.关键词阴离子受体 碘离子 比色识别 氨基硫脲碘是人体必需的一种微量元素, 它对人的大脑功能、细胞发育、神经活性、新陈代谢和甲状腺功能等有着重要的影响. 缺碘或碘摄入过量会导致诸如甲状腺肿大、甲状腺功能减退和甲状腺机能亢进等疾病[1~3]. 碘离子在药物合成等化学领域有着广泛的应用[4,5]. 因此, 碘离子的分析检测是一项非常重要的工作. 常用的碘离子的检测方法有气质联用、毛细管电泳、原子吸收光谱等[2,6]. 这些方法需要比较昂贵的仪器和比较复杂的操作. 近年来, 用合成受体比色检测阴离子的方法受到了人们的关注[7~15]. 该方法通过利用人工受体与阴离子相互作用时产生的颜色变化定性的检测阴离子, 通过相应的测定还可以定量的检测阴离子的含量. 这种方法具有操作简便, 所需仪器简单等优点. 目前, 人们已经开发出了大量的阴离子比色受体, 其中, 很多受体能选择性比色识别碱性较强的氟离子[10,13]、醋酸根离子[14,15]和亲核性很强的氰根等阴离子[16]. 而碘离子由于其很弱的碱性和球形结构等特点, 一般的阴离子受体很难和碘离子结合从而选择性的比色识别碘离子. 目前报道的能选择性识别碘离子的合成受体很少, 而且这些受体的结构都比较复杂[6,17,18]. 设计合成结构简单, 易于合成且对指定阴离子有选择性比色识别能力的阴离子受体是主客体阴离子识别研究的一个热点[7]. 通常, 阴离子受体由识别位点和信号报告基团组成, 其中识别位点一般由脲/硫脲基团、胺基/酰胺基、胍基等含有NH 氢键供体的结构单元提供, 信号报告基团通常是发色团[8]. 本课题组在前面的工作中设计合成了一系列基于硫脲、酚羟基、酰腙等识别位点的阴离子受体[12,19~25], 它们能选择性的比色识别氟离子、醋酸根、磷酸二氢根和硫酸氢根等阴离子, 但是也没有得林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体358到可选择性比色识别碘离子的受体. 本文中, 我们设计合成了一系列基于氨基硫脲的阴离子受体, 这些受体的设计主要考虑了三个方面: (1) 采用氨基硫脲基团作为识别位点, 比常见的硫脲基团多一个NH, 也就多了一个氢键供体, 有利于更好的结合客体. (2) 采用硝基苯基作为信号报告基团, 可使受体具备比色识别能力, 且结构简单. (3) 设计的受体合成方法简单, 便于应用. 这些受体中, M1和M3能在乙腈溶液中选择性的比色识别碘离子, 而且M1对碘离子的络合稳定常数K s 高达8.06×105. 另外, 硫脲衍生物是一种常见的阴离子受体, 通常情况下可选择性的识别醋酸根等Y 型阴离子或氟离子等碱性较强的阴离子[26,27]. 根据我们掌握的情况, 尚未见用硫脲类受体选择性比色识别碘离子的报道. 因此, 本文报道的这类基于氨基硫脲的受体是对硫脲类阴离子受体的一个新的拓展.1 实验部分1.1 仪器与试剂1H NMR 使用Mercury-400BB 型核磁共振仪测定,TMS 为内标. 元素分析使用Flash EA 1112型元素分析仪测定; IR 使用Digilab FTS-3000 FT-IR 型红外光 谱仪(KBr 压片)测定; 熔点使用X-4数字显示显微熔点测定仪(温度计未校正)测定; 紫外光谱使用岛津UV-2550紫外-可见吸收光谱仪(1 cm 石英液池)测定.四丁基铵盐购自Aldrich 公司, 均为分析纯, 直接使用. 其他试剂均为市售分析纯.1.2 受体1-硝基苯基-4-取代酰基氨基硫脲(M1-M4)的合成受体M1~M4的合成路线见式1. 将10 mmol 的氯甲酸乙酯溶解到20 mL 乙酸乙酯中, 加入12 mmol 硫氰酸钾, 0.1 mL N ,N ,N ′,N ′-四甲基乙二胺(TMEDA)为催化剂, 在室温搅拌反应5 h. 过滤, 除去无机盐, 得到中间体乙氧羰基异硫氰酸酯的溶液. 在此溶液中加入9.5 mmol 4-硝基苯肼. 室温搅拌反应5 h, 生成沉淀. 减压蒸除大部分溶剂, 室温下静置3 h, 将析出的沉淀过滤, 用无水乙醇重结晶, 得到产物M1的结晶. 受体M2的合成方法与M1类似. 将10 mmol 苯甲酰氯溶解到20 mL 二氯甲烷中, 加入12 mmol 硫氰酸铵, 0.1 mL 聚乙二醇-400(PEG-400)为催化剂, 室温搅拌反应5 h. 过滤, 除去无机盐, 得到中间体苯甲酰基异硫氰酸酯的溶液. 在此溶液中加入9.5 mmol 4-硝基苯肼, 室温搅拌反应5 h, 生成沉淀.式1 M1~M4的合成路线中国科学 B 辑: 化学 2009年 第39卷 第4期359减压蒸除大部分溶剂, 室温下静置 3 h, 将析出的沉淀过滤, 用无水乙腈重结晶, 得到产物M3的结晶. 受体M4的合成方法与M3类似.M1: 产率: 89.7%; m.p. 168~170℃; 1H NMR (DMSO-d 6, 400 MHz) δ 11.32 (s, 1H, NH), 11.24 (s, 1H, NH), 9.46 (s, 1H, NH), 8.08 (d, J = 9.2, 2H, ArH), 6.79 (q, J = 7.2, 2H, ArH), 4.20 (q, J = 7.2, 2H, CH 2), 1.27 (t, 3H, CH 3); IR (KBr, cm −1) v : 3437(mb, N-H), 3284(s, N-H), 3165(m, N-H), 1705 (s, C=O), 1600 (s, C=C), 1515 (s, C=C), 1208(s, C=S); 元素分析理论值C 10H 12N 4O 4S: C, 42.25; H, 4.25; N, 19.71; 实测值: C, 42.31; H, 4.16; N, 19.87.M2: 产率: 96.5%; m.p. 208~210℃; 1H NMR (DMSO-d 6, 400 MHz) δ 11.49 (s, 2H, NH), 10.44 (s, 1H, NH), 8.88 (s, 1H, ArH), 8.37~8.33 (m, 1H, ArH), 7.22~7.19 (m, 1H, ArH), 4.22 (q, J = 7.2, 2H, CH 2), 1.27 (t, 3H, CH 3); IR (KBr, cm −1) v : 3444(mb, N-H), 3309(m, N-H), 3188(s, N-H), 1736 (s, C=O), 1618 (s, C=C), 1596 (s, C=C), 1555 (s, C=C), 1510 (s, C=C), 1216(s, C=S); 元素分析理论值C 10H 11N 5O 6S: C, 36.47; H, 3.37; N, 21.27; 实测值: C, 36.51; H, 3.65; N, 21.54.M3: 产率: 95.7%; m.p. 199~201℃; 1H NMR (DMSO-d 6, 400 MHz) δ 12.02 (s, 2H, NH), 9.77 (s, 1H, NH), 8.11~6.93 (m, 9H, ArH); IR (KBr, cm −1) v : 3444(mb, N-H), 3310(m, N-H), 3235(m, N-H), 1678 (s, C=O), 1601 (s, C=C), 1525 (s, C=C), 1474 (s, C=C), 1276(s, C=S); 元素分析理论值C 14H 12N 4O 3S: C, 53.16; H, 3.82; N, 17.71; 实测值: C, 53.37; H, 3.65; N, 17.59.M4: 产率: 85.4%; m.p. 216~219℃; 1H NMR (DMSO-d 6, 400 MHz) δ 11.82 (s, 2H, NH), 10.61 (s, 1H, NH), 8.90 (s, 1H, ArH), 8.40~7.31 (m, 7H, ArH); IR (KBr, cm −1) v : 3367(m, N-H), 3265(m, N-H), 3139(m, N-H), 1682 (s, C=O), 1618 (s, C=C), 1596 (s, C=C), 1490 (s, C=C), 1275(s, C=S); 元素分析理论值C 14H 11N 5O 5S: C, 46.54; H, 3.07; N, 19.38; 实测值: C, 46.83; H, 3.28; N, 19.27.2 结果和讨论2.1 受体的合成受体M1~M4通过异硫氰酸酯与硝基取代的苯肼的亲核加成反应制备. 其中中间体异硫氰酸酯的合成是关键步骤. 本文涉及乙氧羰基异硫氰酸酯和苯甲酰基异硫氰酸酯两种中间体. 其中乙氧羰基异硫氰酸酯通过氯甲酸乙酯与硫氰酸钾的反应制备. 