高中数学2.2《用样本估计总体1》测试(新人教A版必修3)
- 格式:doc
- 大小:84.00 KB
- 文档页数:3
人教版A数学必修三第二单元单元测试B卷:用样本估计总体一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个选项符合题意),已知1. 在样本频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的14样本容量是80,则该组的频数为()A.20B.16C.30D.352.已知某机器加工的1000件产品中次品数的频率分布如下表:则次品数的众数、平均数依次为()A.0,1.1B.0,1C.4,1D.0.5,23. 某班有50名学生,该班上学期期中考试的英语平均分为70分,标准差为s,后来发现两名学生的成绩记录有误:小明得了71分,却误记为46分;小刘得了70分,却误记为95分.更正后的标准差为s1,则s与s1之间的大小关系为()A.s1=sB.s1>sC.s1<sD.无法确定4. 某财经学院有n名学生参加2016年的全国会计从业资格考试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是12,则n等于()A.35B.40C.45D.505. 某赛季甲、乙两名篮球运动员12场比赛的得分情况如图所示,对这两名运动员的得分进行比较,下列四个结论中不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员的得分的平均数D.甲运动员的得分比乙运动员的得分稳定6. 某校5人参加头脑奥林匹克竞赛选拔考试,已知这5人的平均考试成绩为81分,其中4人的成绩分别为73分,82分,82分,84分,由这5人得分所组成的—组数据的中位数是()A.81B.82C.83D.847. 在某中学举办的爱国主题演讲比赛中,七位评委给甲、乙两位选手打分的茎叶图如图所示,但其中在△处数据丢失.按照规则,甲、乙各去掉一个最高分和一个最低分,用x和y分别表示甲、乙两位选手获得的平均分,则()A.x>yB.x<yC.x=yD.x和y之间的大小关系无法确定8.一个频数分布表(样本容量为20)不小心被损坏了一部分,部分数据如下表所示,若样本中数据在[20,60)内的频率为0.8,则样本中在[40,60)内的数据的个数为()C.7D.99. 一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.610. 为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e ,众数为m 0,平均值为x ¯,则( )A.m e =m 0=x ¯B.m e =m 0<x ¯C.m e <m 0<x ¯D.m 0<m e <x ¯二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图,估计这批产品的平均长度为________mm .如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的极差为a ,乙加工零件个数的平均数为b ,则a +b =________.如图是某校2016级的高一男生体重的频率分布直方图,已知图中从左到右的前三组的频率之比为1:2:3,则第二组的频率为________.某校高一年级有400名学生,随机抽查了40名学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.给出结论:①该校高一年级学生1分钟仰卧起坐的次数的中位数为25;②该校高一年级学生1分钟仰卧起坐的次数的众数为24;③该校高一年级学生1分钟仰卧起坐的次数超过30的人数约为80;④该校高—年级学生1分钟仰卧起坐的次数少于20的人数约为8.用样本估计总体,上述结论正确的是________.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)某游戏平台为了了解玩家对某款游戏的喜爱程度,随机采访10位经常玩这款游戏的用户,收集到他们每次登录的平均时长(单位:分钟)如下:6.27.07.65.96.77.36.58.17.87.9(1)根据以上数据,画出茎叶图;(2)求出中位数、平均数、方差.某面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.(1)求a的值,并估计在一个月(按30天算)内日销售量不低于95个的天数;(2)利用频率分布直方图估计每天销售量的平均数及方差(同一组中的数据用该组区间的中点值作代表).某高校为了解学生的体能情况,随机抽取部分学生进行一分钟跳绳测试,将所得数据整理后,画出频率分布直方图(如图).图中从左到右各小长方形面积之比为2:4:17:15:9:3,其中第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数不低于110为达标,试估计该高校全体学生的达标率.(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.对某校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天识记和晚上睡前识记.为了研究背单词的时间安排对记忆效果的影响,某社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是:使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图所示.