核医学技术相关专业知识-7
- 格式:pdf
- 大小:246.39 KB
- 文档页数:40
核医学知识点总结核医学是一门应用放射性同位素及其他核素的医学科学,用于诊断、治疗和研究疾病。
核医学技术的应用范围广泛且不断发展。
在这篇文章中,我将总结一些核医学的知识点,帮助读者了解这一领域的一些基本概念和技术。
1. 放射性同位素的选择:核医学中常用的放射性同位素有碘-131、锶-89、钴-60等。
对于不同的疾病和研究目的,选择合适的同位素是非常重要的,因为不同的同位素在体内的荷尔蒙分布和衰变速率是不相同的。
2. 放射性同位素的标记:为了将放射性同位素与目标物质结合,常用的方法是标记。
标记方法包括直接标记和间接标记。
直接标记是将同位素直接连接到目标物质上,而间接标记是通过某种化合物或螯合剂将同位素与目标物质结合。
3. 核素的荷尔蒙分布:通过核医学技术,医生可以观察放射性同位素在人体内的荷尔蒙分布情况。
这对于疾病的诊断和治疗非常重要。
不同的器官和组织对于特定的同位素会有不同的吸收率和代谢速度。
4. 单光子发射计算机断层扫描(SPECT):这是一种常用的核医学技术,用于三维图像重建。
SPECT利用放射性同位素发射的单个光子进行扫描,然后通过计算机处理得到图像。
它广泛应用于心脏病、肿瘤和神经系统疾病的诊断和治疗。
5. 正电子发射计算机断层扫描(PET):PET是一种高级的核医学技术,能够提供非常详细而准确的图像。
PET扫描使用放射性同位素发射的正电子进行扫描,然后通过测量正电子与电子湮灭产生的两个光子来生成图像。
PET广泛应用于癌症诊断和治疗以及脑功能研究等领域。
6. 核医学在癌症治疗中的应用:核医学技术在癌症治疗中起到了重要的作用。
放射性同位素可以用于治疗癌细胞,例如碘-131可以用于治疗甲状腺癌,锶-89可以用于治疗骨转移瘤。
此外,放射性同位素还可以与放射治疗结合使用,提高治疗效果。
7. 核医学在神经系统疾病中的应用:核医学技术在神经系统疾病的诊断和治疗中也有很大的价值。
例如,脑PET扫描可以用于评估脑功能,诊断脑瘤和神经系统疾病。
核医学复习题+答案一、单选题(共79题,每题1分,共79分)1.医用α 射线核素的外照射防护需要( )。
A、铅屏B、混凝土C、不需要特殊外照射防护D、塑料正确答案:C2.辐射工作单位每季度开展的外照射个人剂量监测为( )。
A、特殊监测B、常规监测C、场所监测D、任务相关监测正确答案:B3.转让放射性同位素,由转入单位向其所在地省级人民政府生态环境主管部门提出申请, 并提交有关规定要求的证明材料。
审查应当自受理申请之日起( )个工作日内完成,符合条件的,予以批准,不符合条件的,书面通知申请单位并说明理由。
A、5B、15C、30D、60正确答案:B4.核医学诊疗单位持证人的责任是( )。
A、制定、实施并记录辐射防护与安全程序和计划B、建立实施诊断和治疗的优化方案C、剂量计算D、对活度计和其他的相关设备定期实施质量控制正确答案:A5.( )辐射是指具有足够大的动能,通过碰撞就能引起物质的分子.原子电离的带电粒子,如β 粒子.质子和α 粒子等。
A、手机辐射B、微波C、直接电离D、间接电离正确答案:C6.《放射性同位素与射线装置安全和防护管理办法》适用的相关活动,包括废旧放射源与被放射性污染的物品的( )以及豁免管理等。
A、洗消B、管理C、去污D、安全和防护正确答案:B7.辐射安全许可证内容中不包括( )信息。
A、注册资本B、法定代表人C、单位名称D、所从事活动的种类和范围正确答案:A8.活度浓度大于或等于( )含放射性核素的有机闪烁废液应按放射性废液处理。
A、10Bq/LB、37Bq/LC、0.37Bq/LD、3700Bq/L正确答案:B9.比活度小于( )的含医用短寿命放射性核素固体废物可作为非放射性废物处理。
A、7.4×101 Bq/kgB、7.4×102 Bq/kgC、7.4×104 Bq/kgD、7.4×106 Bq/kg正确答案:C10.非密封放射性物质工作场所分级计算时把放射性核素按其毒性不同分为( )组。
核医学名词解释(每小题2分,共10分)1.单光子显像:是使用探测单光子的显像仪器(如伽马照相机、SPECT)对显像剂中放射性核素发射的单光子进行的显像。
2.正电子显像:是使用探测正电子的显像仪器(如PET、符合线路SPECT)对显像剂中放射性核素发射的正电子进行的显像技术。
3.有效半衰期:由于物理衰变和机体生物活动共同作用而使体内放射性核素减少一半所需的的时间。
4.物理半衰期:放射性核素的数量因衰变减少一半所需要的时间,用T1/2表示。
5.核医学:核医学是研究核科学技术在疾病诊治及生物医学研究的一门学科。
它是利用核素示踪技术实现分子功能显像诊断和靶向治疗的特色专业学科,并利用核素示踪进行生物医学基础理论的研究。
