EMC第二章 电磁兼容测试的基础知识
- 格式:ppt
- 大小:2.44 MB
- 文档页数:134
电路中的电磁兼容性(EMC)设计与测试在现代电子产品的设计与制造过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)是一个至关重要的因素。
EMC设计与测试旨在确保电子设备能够在电磁环境中正常运行并且不会对其他设备和系统造成干扰。
本文将重点介绍电路中的EMC设计与测试的关键要点。
一、什么是电磁兼容性(EMC)设计与测试电磁兼容性(EMC)是指电子设备在实际应用中与周围环境的电磁场相互作用时能够正常工作的能力。
正常工作包括两个方面,一是设备本身不会受到来自外部电磁场的干扰,二是设备自身产生的电磁干扰不会超出规定的范围,不会对其他设备和系统造成干扰。
EMC设计与测试就是为了确保电子设备在现实环境中能够满足上述要求。
EMC设计的关键在于避免或减小电磁干扰的产生,而EMC 测试则是验证设计的有效性和设备的兼容性。
通过EMC设计与测试,可以提高电子设备的性能和可靠性,降低设备故障率和维修成本。
二、EMC设计与测试的关键要点1. 设计阶段的EMC考虑在电子产品的设计阶段,应该考虑EMC设计的要求。
首先,需要了解产品的使用环境和电磁兼容性的相关标准。
其次,要合理规划电路板的布局和内部组件的排列,避免干扰源之间的相互影响。
另外,需要合理选择电磁屏蔽材料和滤波器,减少电磁辐射和敏感元器件的干扰。
2. 线路板布局与屏蔽设计线路板布局是EMC设计中的重要环节。
应该避免长线和大回路的存在,缩短信号线长度,合理规划地线和电源线的走向。
此外,还应注意信号线与电源线的交叉和平行布局,减少互相之间的干扰。
屏蔽设计是减小电磁辐射和电磁感应的重要手段。
通过采用合适的屏蔽材料,如金属壳体或导电涂层,并合理设置接地结构,可以有效地屏蔽和隔离电磁波,减小干扰。
3. 滤波器的选择与应用滤波器在EMC设计中起到了重要的作用。
电子设备通常需要使用电源滤波器和信号滤波器,以减少干扰源对电源和信号线的影响。
电源滤波器主要工作在电源输入端,用于滤除电源线上的高频噪声。
电磁兼容(EMC)基础知识电磁兼容性问题一般都包含两个因素,骚扰发射源和对这个骚扰敏感的受害者。
如果骚扰源和受害者在同一设备单元内,称“系统内”电磁兼容性问题;如果是两个不同的设备,则称为“系统间”问题。
大部分电磁兼容标准都是针对系统间电磁兼容的。
同一设备在一种情况下是骚扰源,而在另一种情况下或许是受害者。
骚扰源和受害者在一起时,就有从一方到另一方的潜在干扰路径。
遵守已出版的发射和敏感度标准并不能保证解决系统的电磁兼容性问题。
标准的编写是从保护特殊服务的观点出发的,并要求骚扰源和受害者之间有最小的隔离。
许多电子硬件包含着具有天线能力的元件,这些元件可以以电场、磁场或电磁场方式传输能量并耦合到线路中。
在实际中,系统内部耦合和设备间的外部耦合,可以通过屏蔽、电缆布局以及距离控制得到改善。
地线面或屏蔽面既可以因反射而增大干扰信号,也可以因吸收而衰减干扰信号。
电缆之间的耦合既可以是电容性的,也可以是电感性的,这取决于其走向、长度和相互距离。
绝缘材料也可以因吸收而减小场强。
公共阻抗耦合 公共阻抗耦合是由于骚扰源与受害者共用一个线路阻抗而产生的。
最明显的公共阻抗是阻抗实际存在的场合,公共阻抗也可以是由两个电流回路之间的互感耦合,或者由于两个电压节点之间的电容耦合产生的。
理论上,每个节点和每个回路通过空间都能耦合到另一节点和回路。
实际上耦合程度随距离增大而急剧下降。
1、导电连接 当骚扰源与受害者共用一个地时,公共阻抗仅仅是由一段导线或印制板走线产生的。
因为导线的阻抗呈感性,因此输出中的高频或高di/dt分量将更容易耦合。
当输出和输人在同一系统时,公共阻抗构成反馈通路,这可能导致振荡。
分别连接两个电路,在两个电路之间没有公共通路,也就没有公共阻抗。
这个方法的代价是多用一根导线。
这个方法可用于任何包含公共阻抗的电路,例如电源汇流条连接。
大地是公认的最常见的公用阻抗因素。
2、磁场感应 导体中流动的交流电流会产生磁场,这个磁场将与相临的导体耦合,在其上感应出电压。
电磁兼容测试基础知识电磁兼容测试主要包括辐射测试和传导测试。
辐射测试是指电气和电子设备的辐射干扰是否超过规定的限值,主要测试项目包括电磁场辐射和电源线传导干扰。
电磁场辐射就是设备在工作过程中产生的电磁辐射干扰,电源线传导干扰是指设备的电源线传导到其他设备的干扰。
传导测试是指电气和电子设备对外界电磁场的敏感程度,主要测试项目包括电磁场抗扰度和电源线抗扰度两个方面。