试估计这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤)将某班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:求全班学生的平均数和标准差.中秋佳节来临之际,小李准备销售一种农特产,这段时间内,每售出1箱该特产获利50元,未售出的,每箱亏损30元.经调查,市场需求量的频率分布直方图如图所示.小李购进了160箱该特产,以x(单位:箱,100≤x≤200)表示市场需求量,y (单位:元)表示经销该特产的利润.(1)根据频率分布直方图估计市场需求量的众数和平均数;(2)将y表示为x的函数;(3)根据频率分布直方图求利润不少于4800元的频率.参考答案与试题解析人教版A数学必修三第二单元单元测试B卷:用样本估计总体一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个选项符合题意)1.【答案】B【考点】频率分布直方图【解析】此题暂无解析【解答】解:设该组的频数为x,则其他组的频数之和为4x.由样本容量是80,得x+4x=80,解得x=16,即该组的频数为16.故选B.2.【答案】A【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:由于次品数为0的频率最大,所以众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1.故选A.3.【答案】C【考点】极差、方差与标准差独立性检验的基本思想【解析】此题暂无解析【解答】解:依题意,知虽然两名学生的成绩记录出错,但50名学生成绩的平均分没变化.由于(71−70)2+(70−70)2<(46−70)2+(95−70)2,根据方差的公式,可得s1<s.故选C.4.【答案】B【考点】频率分布直方图【解析】此题暂无解析【解答】=0.005×20+0.010×20=0.3,解:由12n解得n=40.故选B.5.【答案】D【考点】茎叶图众数、中位数、平均数【解析】此题暂无解析【解答】解:由图可知甲运动员得分的极差大于乙运动员得分的极差,结论A正确;由图可知甲运动员的得分始终大于乙运动员的得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,甲运动员得分的平均数大于乙运动员得分的平均数,结论B,C正确;由图可知甲运动员得分波动性较大,乙运动员得分波动性较小,所以乙运动员的得分比甲运动员的得分稳定,结论D错误.故选D.6.【答案】B【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:由题意可得,第五个人的得分为84分,将所有人的分数按从高到低进行排序为84,84,82,82,73,则这5人得分所组成的一组数据的中位数是82.故选B.7.【答案】B【考点】茎叶图【解析】此题暂无解析【解答】解:∵ 2+5+5+4+△=△+16,2+5+6+7=26,△<10,∴ x<y.故选B.8.【答案】C【考点】用样本的频率分布估计总体分布【解析】此题暂无解析【解答】解:由图知,样本中数据在[20,40)内的频数为4+5=9,所以样本中数据在[20,40)内的频率为9÷20=0.45.所以样本中在[40,60)内的数据的频率为0.8−0.45=0.35,所以样本中在[40,60)内的数据的个数为20×0.35=7.故选C.9.【答案】D【考点】极差、方差与标准差众数、中位数、平均数【解析】此题暂无解析【解答】解:设原来的数据为x1,x2,⋯,x n,则所得的新数据为x1+60,x2+60,⋯,x n+60.由题意得x1+x2+⋯+x n=4.8n,(x1−4.8)2+(x2−4.8)2+⋯+(x n−4.8)2=3.6n,则新数据的平均数为1n[(x1+60)+(x2+60)+⋯+(x n+60)]=1n[(x1+x2+⋯+x n)+60n]=1n(4.8n+60n)=64.8,新数据的方差为1n[(x1+60−64.8)2+(x2+60−64.8)2+⋯+(x n+60−64.8)2]=1n[(x1−4.8)2+(x2−4.8)2+⋯+(x n−4.8)2]=1n×3.6n=3.6.所以新数据的平均数和方差分别为64.8,3.6.故选D.10.【答案】D【考点】频率分布直方图众数、中位数、平均数【解析】此题暂无解析【解答】解:由图,可知30名学生的得分情况依次为2人得3分,3人得4分,10人得5分,6人得6分,3人得7分,2人得8分,2人得9分,2人得10分.中位数为得分由小到大排列后第15,16个数(分别为5,6)的平均数,即m e=5+62=5.5;由于5出现次数最多,故m0=5;x¯=130×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m0<m e<x¯.故选D.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 【答案】22.75【考点】频率分布直方图【解析】此题暂无解析【解答】解:根据颜率分布直方图,估计这批产品的平均长度为(12.5×0.02+17.5×0.04+22.5×0.08+27.5×0.03+32.5×0.03)×5=22.75(mm).故答案为:22.75.