由于氯甲酸乙酯中的氯甲酸基(可看作酰氯基)的活性较低, 很难与硫氰酸钾反应, 因此, 本文采用了N ,N ,N ′,N ′-四甲基乙二胺(TMEDA)做催化剂, 该催化剂可提高氯甲酸基团中酰氯的活性[28]. 在该催化剂的作用下, 高产率的合成了乙氧羰基异硫氰酸酯及目标产物M1和M2. 苯甲酰基异硫氰酸酯通过苯甲酰氯和硫氰酸铵的反应制备, 该反应在二氯甲烷中为固液两相反应, 因此采用了聚乙二醇-400(PEG-400)为相转移催化剂, 高产率的合成了中间体苯甲酰基异硫氰酸酯及目标产物M3和M4. 值得一提的是, 这些反应都在室温下进行, 且中间体异硫氰酸酯不需分离, 直接和硝基苯肼反应生成产物, 所以这些受体的合成简便易行, 且产率很高.2.2 受体的阴离子识别性能2.2.1 受体的阴离子比色识别性能研究分别移取 1.00 mL 受体M1~M4的乙腈溶液(2×10−4 mol·L −1)于一系列10 mL 比色管中. 分别加入F –, Cl –, Br –, I –, CH 3COO –, HSO 4–, H 2PO 4–和ClO 4–的四丁基铵盐的乙腈溶液(0.01 mol·L −1)1.00 mL, 用乙腈稀释至刻度, 此时受体浓度为2×10−5 mol·L −1, 阴离子浓度为受体浓度的50倍, 混合均匀后放置片刻, 观查各个受体对阴离子的响应. 如图1所示, 当在受体M1或M3的乙腈溶液中分别加入上述阴离子溶液时, I −的加入使受体颜色由浅橙黄色褪色至无色; F –, CH 3COO –, HSO 4–和H 2PO 4–的加入使受体溶液的颜色略微加深; 加入Cl –, Br –和ClO 4–时, 受体颜色基本不变. 因此, 受体M1和M3在乙腈溶液中对碘离子有选择性比色识别能力, 受体M2和M4的乙腈溶液对上述阴离子无明显响应.图1 受体M1的乙腈溶液(2×10−5 mol ⋅L −1)中加入各种阴离子(50 eqv)时的颜色变化从左到右:M1, M1+F −, M1+Cl −, M1+Br −, M1+I −, M1+AcO −, M1+HSO 4−, M1+H 2PO 4−, M1+ClO 4−林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体360图2 受体M1-M4(a-d)在乙腈溶液中(2×10−5 mol·L−1)与各种阴离子(50 eqv)相互作用时的UV-vis光谱图2.2.2受体与阴离子作用的紫外-可见(UV-vis)光谱分别测上述受体的乙腈溶液和受体与不同阴离子的混合溶液的UV-vis光谱, 如图2(a)所示, 在UV-vis光谱中, 受体M1在475 nm处有最大吸收峰, 当受体M1中分别加入F–, Cl–, Br–, I–, CH3COO–, HSO4–, H2PO4–和ClO4–的四丁基铵盐溶液时, 只有碘离子的加入使受体在475 nm处的吸收峰显著降低而350 nm处出现新的中等强度吸收峰, 其他阴离子对受体的吸收峰无明显影响. M3(图2(c))对阴离子有和M1类似的识别能力. 同样的条件下, 上述阴离子的加入对受体M2(图2(b))和M4(图2(d))的UV-vis光谱无显著影响. 因此, 受体M1和M3对碘离子有选择性识别能力, 而受体M2和M4对阴离子无识别能力. 2.2.3受体的紫外滴定为了进一步考察受体对碘离子的结合能力, 我们做了受体M1和M3与碘离子作用的Job曲线(见图3(a)). 结果表明, 受体M1和M3分别与碘离子形成1︰1的络合物. 我们通过紫外滴定法测定了受体M1和M3分别结合碘离子的络合常数(K s), 根据最小二乘法非线性曲线拟合(见图3(b))[29], M1络合碘离子的K s为8.06×105, M3络合碘离子的K s为9.49×103. 由此可见, 虽然M1~M4都为结构相似的氨基硫脲衍生物, 但是它们对阴离子的识别能力有显著的不同: 受体M1和M3可选择性比色识别碘离子, 而受体M2和M4则不能; 另外, 受体M1对碘离子的结合能力显著的强于受体M3. 这些现象只能通过受体与阴离子相互作用的识别机理解释.中国科学 B 辑: 化学 2009年 第39卷 第4期361图3(a) 受体M1与碘离子作用的Job 曲线; (b) 碘离子对受体M1的紫外滴定, 在475 nm 处的曲线拟合2.3 识别机理为了研究受体与阴离子相互作用的识别机理, 我们做了阴离子对受体的核磁滴定. 以M3为例, 配制0.5 mL 2.5 mmol·L −1的M3的CD 3CN 溶液, 置于核磁管中, 首先做M3的氢谱, 然后向其中用微量进样器滴加四丁基碘化铵的CD 3CN 溶液, 采用累积进样法, 使客体阴离子浓度从主体的0.5倍逐次滴加到15倍, 每滴加一次充分摇匀后做一次氢谱. 结果如图4所示, 在受体M3的1H NMR 中, 由于M3分子中氨基硫脲基团的NH b 质子与酰基上的氧原子形成了如图5所示的六员环状的N-H b ···O 分子内氢键, N-H b 质子发生了很强的低场位移[30,31], 它与NH c质子出峰位置重叠, 出现在了12.02 ppm 处; 而NH a出现在9.77 ppm 处. 随着碘离子的加入, NH a 质子和NH c 质子产生了低场位移, 当碘离子浓度达到受体浓度的15倍时, NH a 质子和NH c 质子的出峰位置分别位移到了9.85和12.03 ppm. 这说明碘离子分别与NH a 质子和NH c 质子形成了如图5所示的N-H a ···I –和N-H c ···I –分子间氢键. 另外, 随着碘离子的加入, 12.02 ppm 处的质子峰的峰面积逐渐减小, 与此同时, 在9.06 ppm 处又出现了一个新的质子峰. 这说明当碘离子分别与NH a 和NH c 形成N-H a ···I –和N-H c ···I –分子间氢键后, 在这两个氢键的诱导下, 受体分子发生了图5所示的构型转化, 受体分子内的N-H b ···O 分子内氢键断裂, 导致N-H b质子向高场位移, 在9.06 ppm 处形成了新峰, 同时其在12.02 ppm 处的出峰消失, 导致12.02 ppm 处的峰面积减小. 这种构型转化导致受体分子的六员环状的分子内氢键断裂、分子的共轭效应减小、C=O 键的极性增强, 这导致受体的UV-vis 光谱发生蓝移, 475 nm 处的吸收峰显著降低而在350出现较强的新吸收峰, 从而使受体溶液褪色, 产生了比色识别的效果. 受体M2和M4的NH b 也形成了如图5所示的N-H b ···O 分子内氢键. 同时, 它们的NH a 的质子的出峰位置分别在10.44和10.61 ppm 处, 这与M1和M3的NH a 的出峰位置(9.46和9.77)相比发生了显著的低场偏移. 这说明M2和M4的NH a 与苯环邻硝基上的氧原子形成了如图5所示的N-H a ···O 分子内氢键. 这样, 碘离子无法和NH a 形成氢键, 从而导致受体M2和M4不能和碘离子通过形成分子间氢键而结合, 因此受体M2和M4不能识别碘离子. 另外, 受体图4 受体M3在CD 3CN 中的1H NMR 滴定图林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体362图5 受体与碘离子作用的可能机理M1结合碘离子的能力比M3强, 可能是由于M3中氨基硫脲上连接的苯环的空间位阻大于M1所连接的乙氧基, 这样, M1比M3更容易和碘离子结合, 所以M1结合碘离子的能力比M3强.从上述识别过程的探讨可知, 受体M1或M3选择性识别碘离子的先决条件是M1或M3的NH a和NH b先跟碘离子同时形成双重氢键. 这样, 才能使M1或M3的分子构型发生转变从而形成更牢固的三重分子间氢键. 同时, 由于分子构型变化导致了受体颜色的变化, 从而实现了对碘离子的比色识别[32]. 然而, M1或M3的NH a和NH b同时和一个氢键受体原子(或单原子阴离子)形成二重氢键的条件是氢键受体原子的半径必须足够大, 这样该氢键受体原子才能同时与NH a和NH b形成稳定的二重氢键. 否则, 若氢键受体原子的半径较小, 则该原子只能和NH a或NH b 中的一个质子形成单一的氢键, 这样, 就不会导致受体构型的变化, 从而不能产生比色识别的效果. 从构型上看, NH a和NH b这两个质子的距离比较大, 在常见的原子和单原子阴离子中, 碘离子的半径最大, 它的半径大小正好能满足与NH a和NH b形成上述二重氢键的条件. 因此, 受体M1或M3能选择性的识别碘离子. 另外, 普通的硫脲类受体很难识别碘离子[26,27], 可能因为硫脲的那两个NH质子距离较近, 和碘离子不匹配. 另外, 碘离子半径大, 电负性小, 若只和硫脲形成单重氢键, 则结合能力太弱. 所以, 普通硫脲只能识别醋酸根, 氟离子等碱性强的阴离子.2.4受体的识别效果和特点从上述识别机理可知, 受体M1或M3对碘离子的选择性识别是建立在受体构型与碘离子相匹配的基础之上的. 