6.放射免疫分析:是以放射性核素作为示踪剂的标记免疫分析方法,它是建立在放射性分析高度灵敏性与免疫反应高度特异性基础之上的超微量分析技术。
7.核素:质子数、中子数均相同,并且原子核处于相同能级的原子,称为一种核素。
8.放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋向于稳定的核素称为放射性核素。
9.肿瘤前哨淋巴结:从局部肿瘤引流的第一站淋巴结。
10.心机可逆性缺损:负荷心肌显像呈现为放射性缺损或稀疏,静息或延迟显像填充或“再分布”,见于心肌缺血。
11.心机固定缺损:负荷心肌显像呈现为放射性缺损,静息影像显示该部位仍为放射性缺损,见于心肌梗死、心肌瘢痕和“冬眠心肌”。
(冬眠心肌”:是指由于冠状动脉血流长时间减少,造成心肌细胞功能受损但仍保持代谢活动,其细胞膜完整,心肌并未坏死,恢复血流灌注后心功能可以改善或恢复正常。
)12.标准化摄取值:是PET显像时半定量评价病变组织代谢率的指标,即局部感兴趣区平均放射性活度(MBq/ml)/注入放射性活度(MBq)/体重(g).13.T/NT:靶/非靶比值:是指放射性药物在靶器官或靶组织中的浓聚量,与非靶器官或组织特别是与相邻的非靶器官或组织中的浓聚量之比。
核医学知识点总结1.核医学(Nuclear medicine) :是用放射性核素及其标记物进行诊断、治疗疾病和医学研究的医学学科。
2.核医学常用设备:3.放射性药物含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。
放射性药品获得国家药品监督管理部门批准文号的放射性药物4.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。
同位素(isotope):凡具有相同质子数但中子数不同的核素互称同位素。
同质异能素:(isomer)是指质子数和中子数都相同,但原子核处于不同能态的原子放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。
放射性衰变:放射性核素自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
半衰期:放射性原子核数从N0衰变到N0的1/2所需的时间5.α衰变:α粒子含2个质子,2个中子,质量大,带电荷,故射程短,穿透力弱。
主要用于治疗β衰变:β-衰变:射线的本质是高速运动的电子流,主要发生于富中子的核素。
特点:穿透力弱,在软组织中的射程仅为厘米水平。
可用于治疗。
β+衰变:射线的本质是正电子,主要发生于贫中子的核素。
特点:正电子射程短. 在通常环境中不可能长时间稳定地存在,它碰到电子就会发生湮灭,产生一对能量为511kev、方向相反的γ光子。
主要用于正电子发射断层仪显像(PET)电子俘获原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。
电子俘获导致核结构的改变伴随放出多种射线。
如特征X射线、俄歇电子、γ射线、内转换电子。
应用:核医学显像、体外分析、放射性核素治疗γ衰变:原子核从激发态回复到基态时,以发射光子形式释放过剩的能量。
往往是继发于α衰变或β衰变后发生特点:本质是中性的光子流,不带电荷,运动速度快(光速),穿透力强。
适合放射性核素显像(radionuclide imaging)。
核医学知识点核医学是一门专注于利用放射性物质来诊断和治疗疾病的学科。
它在医学领域中扮演着重要的角色,为医生提供了一种非侵入性且准确的方法来获取人体内部的结构和功能信息。
在本文中,我将介绍核医学的一些基本知识点,包括放射性同位素的应用、核素扫描技术和核医学的发展前景。
核医学的基础是放射性同位素的应用。
放射性同位素是指原子内核具有相同的质子数,但中子数不同的同一元素。
它们具有放射性衰变的特性,可以通过辐射来释放能量。
在核医学中,常用的放射性同位素包括钴-57、钴-60、碘-131和铊-201等。
这些同位素在医学上被用来标记药物,从而使其在人体内可见。
核素扫描是核医学的重要技术之一。
它利用放射性同位素的衰变来获取有关人体器官结构和功能的信息。
在核素扫描中,医生会向患者体内注射含有放射性同位素的药物。
这些放射性药物会在体内发出放射性粒子,通过专用的摄影机或探测器来探测这些粒子的分布情况。
通过分析和处理这些数据,医生可以获得关于内脏器官、骨骼和血流等方面的信息。
核素扫描技术被广泛应用于心脏、肺部、肝脏、肾脏和骨骼等疾病的诊断和治疗。
核医学的发展前景令人振奋。
随着科学技术的不断进步和创新,核医学在临床应用中变得越来越重要。
一方面,核医学为医生提供了一种无创的、非侵入性的诊断方法,使得患者在检查过程中避免了手术和痛苦。