【答案】40【考点】茎叶图【解析】此题暂无解析【解答】解:由茎叶图,知甲加工零件个数的极差a=35−18=17,乙加工零件个数的平均数b=1×(10×3+20×4+30×3+17+11+2)=23,10则a+b=40.故答案为:40.【答案】0.25【考点】频率分布直方图【解析】此题暂无解析【解答】解:由频率分布直方图知前三组的频率之和为1−(0.0125+(0.0375)×5=0.75,=0.25.所以第二组的频率为0.75×21+2+3故答案为:0.25.【答案】③【考点】频率分布直方图【解析】此题暂无解析【解答】解:第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,所以中位数在第三组内,设中位数为25+x,则x×0.08=0.5−0.1−0.3=0.1,解得x=1.25,所以所求中位数为26.25,①错误;最高矩形是第三个,又第三组数据的中间值为27.5,所以所求众数为27.5,②错误;样本中学生1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,则该校高一年级学生1分钟仰卧起坐的次数超过30的人数约为400×0.2=80,③正确;样本中学生1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,则该校高一年级学生1分钟仰卧起坐的次数少于20的人数约为400×0.1=40,④错误.故答案为:③.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)【答案】解:(1)如图所示,茎表示个位数,叶表示小数点后的数字.(2)中位数为7.0+7.32=7.15, 平均数x ¯=110×(6.2+7.0+7.6+5.9+6.7+7.3+6.5+8.1+7.8+7.9)=7.1,方差s 2=110×[(6.2−7.1)2+(7.0−7.1)2+(7.6−7.1)2+(5.9−7.1)2+(6.7−7.1)2+(7.3−7.1)2+(6.5−7.1)2+(8.1−7.1)2+(7.8−7.1)2+(7.9−7.1)2]=0.52.【考点】茎叶图众数、中位数、平均数【解析】此题暂无解析【解答】解:(1)如图所示,茎表示个位数,叶表示小数点后的数字.(2)中位数为7.0+7.32=7.15, 平均数x ¯=110×(6.2+7.0+7.6+5.9+6.7+7.3+6.5+8.1+7.8+7.9)=7.1,方差s 2=110×[(6.2−7.1)2+(7.0−7.1)2+(7.6−7.1)2+(5.9−7.1)2+(6.7−7.1)2+(7.3−7.1)2+(6.5−7.1)2+(8.1−7.1)2+(7.8−7.1)2+(7.9−7.1)2]=0.52.【答案】解:(1)由(0.006+0.008+a +0.026+0.038)×10=1,解得a =0.022.日销售量不低于95个的频率为(0.038+0.022+0.008)×10=0.68,30×0.68=20.4≈20,故一个月内日销售量不低于95个的天数约为20.(2)日销售量的平均数为x ¯=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 日销售量的方差为s 2=(−20)2×0.06+(−10)2×0.26+102×0.22+202×0.08=104,即日销售量的平均数的估计值为100,方差的估计值为104.【考点】频率分布直方图此题暂无解析【解答】解:(1)由(0.006+0.008+a+0.026+0.038)×10=1,解得a=0.022.日销售量不低于95个的频率为(0.038+0.022+0.008)×10=0.68,30×0.68=20.4≈20,故一个月内日销售量不低于95个的天数约为20.(2)日销售量的平均数为x¯=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.日销售量的方差为s2=(−20)2×0.06+(−10)2×0.26+102×0.22+202×0.08=104,即日销售量的平均数的估计值为100,方差的估计值为104.【答案】解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08,样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由图可估计该高校全体学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.【考点】随机抽样和样本估计总体的实际应用众数、中位数、平均数频率分布直方图【解析】此题暂无解析【解答】解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08,样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由图可估计该高校全体学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.解:总共抽取的人数为5%×1000=50,由甲组的条形图可知甲组人数为4+10+8+4+2+1+1=30,故乙组人数为20.因为按5%的比例对这1000名学生按时间安排类型进行分层抽样,所以被调查的1000名学生中,白天识记的学生人数为305%=600,晚上睡前识记的学生人数为400.40个音节的保持率不低于60%,即至少能准确回忆24个,其中白天识记的学生人数为130×600=20,晚上睡前识记的学生人数为(0.0625+0.0375)×4×400=160.