一般情况下, 要使受体与碘离子这种球形阴离子相匹配, 受体需要采用较复杂的环状或碗状或钳形构型. 比如Otto等报道的能结合碘离子的受体是一种环状的多肽[33]; Jang等报道的能选择性识别碘离子的荧光受体是一种基于苯并咪唑的三足碗状构型的受体[18]; Kang等报道的能选择性识别碘离子的荧光受体是一种基于咪唑阳离子的钳形受体[34]. 这些受体结构复杂, 比较难于合成. 而本文报道的受体M1和M3是一种结构简单的氨基硫脲, 这些化合物很容易合成. 虽然M1和M3的结构很简单, 但是它们对碘离子的选择性比色识别效果都很好, 而且结合能力也很强.3结论设计合成了能在乙腈溶液中选择性比色识别碘离子的氨基硫脲类受体M1和M3. 这两个受体对碘离子的选择性识别是建立在碘离子的半径与受体分子构型相匹配的基础上的. 受体分子通过其氨基硫脲基团上的三个NH质子与碘离子形成的三重氢键中国科学 B 辑: 化学 2009年 第39卷 第4期363选择性的结合碘离子; 在此过程中, 受体构型发生转变, 受体分子的共轭效应减小, 从而导致了受体溶液颜色变化, 产生了比色识别的效果. 总之, 我们设计合成并筛选出的受体M1和M3是一种易于合成制备, 且对碘离子选择性好, 结合能力强的受体, 具有较好的应用前景.致谢 本工作得到国家自然科学基金(批准号:20671077)资助, 特此致谢.参考文献1 滕卫平, 滕晓春. 碘与甲状腺疾病的研究进展. 中国实用内科杂志, 2006, 26(20): 1569—15732 Xie Z, Zhao J. Reverse flow injection spectrophotometric determination of iodate and iodide in table salt. Talanta, 2004, 63: 339—343 3 王琨. 碘缺乏与碘过量对甲状腺功能的影响及其调控机制的研究. 博士学位论文. 天津: 天津医科大学, 2007. 1—154 王健, 吴昊, 黄承志. 碘对金纳米棒的融合作用及其在四环素类抗菌素分析测定中的应用. 中国科学B 辑: 化学, 2008, 38(10): 929—9375 王宏社, 苗建英, 赵立芳. 碘作为催化剂在有机合成中的应用. 有机化学, 2005, 25(06): 615—6186 Singh A K, Mehtab S. Polymeric membrane sensors based on Cd(Ⅱ) Schiff base complexes for selective iodide determination in en-vironmental and medicinal samples. Talanta, 2008, 74: 806—8147 Caltagirone C, Gale P A. Anion receptor chemistry: highlights from 2007. Chem Soc Rev, 2009, 38(2): 520—5638 Martínez-Màñez R, Sacenón F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev, 2003, 103(11): 4419—44769Chen C-Y, Lin T-P, Chen C-K, Lin S-C, Tseng M-C, Wen Y-S, Sun S-S. New chromogenic and fluorescent probes for anion detection: formation of a [2+2] supramolecular complex on addition of fluoride with positive homotropic cooperativity. J Org Chem, 2008, 73(3): 900—911 10 Han F, Bao Y, Yang Z, Fyles T M, Zhao J, Peng X, Fan J. Wu Y, Sun S. Simple bisthiocarbonohydrazones as sensitive, selective, col-orimetric, and switch-on fluorescent chemosensors for fluoride anions. Chem Eur J, 2007, 13: 2880—289211 Maeda H, Haketa Y, Nakanishi T. Aryl-substituted C 3-bridged oligopyrroles as anion receptors for formation of supramolecular or-ganogels. J Am Chem Soc, 2007, 129(44): 13661—1367412 魏太保, 王军, 张有明. 偶氮水杨醛Schiff 碱在含水介质中对HSO 4−离子的识别. 中国科学B 辑: 化学, 2008, 38(10): 929—93713 Yoo J, Kim M-S, Hong S-J, Sessler J L, Lee C-H. Selective sensing of anions with calyx [4] pyrroles strapped with chromogenic dipyr-rolylquinoxalines. J Org Chem, 2009, 74 (3): 1065—106914 Yu X, Lin H, Cai Z, Lin H. Color responses of novel receptors for AcO − and a test paper for AcO − in pure aqueous solution. Tetra-hedron Lett, 2007, 48: 8615—861815 Shao J, Lin H, Yu M, Cai Z, Lin H. Study on acetate ion recognition and sensing in aqueous media using a novel and simple colori-metric sensor and its analytical application. Talanta, 2008, 75: 551—55516 Ekmekci Z, Yilmaz M D, Akkaya E U. A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org Lett, 2008, 10 (3): 461—46417 Rastegarzadeh S, Pourreza N, Saeedi I. An optical redox chemical sensor for determination of iodide. Talanta, 2009, 77: 1032—1036 18 Singh N, Jang D O. Benzimidazole-based tripodal receptor: Highly selective fluorescent chemosensor for iodide in aqueous solution. Org Lett, 2007, 9(10): 1991—199419 Zhang Y-M, Qin J-D, Lin Q, Wei T-B. Convenient synthesis and anion recognition properties of N -flurobenzoyl-N ′-phenylthioureas in water-containing media. J Fluorine Chem, 2006, 127: 1222—122720 Wei W, Zhang Y-M, Wei T-B. Synthesis and anion recognition of novel molecular tweezer receptor based on carbonyl thiosemicarba-zide for fluoride ions. Chin J Chem, 2008, 26(10): 1935—193821 Zhang Y-M, Wang D-Dn, Lin Q, Wei T-B. Synthesis and anion recognition properties of thiosemicarbazone based on molecular tweezers. Phosph, Sulfr Silicon Related Elem, 2008, 183: 44—5522Zhou Y-Q, Wei T-B, Zhang Y-M. Synthesis of thiosemicarbazone derivatives of benzo-15-crown-5 and their anion recognition prop-林奇等: 高选择性比色识别碘离子的氨基硫脲类阴离子受体364erties. Phosph, Sulfr Silicon Related Elem, 2008, 183: 1478—148823 张有明, 任海鲜, 魏太保. 