另一方面,核医学在治疗方面也表现出了巨大的潜力。
例如,放射性碘可以用于治疗甲状腺疾病,放射性铀可用于治疗骨癌。
这些疗法对一些传统治疗方法无效的患者来说,具有重要的临床意义。
然而,核医学也存在一些挑战。
首先,放射性同位素的使用需要严格的安全控制和管理。
这些物质具有放射性,具有一定的辐射风险。
因此,在核医学实践中,必须遵循严格的操作规程和安全标准,以确保医生和患者的安全。
其次,核医学在成本和设备方面也面临一些问题。
一些先进的核素扫描设备价格昂贵,使得它们在某些地区难以普及。
因此,核医学的普及仍然存在一定的挑战。
核医学27反射性核素的制备三大类:核反应堆制备,医用回旋加速器制备,放射性核素发生器制备28.物理半衰期:在单一的放射性核素衰变过程中,放射性活度减少一半,所需要的时间是放射性核素的一个重要特征参数。
29什么是生物半衰期:指进入生物体内的放射性核素,经各种途径从体内排出一半所需要的时间30.1合成代谢,细胞吞噬,循环通路,选择性摄取,选择性排泄,通透弥散,细胞拦截,离子交换和化学吸附,特异性结合14.放射性核素示踪计数:是以放射性核素或标记化合物作为示踪剂,应用射线探测器检测示踪剂分子的行踪,研究被标记物在生物体系或外界环境中分布状态或变化规律的技术9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学3.炸面圈:骨显像时病灶中心显像剂分布减少,病灶周围显像剂增高呈环形的影像表现。
多见于股骨头缺血坏死。
是通过静脉注射的方式将放射性核素标记的亲骨性显像剂引入体内,该类显像剂可以与骨组织内的无机盐和有机质紧密结合,在体外通过核医学成像仪器显示显像剂在骨骼系统内的分布,获得骨骼系统的影像。
13.超级骨显像:某些累计全身的骨代谢性病变,呈现显像剂在全身骨骼积聚异常增高,被称为超级骨显像或过度显像,1.正常典型肾图的三段的名称及生理意义是什么?名称:a段放射性出现段;b段示踪剂聚集段c段排泄段生理意义:a段静脉注射示踪剂后10s左右肾图急剧上升段。
此段为血管段,时间短,约30s反映肾动态的血流灌注相;b段:a段之后的斜行上升段,3-5min 达到高峰,其上升斜率和高度与肾血流量、肾小球滤过功能和肾小管上皮细胞摄取、分泌功能有关。
反映肾皮质功能与肾小管功能;c段:b段之后的下降率与b段上升斜率相近,下降至峰值一半的时间小于8min。
为示踪剂经肾集合系统排入膀胱的过程,主要反映上尿路的通畅情况和尿流量多少有关1.核医学:是一门利用开放型放射性核素对疾病进行诊断、治疗和科学研究的学科2.核医学特点:①高灵敏度②方法简便、准确③合乎生理条件④定性、定量、定位研究的相结合⑤专业技术性强3.核医学显像:①功能性显像②无创性检查③图像融合④解剖分辨力低4.核素:质子数相同,中子数相同,具有相同能量状态的原子8.半衰期:放射性核素数量因衰变减少一半所需要的时间9.放射性活度:单位时间内发生的核衰变次数,反映放射性强弱的物理量。
医学核医学知识点1. 介绍医学核医学是一门应用核技术在医学领域的学科,通过注射放射性物质,利用放射性同位素在人体内发出的射线进行成像和诊断。
它在疾病的早期诊断、治疗计划的确定以及治疗效果的评估中发挥着重要作用。
本文将介绍一些重要的医学核医学知识点。
2. 放射性同位素放射性同位素是一种具有放射性衰变的同位素,常用于核医学成像。
例如,技技术常用的放射性同位素有碘-131、锝-99m、氟-18等。
不同的放射性同位素在体内的分布和代谢方式不同,用于检查不同的组织和器官。
3. 单光子发射计算机体层摄影(SPECT)单光子发射计算机体层摄影是一种核医学成像技术,通过放射性同位素发出的单个光子来获取图像。
它可以用于诊断心血管疾病、骨骼疾病以及其他一些器官的异常。
SPECT能提供关于组织和器官功能的信息,并对疾病进行评估。
4. 位置发射计算机体层摄影(PET)位置发射计算机体层摄影是一种通过注射放射性同位素追踪代谢活性的核医学成像技术。
它可以用于诊断和评估肿瘤、脑血流以及心脏疾病等。
与传统的成像技术相比,PET可以提供更准确的病灶定位和代谢活性信息,有助于医生做出更准确的诊断和治疗方案。
5. 放射性同位素治疗除了作为成像工具,放射性同位素也可以用于治疗。
在核医学中,放射性同位素治疗被广泛应用于甲状腺疾病、骨骼疾病和肿瘤治疗等方面。
例如,碘-131可用于治疗甲状腺癌,锝-99m可用于治疗风湿性关节炎等。
6. 医学核医学的安全性医学核医学的安全性是非常重要的。
在进行核医学检查或治疗之前,医生会评估患者的病情,并谨慎选择适合的放射性同位素和剂量。
医学核医学操作人员需要具备专业的知识和技能,严格遵循操作规程,确保患者和操作人员的安全。
7. 未来发展医学核医学在影像学领域发挥着越来越重要的作用,并在不断发展。