所以这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数大约为20+160=180.【考点】古典概型及其概率计算公式频率分布直方图【解析】此题暂无解析【解答】解:总共抽取的人数为5%×1000=50,由甲组的条形图可知甲组人数为4+10+8+4+2+1+1=30,故乙组人数为20.因为按5%的比例对这1000名学生按时间安排类型进行分层抽样,所以被调查的1000名学生中,白天识记的学生人数为305%=600,晚上睡前识记的学生人数为400.40个音节的保持率不低于60%,即至少能准确回忆24个,其中白天识记的学生人数为130×600=20,晚上睡前识记的学生人数为(0.0625+0.0375)×4×400=160.所以这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数大约为20+160=180.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、 证明过程或演算步骤)【答案】解:设第—组20名学生的成绩为x i (i =1,2,⋯,20),第二组20名学生的成绩为y i (i =1,2,⋯,20),依题意,有x ¯=90,y ¯=80,故全班学生的平均成绩为140(x 1+x 2+⋯+x 20+y 1+y 2+⋯+y 20) =140(90×20+80×20)=85.设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 12=120(x 12+x 22+⋯+x 202−20x ¯2), s 22=120(y 12+y 22+⋯+y 202−20y ¯2). 又设全班40名学生成绩的标准差为s ,则有s 2=140(x 12+x 22+⋯+x 202+y 12+y 22+⋯+y 202−40×852) =140(20s 12+20x ¯2+20s 22+20y ¯2−40×852) =12×(62+902+42+802−2×852)=51.即s =√51.所以全班学生成绩的平均数为85,标准差为√51.【考点】极差、方差与标准差【解析】此题暂无解析【解答】解:设第—组20名学生的成绩为x i (i =1,2,⋯,20),第二组20名学生的成绩为y i (i =1,2,⋯,20),依题意,有x ¯=90,y ¯=80,故全班学生的平均成绩为140(x 1+x 2+⋯+x 20+y 1+y 2+⋯+y 20) =140(90×20+80×20)=85.设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 12=120(x 12+x 22+⋯+x 202−20x ¯2), s 22=120(y 12+y 22+⋯+y 202−20y ¯2). 又设全班40名学生成绩的标准差为s ,则有s 2=140(x 12+x 22+⋯+x 202+y 12+y 22+⋯+y 202−40×852) =140(20s 12+20x ¯2+20s 22+20y ¯2−40×852) =12×(62+902+42+802−2×852)=51.即s =√51.所以全班学生成绩的平均数为85,标准差为√51.【答案】解:(1)由频率分布直方图,得市场需求量的众数的估计值是150. 需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15.则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100≤x<160时,y=50x−30×(160−x)=80x−4800,当160≤x≤200时,y=160×50=8000,所以y={80x−4800,100≤x<160 8000,160≤x≤200.(3)由80x−4800≥4800,解得x≥120.所以由(1)知利润不少于4800元的频率为1−0.1=0.9.【考点】离散型随机变量的期望与方差频率分布直方图众数、中位数、平均数【解析】此题暂无解析【解答】解:(1)由频率分布直方图,得市场需求量的众数的估计值是150.需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15.则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100≤x<160时,y=50x−30×(160−x)=80x−4800,当160≤x≤200时,y=160×50=8000,所以y={80x−4800,100≤x<160 8000,160≤x≤200.(3)由80x−4800≥4800,解得x≥120.所以由(1)知利润不少于4800元的频率为1−0.1=0.9.。