间苯二甲醛缩双芳氨基硫脲的合成及阴离子识别研究. 高等学校化学学报, 2006, 27(11):2079—208324 魏太保, 王军, 张有明. 人工合成受体的阴离子识别研究(Ⅳ) 含有酚羟基化合物的设计合成及阴离子识别研究. 无机化学学报, 2006,22(12): 2212—221625 张有明, 徐维霞, 周艳青, 姚虹, 魏太保. 缩氨基硫脲衍生物受体的合成及阴离子识别研究. 化学学报, 2006, 64(1): 79—8426 吴芳英, 温珍昌, 江云宝. 硫脲类阴离子受体的研究进展. 化学进展, 2004, 16(5):776—78427 Liu W-X, Jiang Y-B, Intramolecular hydrogen bonding and anion binding of N-benzamido-N′-benzoylthioureas. J Org Chem, 2008,73: 1124—112728 Wei T B, Lin Q, Zhang Y-M, Wang H. Efficient and novel synthesis of N-aryl N′-ethoxycarbonylthiourea and arene-bisethoxycar-bonylthiourea derivatives catalyzed by TMEDA. Synth Commun, 2004, 34(12), 2205—221329 Valeur B, Pouget J, Bouson J, Kaschke M, Ernsting N P, Tuning of photoinduced energy transfer in a bichromophoric coumarin su-permolecule by cation binding. J Phys Chem, 1992, 96: 6545—654930 林奇, 魏太保, 姚虹, 张有明. N-乙氧羰基-N′-取代芳基硫脲晶体中的弱相互作用及超分子结构研究.化学学报, 2007, 65(02):159—16431 王积涛, 袁耀锋. 酰基硫脲分子内氢键与取代基效应的定量关系. 高等学校化学学报, 1995, 16(8): 1233—123632 Kovbasyuk L, Krämer R. Allosteric supramolecular receptors and catalysts. Chem Rev, 2004, 104:3161—318733 Rodriguez-Docampo Z, Pascu S I, Kubik S, Otto S. Noncovalent interactions within a synthetic receptor can reinforce guest binding.J Am Chem Soc, 2006, 128(34): 11206—1121034 Kim H, Kang J. Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene. Tetra-hedron Lett, 2005, 46: 5443—5445Highly selective colorimetric iodide receptors based onthiosemicarbazidesLIN Qi, WEI TaiBao, LI Yan, QIN XiaoPing, ZHANG YouMing*College of Chemistry and Chemical Engineering, Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, ChinaAbstract: A series of simple and highly selective colorimetric iodide receptors (M1—M4) bearing thiosemicarba-zide moiety as recognition site and nitro moiety as signal group were synthesized. In CH3CN solutions, sensors M1 and M3 showed colorimetric single selectivity for I–. When I– was added to their solutions, dramatic color changes from pink to colorlessness were observed. Yet other anions such as F–, Cl–, Br–, AcO–, HSO4–, H2PO4–and ClO4–couldn’t cause any distinct color change. The recognition mechanism of the receptor toward various anions was evaluated in CH3CN solution by UV-vis and 1H NMR. The receptors selectively recognize iodide through the three hydrogen bonds formed by the NH groups of the thiosemicarbazide moiety. When these hydrogen bonds formed, the conformation of the receptor changed, which led to the color changes of receptor. These kinds of receptors not only easy to synthesized but have high selectivity and affinity for iodide.Keywords: anion receptor, iodide anion, colorimetric recognition, thiosemicarbazides。
稳定同位素比例质谱仪(IRMS)的原理和应用祁彪,崔杰华同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。
当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。
稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。
与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。
有些问题还只能通过利用稳定同位素技术来解决。
现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。
与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。
一、有关同位素的基本概念1、同位素(Isotope)由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。
例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。
2、稳定同位素(Stable isotope)同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。
凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。
无可测放射性的同位素是稳定同位素。
其中一部分是放射性同位素衰变的最终稳定产物。
例如206Pb 和87Sr等。
元素分析仪操作规程一、操作准备1.确保元素分析仪(EA)的电源和气源已经接通,并且仪器处于正常工作状态。
2.检查仪器的脱气装置是否连接,并确保其处于工作状态。
3.充分检查分析样品是否准备好,确保样品标识清楚,无误。
二、仪器操作1.打开仪器电源,按照仪器启动程序启动仪器。
2.选择合适的程序和方法设置,根据实验要求进行样品分析。
3.根据样品特点选择合适的脱气装置,并将样品放入装置中进行脱气处理。
4.将脱气好的样品放入样品台上,并根据仪器要求设置好样品的数量和位置。