在进行电磁兼容测试之前,需要先对设备进行电磁兼容设计。
电磁兼容设计主要包括两个方面,一是电磁兼容规划,即确定设备的工作环境和与其他设备之间的关系;二是电磁兼容控制,即采取有效的措施降低设备的干扰或提高设备的抗干扰能力。
电磁兼容设计中的一些常用措施包括屏蔽、滤波、接地等。
进行电磁兼容测试时,需要使用专用的电磁兼容测试设备。
常用的测试设备包括辐射测试设备和传导测试设备。
辐射测试设备主要包括无线电频谱分析仪、天线、电场强度计等。
传导测试设备主要包括电磁场发生装置、各种仿真耦合装置、电源线耦合装置等。
电磁兼容测试主要分为以下几个步骤。
首先是确定测试的频率范围,根据设备的工作频率确定测试的频率范围。
然后是选择适合的测试设备,根据测试的要求选择相应的测试设备。
接下来是进行辐射测试,根据测试标准将设备置于规定的测试环境中进行测试。
再次是进行传导测试,根据测试标准将设备与其他设备连接,检测其是否受到干扰。
最后是测试结果的评估和判断,根据测试结果判断设备是否符合要求。
电磁兼容测试在各个领域都有广泛的应用,例如通信设备、工业自动化设备、医疗设备等。
通过电磁兼容测试,可以避免设备之间的互相干扰,保证设备的正常运行。
同时,对电磁兼容测试的要求也在不断提高,新的测试标准不断出台,以适应新的技术和市场需求。
总之,电磁兼容测试是确保电气和电子设备正常工作的重要环节,它涉及到的领域广泛,要求也不断提高。
掌握电磁兼容测试的基础知识对于设计和制造高质量的电气和电子设备至关重要。
电磁兼容技术手册第一章介绍电磁兼容(Electromagnetic Compatibility,简称EMC)是指在特定的电磁环境中,电子设备能够正常运行,同时不对其周围的其他设备或系统产生不可接受的电磁干扰。
为了确保设备之间的电磁兼容性,技术手册扮演着重要的角色。
本手册旨在提供关于电磁兼容技术的详细信息和实用指南。
第二章 EMC基础知识2.1 电磁辐射电磁辐射是指电子设备在操作过程中产生的电磁波向周围空间传播的现象。
这些电磁波会传播到其他设备中,可能引起干扰或损害其正常运行。
在本章中,我们将介绍电磁辐射的原理、测量方法和控制措施。
2.2 电磁感应电磁感应是指电子设备由于周围环境中的电磁场变化而产生的电磁干扰。
这种干扰可能会导致设备操作不稳定或引起故障。
本章将探讨电磁感应的原理、测量方法和抑制技术。
第三章 EMC测试与评估3.1 EMC测试方法EMC测试是评估设备的电磁兼容性的关键步骤。
在本章中,我们将详细介绍常见的EMC测试方法,包括辐射测试和传导测试。
同时,还会提供测试设备和测试环境的要求。
3.2 EMC评估标准为了确保设备的电磁兼容性,各国和行业建立了一系列的电磁兼容性标准。
在本节中,我们会列举并详细解释一些常见的EMC标准,如CISPR、IEC和FCC等。
第四章 EMC问题分析与解决4.1 故障分析方法当设备出现电磁兼容性问题时,及时准确地分析故障原因是解决问题的关键。
本章将介绍一些常用的故障分析方法,如频谱分析、射频干扰源定位等。
4.2 EMC问题解决技术针对不同的电磁兼容性问题,我们可以采取不同的解决技术。
本章将介绍一些常见的EMC问题解决技术,如滤波器的应用、屏蔽技术和接地技术等。
第五章 EMC设计指南5.1 PCB布局与布线在电子设备设计中,合理的PCB(Printed Circuit Board)布局和布线对于提高电磁兼容性至关重要。
本章将提供一些建议和指南,帮助工程师设计EMC友好的PCB。
课程LA000201 EMC基础知识ISSUE 1.0目录课程说明 (1)课程介绍 (1)培训目标 (1)参考资料 (1)第1章序论 (2)1.1 电磁兼容概述 (2)1.2电磁兼容性的基本概念 (2)1.2.1电磁骚扰与电磁干扰 (2)1.2.2电磁兼容性(EMC-Electromagnetic Compatibility) (2)1.2.3电磁兼容常用名词术语 (3)1.3电磁干扰 (3)1.3.1电磁干扰三要素 (3)1.3.2电磁兼容研究的主要内容 (4)1.4基本的电磁兼容控制技术 (4)1.5电磁兼容标准 (5)1.5.1电磁兼容标准的制订 (5)1.5.2 EMC标准拟订的理论基础 (7)1.5.3电磁兼容标准的分类 (7)1.5.4产品的电磁兼容标准遵循原则 (8)1.6电磁兼容测试技术简介 (9)1.6.1概述 (9)1.6.2 EMC测试项目 (9)1.6.3电磁发射 (9)1.6.4抗扰性EMS (9)1.7 EMC测试结果的评价 (10)1.8产品EMC设计的重要性 (10)1.9产品的认证 (11)小结: (12)思考题: (12)第2章EMC基础理论 (13)2.1电磁骚扰的耦合机理 (13)2.1.1引言 (13)2.1.2电磁骚扰的常用单位 (13)2.1.3传导干扰 (15)2.1.4辐射干扰 (16)2.2电磁干扰的模式 (17)2.2.1共模干扰与差模干扰 (17)2.2.2 PCB的辐射与线缆的辐射 (18)2.3电磁屏蔽理论 (19)2.3.1屏蔽效能的感念 (19)2.3.2屏蔽体上孔缝的影响 (20)2.4电缆的屏蔽设计 (20)2.5接地设计 (21)2.5.1接地的概念 (21)2.5.2接地的种类 (21)2.6滤波设计 (22)2.6.1滤波电路的基本概念 (22)2.6.2电源EMI滤波器 (22)小结: (23)思考题: (23)第3章系统安装和维护 (24)3.1系统安装的EMC要求 (24)3.1.1概述 (24)3.1.2系统环境要求 (24)3.1.3防整机安装 (24)3.1.4电缆布线要求 (25)3.2系统维护 (27)3.2.1防静电要求 (27)3.2.2系统检视 (27)3.2.3系统干扰问题的处理 (27)小结: (28)思考题: (28)ISSUE1.0 课程说明课程说明课程介绍本课程分三个章节,分别从概念,基本理论和系统方面简单介绍了EMC的基本概念、标准、测试内容,产品认证和电磁兼容的基本理论,最后介绍了系统安装和维护中的EMC问题。
电磁兼容(EMC)基础知识全面详解一、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility)对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为一门学科来说,应该译为“电磁兼容”。
国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
”简单的说,就是抗干扰的能力和对外骚扰的程度。
电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统;广义的还包括生物体)可以共存并不致引起降级的一门科学。
二、基本概念Electromagnetic compatibility(EMC)电磁相容—电子产品能够在一电磁环境中工作而不会降低功能或损害之能力;Electromagnetic interference(EMI)电磁干扰—电子产品之电磁能量经由传导或辐射之方式传播出去的过程;由干扰源、耦合通道及被干扰接收机三要素组成。
Radio frequency(RF)无线电频率,射頻—通訊所用的频率范围,大约是10kHz 到100GHz。
这些能量可以是有意产生的,如无限电传发射器,或者是被电子产品无意产生的;RF能量经由两种模式传播:Radiated emissions(RE)—此种RF 能量的电磁场经由媒介而传输;RF 能量一般在自由空间(free space)內传播,然而,其他种类也有可能发生。
Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介而传播,一般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。
Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。
Immunity 免疫力—一相对的测量产品承受EMI的能力;Electrical overstress(EOS)电子过度高压—当遇到高压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。
电磁兼容(EMC)基础知识本文思维导图:01EMC(Electro Magnetic Compatibility,电磁兼容)是指电子、电气设备或系统在预期的电磁环境中,不会因为周边的电磁环境而导致性能降低、功能丧失或损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。
EMI(Electro Magnetic Interference,电磁干扰):自身产生的电磁干扰不能超过一定的限值。
EMS(Electro Magnetic Susceptibility,电磁抗扰度):自身承受的电磁干扰在一定的范围内。
电磁环境:同种类的产品,不同的环境就有着不同的标准。
需要说明的是,以上都基于一个前提:一定环境里,设备或系统都在正常运行下。
02电磁干扰的产生原因:电压/电流的变化中不必要的部分。
电磁干扰的耦合途径有两种:导线传导和空间辐射。