自我小测夯基达标1.在频率分布直方图中,各个长方形的面积表示()A.落在相应各组的数据的频数B.相应各组的频率C.该样本所分成的组数D.该样本的样本容量2.一个容量为80的样本最大值是140,最小值是51,组距为10,则可以分成()A.10组B.9组C.8组D.7组3.(2009泰安高一期末)为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64B.54C.48D.274.一个容量为n的样本,分成若干组,已知某组的频率和频数分别为0.125和40,则n的值为()A.640B.320C.240D.1605.(2009临沂高一期末)统计某校1 000名学生的数学会考成绩,得到样本频率分布直方图如下图,规定不低于60分为及格,不低于80分为优秀,则及格人数是___________;优秀率为___________.6.某市对上、下班交通情况做抽样调查,上、下班时间各抽取了12辆机动车,行驶时速如下(单位:km/h):上班时间:303318273240262821283520下班时间:271932293629302225161730用茎叶图表示上面的样本数据.能力提升7.把一个样本容量为100的数据分组,各组及其频数如下:(17,19],1;(19,21],1;(21,23],3;(23,25],3;(25,27],18;(27,29],16;(29,31],28;(31,33],30.根据累计频率分布,估计小于29的数据大约占总体的()A.42%B.58%C.40%D.16%8.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高单位:cm),分组情况如下:则表中的m=_______________,a=_______________.9.如图是某单位职工年龄(取正整数)的频数分布图,根据图形提供的信息,回答下列问题(每组含最低值,不含最高值):(1)该单位职工共有_______________人.(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比为_______________.(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有_______________人.10.甲、乙两名工人每天生产60个机器零件,经检验员检验合格后才能入库,不合格的销毁重做,10天中甲工人的合格品个数为:15,56,28,9,27,38,33,24,31,39;乙工人的合格品个数为:19,51,49,39,37,28,31,33,36,36.(1)用茎叶图表示甲、乙两个工人合格品的分布情况;(2)根据茎叶图分析甲、乙两个工人谁的技术水平发挥得更稳定.11.(2009济宁高一期末)为了了解高一学生的体能情况,某校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图如图所示,图中从左到右各小长方形的面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.问:(1)第二小组的频率是多少?样本容量是多少?(2)若一分钟跳绳次数在110次以上(含110次),为达标,试估计该校全体高一学生的达标率是多少?拓展探究12.某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表.解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写出缺失的数据并绘出频率分布直方图; (3)旅客购票用时的平均数可能落在哪一小组?(4)若每增加一个购票窗口可使平均购票用时降低5 min,要使平均购票用时不超过10 min,那么你估计最少要增加几个窗口?参考答案1答案:B 2答案:B 3答案:B 4解析:样本容量频数频数=,故样本容量320125.040==n . 答案:B 5答案:800 0.26解:根据题意绘出该市上、下班交通情况的茎叶图,如图.7答案:A8解析:根据频率分布表的性质,频数=样本容量×频率,则m =60×0.1=6,在[165.5,172.5)上频数为60-(6+21+6)=27, 所以45.06027==a .故m =6,a =0.45. 答案:6 0.459答案:(1)50 (2)60% (3)1510解:画茎叶图时,要把十位数作为茎放在中间,两组数据的个位数作为叶放在两边.然后根据茎叶图上的原始数据,分析数字特征,对两组数据加以比较,作出大致估计. (1)茎叶图如下:(2)从茎叶图上可以看到,乙的中位数是36,合格品数据对称,故乙的技术水平发挥较稳定. 11解:(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小. 因此第二小组的频率为:08.0391517424=+++++.又因为第二小组的频率样本容量第二小组的频数=.所以样本容量15008.012===第二小组的频率第二小组的频数.(2)由图可估计该校高一学生的达标率约为:%88%10039151742391517=⨯++++++++.故第二小组的频率是0.08,样本容量是150,该校高一学生的达标率是88%. 12解:(1)样本容量是100.(2)①50 ②0.10 其频率分布直方图如图.(3)设旅客平均购票用时为t 分, 则有10030255020101510100510030205015101010500++⨯+⨯+⨯+⨯<≤⨯+⨯+⨯+⨯+⨯t ,即15≤t <20.所以旅客购票用时的平均数可能落在第四组. (4)设需增加x 个窗口,则20-5x ≤10,解得x ≥2,所以至少需要增加2个窗口.。