5.关闭脱气装置,启动分析程序,开始元素分析。
仪器会自动进行样品的燃烧和检测分析。
6.分析完成后,仪器会自动将结果显示出来。
根据实验要求,记录并保存分析结果。
三、实验安全1.在操作前,确保操作人员已经了解仪器的使用方法和安全操作规程,并经过相关培训。
2.操作人员在进行实验时,应佩戴合适的防护设备,如实验衣、手套和安全眼镜等。
3.在仪器工作时,禁止开启机箱或进行其他非必要的操作,以免引起电器故障或人身伤害。
4.样品中有害物质的处理应按照相关安全规定进行,避免直接接触和吸入有毒气体或粉尘。
四、日常维护1.每次使用完仪器后,应按照仪器的清洁要求进行清洗,并进行日常维护。
2.对于仪器的周边设备和附件,应按照相关要求进行清洁和维护,以保证仪器的正常运行。
3.定期检查仪器的气源和电源是否正常,避免出现供气不足或电源故障的情况。
4.对于仪器的一些易损件,如燃烧管、检测器等,应定期检查和更换,以确保仪器的精确度和稳定性。
五、故障处理1.在仪器使用过程中,如果出现故障或异常情况,应立即停止操作,并将问题反馈给仪器维修人员。
2.在等待维修期间,应尽量避免进行其他操作,并确保仪器的安全和整洁。
3.维修人员到达后,应详细描述出现的故障情况,并提供必要的协助和支持。
六、仪器存放和保养1.仪器在存放时,应注意避免阳光直射、温度过高或过低的环境,并远离潮湿和易燃物。
2.定期对仪器进行保养和维护,保持其干净、整洁,并使用覆盖物进行防尘和防潮处理。
元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定徐丽;邢蓝田;王鑫;李中平;毛俊丽【摘要】沉积有机质的碳氮稳定同位素值是进行古气候、古环境及生态系统研究不可或缺的主要研究手段,目前碳氮同位素主要利用元素分析仪-同位素比值质谱(EA-IRMS)系统来测定.EA-IRMS测定过程中的反应温度及样品进样量直接影响反应物在测试中的燃烧程度,从而影响测试数据的精度.本文利用EA-IRMS技术,以标准样品为参考,在不同转化温度下测试碳氮同位素值,研究保证测试精度的最佳反应温度条件;同时,通过分析不同含氮量样品的检测限,明确了样品含氮量与最低检测限之间的关系,确定了精确测定氮同位素值的最低进样量.结果表明:反应温度对测试精度有显著影响,在碳同位素测定时,将反应温度设定为900℃或以上时测试精度均能达到±0.2‰;氮同位素测定时,反应温度须设定为950℃时测试精度才能达到±0.3‰.实验得出样品含氮量与检测限之间的线性相关性为R2=0.873,开展氮同位素测定时可根据此关系来判断和控制进样量.%Carbon and nitrogen isotopes are essential tools to study paleoclimate, palaeoenvironment, and ecosystem. At present,carbon and nitrogen isotopes are commonly determined by Elemental Analyzer-Isotope Ratio Mass Spectrometer (EA-IRMS).Reaction temperature and sampling weight directly affect the burning of samples,and thus affect analytical ing EA-IRMS technology and taking standard samples as references,the carbon and nitrogen isotope values were determined at different conversion temperatures to study the optimum reaction temperature,in order to ensure the accuracy of the analysis presented in this paper.At the sametime,by analyzing the detection limits of samples with different nitrogen contents,the relationship between the nitrogen content of the sample and the lowest detection limit was determined and thus the lowest quantity of samples for accurate determination of nitrogen isotopes were also defined.The results show that reaction temperature has a significant effect on analytical precision.Analytical precision of carbon isotope is less than ±0.2‰ when the reaction temperature is either 900℃ or higher than 900℃,but the precision of nitrogen isotope can reach ±0.3‰ only when the reaction temperature is no lower than 950℃.The linear relationship between nitrogen content and detection limit was expressed as R2=0.873 according to the data. According to this relationship,the sample introduction quantity can be determined and controlled when analyzing nitrogen isotope.【期刊名称】《岩矿测试》【年(卷),期】2018(037)001【总页数】6页(P15-20)【关键词】元素分析仪-同位素比值质谱;碳氮同位素比值;反应温度;检测限【作者】徐丽;邢蓝田;王鑫;李中平;毛俊丽【作者单位】中国石油勘探开发研究院西北分院,甘肃兰州730020;甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃兰州730000;中国石油勘探开发研究院西北分院,甘肃兰州730020;甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃兰州730000;甘肃省地质矿产勘查开发局第二地勘院,甘肃兰州730020【正文语种】中文【中图分类】O657.63;O613.71;O613.2近年来元素分析仪-同位素比值质谱(EA-IRMS)系统的快速发展,大大提高了碳、氮、氧、氢等同位素的测定速度。
4,4’-联苯二乙酰丙酮桥联双核铜(Ⅱ)配合物的合成、EPR谱与热分析梅光泉;周建良;刘万云;应惠芳【摘要】在碱性条件下,以4,4’-联苯二乙酰丙酮和二苯甲酰甲烷为原料合成了新型固态三元配合物[Cu2(C22H20O4)(C15H11O2)2],并用元素分析、电导率、红外光谱、电子光谱和电喷雾质谱对其进行了表征,确定了配合物的组成,研究了配合物在氮气气氛中的热分解行为.对配合物测量了室温固体电子顺磁共振谱,定性探讨了配合物的分子几何构型,得到了其波谱参数(g=2.1082).%In alkaline medium, a novel 3, 3'-(biphenyl-4, 4'-diyl) dipentane-2,4-dione-bridged di-copper( Ⅱ ) complex, [Cu2 (C22H20O4) (C15 H11O2 )2] (C15 H11O2 = 1,3-diphe-nylpropane-1,3-dione anion; C22 H20O4 =3 ,3'-(biphenyl-4,4'-diyl)dipentane-2,4-dione di-anion) , was synthesized and characterized by the element analysis, conductivity, infrared spectra, electronic spectra and ESI-MS. Thermogravimetry(TG) and differential scanning calorimetry(DSC) for compound in an atmosphere of N2 was performed. The solid EPR spectra at the X-band frequencies present the signals corresponding to the di-nuclear entity at room temperature, and its electronic structures have been qualitatively investigated. Its parameters have been obtained (g=2. 