导线传导干扰原因是电流总是走“最小阻抗”路径。
以屏蔽线为例,低频(f<1kHz)时,导线的电阻起到主要作用,大部分电流从导线的铜线中流过;高频(f>10kHz)时,环路屏蔽层的感抗小于导线的阻抗,因此信号电流从屏蔽层上流过。
干扰电流在导线上传输有两种方式:共模和差模。
一般有用的信号为差模信号,因此共模电流只有转变为差模电流才能对有用信号产生干扰。
阻抗平衡防止共模电流向差模转变,可以通过多点接地用来降低地线公共阻抗,减小共地线阻抗干扰。
空间辐射干扰分近场和远场。
近场又称为感应场,与场源的性质密切相关。
当场源为高电压小电流时,主要表现为电场;当场源为低电压大电流时,主要表现为磁场。
无论是电场还是磁场,当距离大于λ/2π时都变成了远场。
远场又称为辐射场。
远场属于平面波,容易分析和测量,而近场存在电场和磁场的相互转换问题,比较复杂。
这里面有问题的是如果导线变成天线,有时候就分不清是传导干扰还是辐射干扰?低频带下特别是30 MHz以下的主要是传导干扰。
或者可以估算当设备和导线的长度比波长短时,主要问题是传导干扰,当它们的尺寸比波长长时,主要问题是辐射干扰。
EMC基础必学知识点
1. 什么是EMC? EMC是电磁兼容的缩写,指的是电子设备在电磁环境中正常工作,不产生不可接受的干扰,也不受其他设备的干扰。
2. 电磁辐射和电磁感应:电磁辐射是指电磁波在空间中的传播,而电磁感应是指电磁波对接收器件产生的电磁场效应。
3. 电磁兼容测试:包括辐射发射测试、辐射抗干扰测试、传导发射测试、传导抗干扰测试、静电放电测试、浪涌电流测试等测试方法。
4. 电磁波频谱:电磁波频谱是指电磁波在频率上的分布,从低频到高频分别是直流、低频、射频、微波、红外线、可见光、紫外线、X射线和伽马射线。
5. 辐射发射:是指电子设备在工作过程中通过电磁波在空间中传播,例如无线电、电视、手机等无线通信设备。
6. 辐射抗干扰:是指电子设备在电磁环境中受到其他设备的干扰时仍能正常工作,例如家用电器受到电信号干扰而不受影响。
7. 传导发射:是指电子设备在工作过程中通过电源线、信号线等传导方式将电磁波传递到其他设备上。
8. 传导抗干扰:是指电子设备在电磁环境中受到其他设备的传导干扰时仍能正常工作,例如高频电磁场对电子设备的传播线进行干扰。
9. 静电放电:是指电子设备在操作过程中由于电荷的不平衡而引起的电流突然释放,例如人体静电放电对电子元件造成的损坏。
10. 浪涌电流:是指电子设备在电源启动、断电、过电压等情况下突然产生的大电流脉冲,容易对电子设备造成损坏。
以上是EMC的基础必学知识点,有助于了解电磁兼容的相关概念和测试方法。
EMC电磁兼容测试介绍1.EMC测试的基本概念EMC测试是对电子设备进行的一种测试,旨在评估设备是否会对周围环境产生电磁辐射或受到来自周围环境的电磁干扰。
电子设备在工作过程中会产生电磁辐射,而周围电子设备或电磁场也会对其产生干扰。
EMC测试的目的是确保电子设备能够在这些干扰下正常工作,并且不对其周围设备产生干扰。
2.EMC测试的方法和标准EMC测试主要包括辐射测试和抗扰度测试两种方法。
辐射测试是对设备产生的电磁辐射进行测试,以评估其辐射水平是否符合要求。
抗扰度测试是对设备在外界电磁干扰下的抵抗能力进行测试,以评估其能否正常工作。
辐射测试常用的方法包括辐射发射测试(Radiated Emission Test)和辐射抗扰度测试(Radiated Susceptibility Test)。
辐射发射测试是对设备产生的电磁辐射进行测试,通过测量其发射的电磁辐射强度来进行评估。
辐射抗扰度测试是对设备在来自外界电磁场的辐射干扰下是否能正常工作进行测试。
抗扰度测试常用的方法包括传导发射测试(Conducted Emission Test)和传导抗扰度测试(Conducted Susceptibility Test)。
传导发射测试是对设备通过电源线或其他传导媒质产生的电磁辐射进行测试。
传导抗扰度测试是对设备在来自电源线或其他传导媒质的干扰下是否能正常工作进行测试。
EMC测试所需遵守的标准包括CISPR、IEC、ISO等国际或地区行业标准。
这些标准规定了测试的方法和要求,以及测试结果的判定标准。
3.EMC测试的过程EMC测试的过程主要包括测试准备、测试执行和测试结果分析三个步骤。
测试准备阶段包括收集设备规格和测试要求等信息,选择适当的测试方法和设备,配置测试环境和测试设备等。
测试执行阶段是进行测试的实际操作。
根据测试方法,对设备进行辐射测试或抗扰度测试。
在测试过程中,需要测量电磁辐射的发射强度,或者测量设备在干扰下的工作情况。