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,i 位的不足近似值,赋给a ;第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y . 程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 12、程序:3练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新4、34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第一章 复习参考题A 组(P50)1、(1)程序框图: 程序:1、(2)程序框图: 程序:2、见习题1.2 B 组第1题解答.34、程序框图:程序:INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND5(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m B 组(P35)1 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,”是否成立. 若是,则n是回文数,结束算法;否则,返回第四步.第五步,判断“i m第二章统计2.1随机抽样练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62) 1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数. (3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间. 2、调查的总体是所有可能看电视的人群. 学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本. (2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差. (4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .G E .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)(1)散点图如下: 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、从表中看出当把 指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标. 2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。
2.2.1 用样本的频率分布估计总体分布A级基础巩固一、选择题1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.总体密度曲线B.茎叶图C.频率分布折线图D.频率分布直方图答案:B2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )B.C.D.解析:数据总个数n=10,又落在区间[22,30)内的数据个数为4,故所求的频率为410=0.4.答案:B3.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚.下图是某路段的一个检测点对300辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可得出将被处罚的汽车数为( )A.30辆B.40辆C.60辆D.80辆解析:车速大于或等于70 km/h的汽车数为×10×300=60(辆).答案:C4.一个社会调查机构就某地区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(单位:元)月收入段应抽出的人数为( )A.5 B.25 C.50 D.2 500解析:组距=500,在[2 500,3 000)的频率=0.000 5×500=,样本数为100,则在[2 500,3 000)内应抽100×=25(人).答案:B5.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,仅知道后5组的频数和为62.设视力在到之间的学生数为a,最大频率为,则a的值为( )A.27 B.48 C.54 D.64解析:由已知,视力在到之间的学生数为100×=32,又视力在到之间的频率为1-+0.5)×-62100=,所以视力在到之间的学生数为100×=22,所以视力在到之间的学生数a =32+22=54.答案:C二、填空题6.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组/分频数频率[80,90)①②[90,100)[100,110)[110,120)36[120,130)[130,140)12③[140,150]合计④根据上面的频率分布表,可以①处的数值为________,②处的数值为________. 解析:由位于[110,120)的频数为36,频率=36n=,得样本容量n =120,所以[130,140)的频率=12120=,②处的数值=1------=; ①处的数值为×120=3. 答案:37.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数应为________.