1082).【期刊名称】《华中师范大学学报(自然科学版)》【年(卷),期】2011(045)004【总页数】5页(P582-586)【关键词】4,4’-联苯-3,3’-二(2,4-戊二酮);铜(Ⅱ)配合物;合成;电子顺磁共振;热分析【作者】梅光泉;周建良;刘万云;应惠芳【作者单位】宜春学院江西省高校应用化学与化学生物学重点实验室,江西宜春336000;中南大学化学化工学院,长沙410083;宜春学院江西省高校应用化学与化学生物学重点实验室,江西宜春336000;宜春学院江西省高校应用化学与化学生物学重点实验室,江西宜春336000【正文语种】中文【中图分类】O614.1近年来,通过合理设计各种含氧、氮等原子配体与金属盐的反应合成简单的模型化合物来研究复杂的金属蛋白、金属酶已经成为生物无机化学的研究热点之一[1-2].而铜的配合物因具有特殊的磁学、电学、光学等性质,在材料、催化等许多领域表现出应用价值,其中对双核配合物,包括同双核和异双核配合物的研究尤为广泛和深入,也成为人们关注的热点[3].本文在成功合成桥联配体4,4’-联苯二乙酰丙酮的基础上[4],合成了双核铜(Ⅱ)四氧杂环混合配体配合物[Cu2(C22H20O4)(C15H11 O2)2].通过各种物理手段,如 ESI-MS、EPR、TG、DSC等对标题配合物进行了详细的表征和性质研究.配合物的合成路线如下(见式1).无水甲醇(北京化工厂,分析纯,经镁回流除水蒸馏);乙腈(北京益利精细化学品有限公司,分析纯,经CaH2回流除水蒸馏);苯(天津化工厂,分析纯,用钠干燥,重蒸);Cu(ClO4)2·6H2O(自合成,铜的含量分析方法参考文献[5]);其它试剂和药品均为分析纯.Flash EA1112元素分析仪(美国热电公司);Bruker DMX400(400MHz,德国 Bruker公司);Shimadzu UV-2550型紫外可见分光光度计(日本岛津公司);Bruker TENSOR 27型红外光谱仪(KBr压片法,德国 Bruker公司,4000~400 cm-1);Finnigan LCQ质谱仪和 Thermo Finnigan DECAX-3000LCQ Deca XP质谱仪(乙腈-甲醇作流动相,美国Finnigan公司);TA DSC-Q10型差示扫描量热分析仪和TA TGA-Q50型热重分析仪(热分析实验在氮气气氛下进行,N2的流速为50mL/min,加热速率为10℃/min,美国TA公司);Bruker ESR-420电子顺磁共振谱仪(X-射线频率段,频率9 656.258Hz,扫场5 000G,微波功率10dB,调制频率100kHz,场调制强度1 Gpp,增益2×105,时间常数0.5s,中心磁场3200G,扫场范围1 000G/60cm,扫描时间300s,德国Bruker公司);DZF-2001型真空干燥器(上海浦东荣丰科学仪器有限公司);DDS-11A型数显电导率仪(上海雷磁新泾仪器有限公司);DLSB-5L/40低温冷却循环泵(巩义市予华仪器有限责任公司). 分别见文献[4,6].59.7mg(0.24mmol)二苯甲酰甲烷、43.2 mg(0.12mmol)4,4’-联苯二乙酰丙酮和91.0mg(0.24mmol)Cu(ClO4)2·6H2O 的20mL混合溶液(甲醇∶水=1∶1),在室温搅拌0.5h后成混浊液,加3滴三乙胺,回流,反应3h,溶液变成草绿色混浊溶液,冷却,过滤,经水、甲醇洗涤,60℃下真空干燥得到106.2mg草绿色粉末.产率96.0%.ESI-MS(m/z):922.6(77%),900.4(100%),860.2(70%).元素分析,按 C52H42O8Cu2(FW=921.98)的计算值(%):C,67.74;H,4.59;Cu,13.78.实测值(%):C,67.43;H,4.11;Cu,13.88.摩尔电导Λm(3.2×10-4 mol·dm-3 DMF溶液,298K):9.3S·cm2·mol-1.从配合物的元素分析结果来看,实验数据和理论值相吻合,其摩尔电导数值也表明配合物为非电解质化合物[7],结合对配合物的热重分析无结晶水存在,初步推测所合成的双核金属配合物的可能结构如式1所示.该固态配合物在空气中稳定,难溶于水和氯仿、丙酮、苯等溶剂;微溶于甲醇、乙醇;溶于DMF和DMSO.配合物的阳离子电喷雾质谱见图1.在921.6(41%),922.6(77%),923.7(72%),924.6(42%)处产生一组具有铜原子同位素特征的峰,这一组峰可以归属为[M+H+]+.比较该配合物与自由配体二苯甲酰甲烷和4,4’-联苯二乙酰丙酮的红外光谱,发现有较大差别:它们除了在1 700cm-1附近皆无吸收,与自由配体的1608cm-1相比,羰基的伸缩振动吸收峰均有所红移,这归因于金属配合物中双β-二酮的Keto和Enol之间的互变异构从Diketo转变成Enol形式,酸性质子从Enol羟基上脱离,Enol羟基氧和Enol羰基氧和金属离子螯合形成六元环,使体系共轭程度增大,红外吸收向低频方向移动[8].另外,从表中数据可看出,配体中的主要红外吸收峰(νC=O,νC-H,νC=C,δC-H)表现在配合物中都发生了明显位移,表明它们确已与金属离子配位.羰基的伸缩振动分裂为1 592cm-1和1 543cm-1两个峰,1 525cm-1附近的吸收为配合物C=C伸缩振动的强吸收峰,这是配体以烯醇负离子配位的特征[9],说明配合物中桥基配体4,4’-联苯二乙酰丙酮以烯醇式阴离子形式与Cu2+离子发生配位.在3 069~2 925cm-1范围内有一个中等强度的宽吸收峰,主要是由该混配物中4,4’-联苯二乙酰丙酮基负离子上甲基、烯键=C-H和芳环上 C-H 的伸缩振动所致.1 400cm-1和1 368cm-1处的两个吸收峰分别是4,4’-联苯二乙酰丙酮基负离子上甲基的反对称变形振动和对称变形振动.1 590~1 400cm-1有多个强吸收峰为苯环的骨架伸缩振动,它是苯环存在的标志,该吸收峰由于和其它吸收峰重叠而不能明确指认.1 226cm-1处的吸收峰为C-CH3的伸缩振动和C=C键的伸缩振动的偶合所致.1 024cm-1的吸收峰可归属于4,4’-联苯二乙酰丙酮基负离子上甲基的C-H的摇摆振动峰.744cm-1附近的吸收峰可指派为配合物中苯环上相邻H原子的同位相面外弯曲振动峰;而545cm-1,463cm-1[10]的吸收峰为配合物中配位键Cu—O键伸缩振动峰. 比较金属配合物和配体的紫外可见吸收光谱图及数据[4,6],发现形成配合物后(图2),配体在268nm和344nm处的二个主要吸收峰均仍然存在,铜配合物的长波紫外吸收峰位置由344nm红移至349nm,摩尔吸光系数变小.这是由于形成配合物分子所造成:金属配位键的生成,使双β-二酮的Keto和Enol之间的互变异构从Diketo转变成Enol形式,配位原子上电子云密度发生改变,增加了整个电子体系的共轭化和离域化程度,分子的平面性有所增强,电子跃迁则需要更少的能量,导致共轭生色团π→π*跃迁的能量发生变化,表现在电子光谱上是红移现象[11].配合物与配体谱图相似,说明配体对中心金属离子影响较大,配体与金属离子键合较强所致.没有观察到明显的d-d跃迁.从配体的跃迁可证明配合物的紫外吸收是来自配体的电子跃迁.其配合物的紫外最大吸收出现在349nm,均为对应于配体二苯甲酰甲烷烯醇式单线态π→π*的吸收.由此可见,桥基配体对光仅有很弱的吸收,对配合物的紫外吸收贡献较小.由于该配合物在低温下的顺磁共振信号太弱,测试了它的室温粉末EPR谱.室温下固体双核Cu(Ⅱ)配合物的EPR谱,具有轴对称性质.图3中配合物在3200×104 T附近呈现的上下不对称吸收信号即为总自旋态为三重态引起的,对应于三重态中ΔMs=1的允许跃迁,这表明双核铜配合物中存在着弱的各向异性三重态[12].峰型的上下不对称性意味着配合物中两个铜离子之间存在磁相互作用. 配合物中g⊥=2.0527和g//=2.2192,根据3 g=2g⊥+g//可算出其平均g因子值:g=2.1082,和二价Cu离子四方平面型的g值相吻合[13].对于四方形配位构型的二价铜离子,还可以根据G值来进一步说明Cu(Ⅱ)的电子处于dx2-y2或者dxy轨道上,文献[14]指出,G值大小可用来评估处于四角场环境中Cu(Ⅱ)间交换偶合的程度[G=(g//-2)/(g⊥-2)],交换偶合的结果将使G 值小于4.0;当(g//>g⊥>2,且G >4)时可以说明二价铜离的电子处于dx2-y2上.根据公式G=(g//-2)/(g⊥-2),配合物的G 值为4.16,由此可知,配合物的Cu(Ⅱ)的电子处在四方形平面构型的dx2-y2轨道上,表明二个Cu(Ⅱ)之间交换偶合较二乙酰丙酮桥联双核铜配合物有一定的减弱[15].因为二乙酰丙酮桥联分子的空间长度远小于4,4’-联苯二乙酰丙酮桥联长度,使核间距较短的二乙酰丙酮桥联双核铜配合物的二个Cu(Ⅱ)之间交换偶合作用增大.图4中从Cu(Ⅱ)配合物的TG曲线看到,在至185℃之前没有任何失重,表明无水分子存在.随着温度升高,TG曲线在185~398℃之间出现了二个剧烈的连续失重过程:185~334℃之间失重43.13%,在 DTG曲线的最快失重速率点在315℃;334~398℃之间失重31.10%,在 DTG曲线的最快失重速率点在384℃.其总失重74.23%,对应于失去二个二苯甲酰甲烷和一个C5H8O2(理论值70.36%).残余物重26.77%,推测为二分子CuO(理论值17.26%)和未充分燃烬的有机碳残渣.图5中的DSC曲线表明,在不到315℃出现一个的放热过程,随后在341℃附近出现一个几乎连续的吸热过程.DDSC曲线说明DSC曲线的二个峰都是单独、无重复的峰.以二苯甲酰甲烷为端基配体,4,4’-联苯二乙酰丙酮为桥联配体合成了双核铜(Ⅱ)的新型固态三元配合物,组装反应产率达到96.0%.通过元素分析、电导、IR、UV-Vis、电喷雾质谱和热分析等手段,确证了所得产物的结构.室温下Cu2+双核配合物的多晶粉末电子顺磁共振谱测试表明,Cu(Ⅱ)配合物的未成对电子处在四方形平面构型的dx2-y2轨道上,二个Cu(Ⅱ)之间有一定的交换偶合,波谱参数g⊥=2.0527,g//=2.2192,g=2.1082,G=4.16.【相关文献】[1]Siddiqi Z A,Khalid M,Kumar S,et al.Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2,6-dicarboxylic acid containing 4-picoline as auxiliary ligand[J].Eur J Med Chem,2010,45(1):264-269.[2]La Mendola D,Bonomo R P,Caminati S,et al.Copper(Ⅱ)complexes with an avian prion N-terminal region and their potential SOD-like activity[J].J Inorg Biochem,2009,103(2):195-204.[3]Sartoris R P,Santana R C,Baggio R F,et al.Pyrophosphate-bridged Cu(Ⅱ )chain magnet:{[Na3Cu(P2O7)(NO3)]·3H2O}n[J].Inorganic Chemistry,2010,49(12):5650-5657.[4]曾锦萍,黄海平,梅光泉,等.4,4’-联苯-3,3’-二(2,4-戊二酮)的合成与热谱研究[J].化学试剂,2009,31(11):908-911.[5]Cavalheiro E T G,Lemos F C D,Schpector J Z,et al.The thermal behaviour of nickel,copper and zinc complexes with the Schiff bases cis-and trans-N,NO-bis (salicylidene)-1,2-ciclohexadiamine(Salcn)[J].Thermochimica Acta,2001,370(1-2):129-133.[6]梅光泉,曾锦萍,袁晓玲,等.二苯甲酰甲烷的合成与热稳定性研究[J].宝鸡文理学院学报:自然科学版,2008,28(4):283-286.[7]Geary W e of conductivity mesurements in organic solvents for the characterization of coordination compounds[J].Coordination Chemistry Reviews,1971,7(1):81-122.[8]Chen Z M,Wu Y Y,Huang F X,et al.Synthesis,spectral,and thermal characterizations of Ni(Ⅱ)and Cu(Ⅱ)β-diketone complexes with thenoyltrifluoroacetone ligand[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007,66(4-5):1024-1029.[9]梅光泉,袁晓玲,刘万云,等.二乙酰丙酮桥联双核镍(Ⅱ)配合物的合成、表征与磁性研究[J].华中师范大学学报:自然科学版,2010,44(3):418-422.[10]Gaber M,Ayad M M,El-Sayed Y S Y.Synthesis,spectral and thermal studies of Co(Ⅱ),Ni(Ⅱ)and Cu(Ⅱ)complexes 1-(4,6-dimethyl-pyrimidin-2-ylazo)-naphthalen-2-ol[J].Spectrochimica Acta Part A,2005,62(1-3):694-702. [11]Sultan R,Gadamsetti K,Swavey S.Synthesis,electrochemistry and spectroscopyof lanthanide(Ⅲ)homodinuclear complexes bridged by polyazine ligands[J].Inorg Chim Acta,2006,359(4):1233-1238.[12]Julve M,Verdaguer M,Charlot M F,et al.Interactions in Cu(Ⅱ)Cu(Ⅱ),VO (Ⅱ)VO(Ⅱ)and Cu(Ⅱ)VO(Ⅱ)pairs through oxalato bridging ligand[J].Inorg Chim Acta,1984,82(1):5-12.[13]Chandra S,Kumar R.Electronic,cyclic voltammetry,IR and EPR spectral studies of copper(Ⅱ)complexes with 12-membered N4,N2O2and N2S2donor macrocyclic ligands[J].Spectrochimica Acta Part A,2005,61(3):437-446.[14]Hathaway B J,Tomlinson A A G.Copper(Ⅱ)ammonia complexes[J].Coordination Chemistry Reviews,1970,5(1):1-43.[15]梅光泉,袁晓玲,刘万云,等.二乙酰丙酮桥联双核铜(Ⅱ)配合物的合成、EPR谱与热分析[J].河南师范大学学报:自然科学版,2010,38(2):104-107.。
附:哈尔滨师范大学现代实验中心分析测试收费标准(试行)收费标准仪器名称 型号 检测项目 校内收费 校外收费 透射电镜 H-7650 透射电镜观察 200元/小时 400元/小时 扫描电镜观察 150元/小时 200元/小时 扫描电镜 S-4800/350离子溅射50元/样 100元/样 激光共聚焦 显微镜SP5激光共聚焦显微镜观察100元/小时 200元/小时 核磁(H 谱) 50+氘代试剂 100+氘代试剂 核磁(C 及杂核)100+50*(n-1)+氘代试剂(n:小时) 200+50*(n-1)+氘代试剂(n:小时) 核磁二维谱COSY 100+氘代试剂 200+氘代试剂 核磁共振谱AV400核磁二维谱HMQC、HMBC200+氘代试剂 300+氘代试剂 微波消解仪 CEM 有机物 30元/样 50元/样 定性分析 80元/样 150元/样 高压液相色谱仪1200 定量分析100+25*n n 为组分数 200+50*n n 为组分数 差热热重 6300 80元/样150元/样ICP-MS 7500CX 常规分析 50+30*元素个数 (标液自带) 100+50*元素个数 (标液自带)XRD D8 常规分析 30元/次 50元/次 定性、半定量100元/样 200元/样 X-射线荧光光谱仪S4 定量 150元/样+标准样300元/样+标准样扫单胞参数 50元/样 120元/样 x 射线单晶衍射仪Smart APEXII扫单胞参数收数据300元/样 400元/样 激光粒度仪 2000 粒度分析 50元/样 80元/样 磁强计 7410 常规分析 100元/样 200元/样 比表面 NOVA2000 比表面(介孔) 150元/样200元/样元素分析仪 FLASHEA1112 元素分析(CHNS)120/样 (至少5个样) 50/开机+150/每个样品(至少5个样) 三光栅光谱仪 SR-750 常规分析 50元/样 100元/样 IR-Raman VERTEX80 纯样测试 25元/样50元/样拉曼光谱仪 HR-800 拉曼光谱 60元/谱 150元/谱 射频阻抗材料分析仪E4991A 常规分析40元/样 80元/样 超纯水Milli-Q10元/升10元/升1。