解析:所有小矩形的面积和等于10×++0.020+a +0.035)=1,解得a =;100名同学中,身高在[120,130)内的学生数是10××100=30,身高在[130,140)内的学生数是10××100=20,身高在[140,150]内的学生数是10××100=10,则三组内的总学生数是30+20+10=60,抽样比是1860=310,所以身高在[140,150]内的学生中选取的人数应为10×310=3.答案: 38.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.答案:60三、解答题9.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得到如图所示的茎叶图.(1)甲网站点击量在[10,40]间的频率是多少? (2)甲、乙两个网站哪个更受欢迎?请说明理由.解:(1)甲网站点击量在[10,40]内的有17,20,38,32,共有4天,则频率为414=27. (2)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.B 级 能力提升1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析:志愿者的总人数为20(+)×1=50,所以第三组的人数为50×=18,有疗效的人数为18-6=12.答案:C2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,则运动员人数为4.答案:43.从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比.解:(1)频率分布表如下:成绩分组频数频率[40,50)2[50,60)3[60,70)10[70,80)15[80,90)12[90,100]8合计50(2)由题意知组距为10,取小矩形的高根据表格画出如下的频率分布直方图:(3)由频率分布直方图,可估计成绩在[70,80)分的学生所占总体的百分比是×10==30%.。
2.2 用样本估计总体
一、选择题
1、为了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组的个数叫做( )
A 、频数
B 、样本容量
C 、频率
D 、累计频数
2、在频率分布直方图中各校长方形的面积表示( )
A 、落在相应各组内的数据的频数
B 、相应各组的频率
C 、该样本所分成的组数
D 、该样本的容量
3、为考察某种皮鞋的各种尺码的销售情况,以某天销售40双皮鞋为一个样本,按尺码分为5组,第三组的频率为0.25,第1,2,4组的频数为6,7,9,若第5组表示的是40~42的皮鞋,则售出的200双皮鞋中含40~42的皮鞋为( )双
A 、50
B 、40
C 、20
D 、30
4、从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,前三组是不超过80的其频数之和为20 ,其频率之和为0.4,则抽取的样本的容量为( )
A 、100
B 、80
C 、40
D 、50
5、在频率分布直方图中,小长方形的面积是 ( )
A 、频率/样本容量
B 、组距×频率
C 、频率
D 、样本数据
6、在10人中,有4人是学生,2人是干部,3人是工人,1人是农民,分数2/5是学生占总体的( )
A 、频数
B 、概率
C 、频率
D 、累积频率
7、一个容量为20 的样本数据,分组后组距与频数如下:
(10,20],2;(20,30],3;(30,40],4;(40,50],4;(60,70],2。
则样本在区间(- ,50]上的频率是( )
A 、5%
B 、25%
C 、50%
D 、70%
8、在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中一组,抽查出的个体数在该组上的频率为m ,该组上的直方图的高是h ,则,[a-b]等于( )
A 、hm
B 、
h m C 、 m
h D 、 与m ,h 无关
二、填空题
9、在已分组的数据中,每组的频数是指 ,每组的频率是指 。
10、某人掷一个均匀的正方体玩具(它的每个面上分别标以数字1,2,3,4,5,6),一
共抛了7768次,从而统计它落地时向上的数出现的频率。
在这个实验中,正方体玩具向上的数的结果的全体构成了一个总体,这个总体中的个数是,总体中的个体索取不同数值的个数是。
11、绘制频率分布直方图时,由于分组时一部分样本数据恰好为分点,难以确定将这样的分点归入哪一组,为了解决这个问题,便采用的方法。
12、某住宅小区有居民2万户,从中抽取200户,调查是否安装电脑,调查结果如下图所示,则该小区已安装电脑的户数估计为。
13、在已分组的数据中,每组的频数是指,每组的频率是指。
14、列频率分布表是为了了解样本数据在各个小组内所占的大小,从而估计总体的情况。
15、已知一个样本75,71,73,75,77,79,75,78,80,79,76,74,75,77,76,72,74,75,76,78。
在列频率分布表时,如果组距取为2,那么应分成组,第一组的分点应是—,74、5—76、5这组的频数应为,频率应为。
参考答案
一、选择题
1、A;
2、B;
3、B;
4、D;
5、C;
6、C;
7、D;
8、B
二、填空题
9、落入该组的数据的个数;落入该组的数据个数与数据总数的比值
10、7768,6
11、使分点比数据多取一位小数
12、9500
13、落入该组的数据的个数落入该组的数据的个数与数据总数的比值
14、比例相应
15、5 70、5 72、5 8 0、40。