新型催化功能纤维素的制备及催化降解四环素机制石莉莉;谭贤;郦行杰;郭明【摘要】通过固相法合成新型四氨基酞菁类化合物:四氨基钴酞菁(CoTAPc);氧化法合成纤维素衍生物载体,化学键联制备新型纤维素负载酞菁:纤维素负载钴酞菁(F-CoTDTAPc).利用红外光谱结合元素分析和原子吸收表征中间产物和最终产物的结构,确认预期产物的合成.研究新型催化功能纤维在不同温度、时间、氧化剂浓度和四环素浓度下对四环素降解性能的影响.利用正交试验设计优化工艺.结果成功制备纤维素负载钴酞菁.纤维素负载钴酞菁在过氧化氢存在下能快速催化氧化四环素,并具有较好的原位再生能力,氧化降解优化工艺组合为温度60℃,时间5h,氧化剂用量0.05 mol· L-1,四环素浓度5×10-5mol·L-1.【期刊名称】《浙江农林大学学报》【年(卷),期】2016(033)005【总页数】9页(P881-889)【关键词】纤维素;酞菁;催化功能;降解机制;四环素【作者】石莉莉;谭贤;郦行杰;郭明【作者单位】浙江农林大学理学院,浙江临安311300;浙江农林大学理学院,浙江临安311300;浙江农林大学理学院,浙江临安311300;浙江农林大学理学院,浙江临安311300【正文语种】中文【中图分类】TQ352.2;S7-05抗生素的环境污染已成为中国乃至全球所面临的重大环境问题之一[1]。
四环素类抗生素(tetracyclines,TCs)是常用抗生素之一[2],由于其成本低廉、使用方便和副作用相对较小,四环素类抗生素是畜禽常用的饲用抗生素[3]。
作为近年来日益受到关注的潜在环境生态危险源,四环素类抗生素的环境污染研究日益增多[4]。
由于四环素类抗生素的强极性和抗生素特性[5],常规的污水生物处理工艺及自来水厂处理工艺,如活性污泥法、生物滤池、加氯消毒工艺都无法有效去除水中的四环素类抗生素[6]。
四环素类抗生素容易在高pH值、氧化还原和光照条件下发生降解,形成多种降解产物[7]。
一锅法合成三硫代碳酸酯程传杰;杨江明;申亮;舒金兵;乔永洛;付长清【摘要】以3-巯基丙酸、二硫化碳和氯代烃为原料,采用"一锅法"分别合成了两种可逆加成-断裂链转移试剂--3-苄硫基硫代羰基硫基丙酸和3-十二烷硫基硫代羰基硫基丙酸,收率分别为93%和87%.其结构经~1H NMR, ~(13)C NMR, IR及元素分析表征.【期刊名称】《合成化学》【年(卷),期】2010(018)002【总页数】4页(P242-244,253)【关键词】三硫代碳酸酯;一锅法;合成;RAFT链转移试剂【作者】程传杰;杨江明;申亮;舒金兵;乔永洛;付长清【作者单位】江西科技师范学院,江西省有机功能分子重点实验室,江西,南昌,330013;江西科技师范学院,江西省有机功能分子重点实验室,江西,南昌,330013;江西科技师范学院,江西省有机功能分子重点实验室,江西,南昌,330013;江西科技师范学院,江西省有机功能分子重点实验室,江西,南昌,330013;江西科技师范学院,江西省有机功能分子重点实验室,江西,南昌,330013;江西科技师范学院,江西省有机功能分子重点实验室,江西,南昌,330013【正文语种】中文【中图分类】O623.8;O623.662活性/可控自由基聚合因其具有聚合物分子量大小可控、分子量分布范围窄、分子结构的可设计性、适用单体广、适合本体、溶液、乳液和分散聚合不同反应体系等诸多优点,近年来得到了广泛的研究与发展[1~4]。
其中,自由基加成-断裂链转移(RAFT)方法具有很好的工业化前景,因而受到科学界与工业界的广泛关注[5,6]。
与原子转移自由基聚合(ATRP)方法相比,RAFT聚合适用单体更广,无需使用重金属催化剂及较贵的含氮或含磷配体,仅需一种RAFT链转移试剂与合适的单体、引发剂即可进行相应的活性自由基聚合。
目前,RAFT链转移试剂主要有四种:二硫代羧酸酯、三硫代碳酸酯、硫代氨基甲酸酯和黄原酸酯[7]。
流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征宁加佳;刘辉;古滨河;刘正文【摘要】为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ13C和δ15N)变化的主要因素,及其与浮游动物δ13C和δ15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ13C和δ15N进行了研究.颗粒有机物碳稳定同位素(δ13CPOM)和氮稳定同位素(δ15NPOM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ13CPOM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关.δ15NPOM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果.浮游动物的δ13C及δ15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因.在5月份,浮游动物的食物来源为POM中δ13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物.【期刊名称】《生态学报》【年(卷),期】2012(032)005【总页数】8页(P1502-1509)【关键词】颗粒有机物;降雨;浮游动物;δ13C;δ15N【作者】宁加佳;刘辉;古滨河;刘正文【作者单位】暨南大学水生生物研究所,广州510632;暨南大学水生生物研究所,广州510632;暨南大学水生生物研究所,广州510632;美国佛罗里达大学水和土壤科学系,佛罗里达32611;暨南大学水生生物研究所,广州510632;中国科学院南京地理与湖泊研究所,南京210008【正文语种】中文颗粒有机物(POM)是水生态系统中许多消费者的重要食物来源 [1],从来源上看主要由内源有机物(如大型水生植物、浮游植物等)及外源有机物(如陆生植物碎屑等)组成 [2]。
影响内源及外源有机物在POM组成中的因素有很多,例如,有研究表明,在富营养化水体中,POM的组成主要为浮游植物[3],而在贫营养化水体中,主要为外源有机物 [2,4]。
Flash EA 1112元素分析仪
技术参数
1. 测定范围: 0.01% (100 ppm) – 100%
2. 分析时间: CHN需8分钟,CHNS需要10分钟,O需要5分钟
3. 样品量: 0.01 ~100 mg (根据样品性质)
4. 测定精度:
理论值实验值
0.01 % (100 ppm) 100 ppm ± 10 ppm(即90~110 ppm)
0.10 % 0.1 % ± 0.01%(即0.09%~0.11%)
1.00 % 1.00 % ± 0.02%(即0.98%~1.02%)
10.00 % 10.00 % ± 0.1%(即9.90%~10.10%)
50.00 % 50.00 % ± 0.3%(即49.70%~50.30%)
90.00 % 90.00% ± 0.3%(即89.70%~90.30%)
主要特点
1. 独特的分离分析技术:采用成熟的色谱分析技术,完全避免了吸附-解吸装置带来的高背景效应和残留的危险,分析报告在给出数据结果的同时给出各组份的色谱流出峰。
2. 仪器具有快速而持久的稳定性能,升温只需要45分钟。
3. 样品的分解方式为“Flash”方式,即瞬时的动态闪烧和完全燃烧分解方式,在氧气辅助燃烧下瞬间温度高达1800℃,保证样品被完全氧化分解。
4. 真正的EFC电子流量控制系统,配合自动检漏功能,使得其具有极高的控制精度和可靠性。
5. 反映管采用专利技术“快速接头”连接,安装简单,无需专门工具,完全免除对反应管存在的应力危险,操作方便安全,极大提高反应管寿命。
6. 仪器自动化程度极高:自动调整载气流量,载气流量实时恒定控制,大大节省氦气消耗量;自动调零,自动提示更换反应管催化剂;主机具备微机故障自动诊断。
自动时间设定开停机。
7. 仪器可以选配专用接口和同位素质谱相连,并且可以通过MAT253同位素质谱仪的软件系统实现对它的全方位控制。