随着技术的进步,新的放射性同位素和成像设备的应用也不断涌现。
例如,混合成像技术结合了PET和MRI或CT的优势,为诊断提供更全面的信息。
核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。
它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。
核医学在临床诊断、治疗和科研方面都有着广泛的应用。
二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。
核辐射可以分为电离辐射和非电离辐射两类。
在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。
因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。
三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。
在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。
标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。
四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。
目前常用的核医学成像技术包括SPECT、PET和PET/CT等。
这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。
五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。
通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。
核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。
六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。
体外分析技术具有高灵敏度、高特异性和定量准确等优点。
常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。
七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。
放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。
第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
医学生联盟:5159212491核医学知识点1.MR 成像仪由以下几部分构成 ——磁体系统 ——梯度系统 ——射频系统 ——控制系统 ——运行保障系统2.重复时间(TR ):脉冲系列相邻的两次执行的时间间隔。
3.SE 系列:相邻两个90°脉冲中点间的时间间隔。
4.梯度回波系列:相邻两个小角度脉冲中点之间的时间间隔。
5.反转恢复系列:相邻两个180°反转预脉冲中点间的时间间隔。
6.回波时间(TE):产生宏观横向磁化矢量的脉冲中点到回波中点的时间间隔。
7.有效回波时间(有效TE):在FSE 、EPI 系列中,射频脉冲中点到到填充K 空间中央那个回波中点的时间间隔。
8.回波链长度(ETL):FSE 、EPI 系列中一次90°脉冲激发后所产生和采集的回波数目。
其他参数相同时,与单个回波的系列相比,采集时间缩短为原来的1/ETL 。
9.回波间隙(ES ):回波链中相邻两个回波中点之间的时间间隙。
10.反转时间:在反转恢复序列中-180°反转脉与90°激励脉冲之间的时间间隔。
11.激励次数(NEX ):又称为信号平均次数(NSA),信号采集次数。
指每个相位编码中信号采集次数。
12.采集时间(TA )13.自旋回波序列:自旋回波是指以90°脉冲激励开始,后续施以180°相位重聚焦脉冲并获得回波信号脉冲序列 14.SE 序列的特点1)目前最常用的T1WI 系列2)组织对比良好,SNR 较高,伪影少 3)信号变化容易解释5)T2WI 少用SE 系列(太慢、伪影重临床应用:最常用于颅脑、骨关节软组织、脊柱,腹部已逐渐被GRE 序列取代 15.梯度回波序列(GRE ):通过频率编码方向上的梯度场翻转而产生回波信号的序列16.翻转恢复序列(IR ):第一部分是一个﹣180°的射频脉冲,在一定延迟时间后,紧接着的第二个部分是自旋回波或快速自旋回波17.与成像质量有关的主要参数:(信噪比)SNR 、CNR 、空间分辨率、扫描时间一.SNR(信噪比)质子密度↑,SNR↑体素↑,SNR↑——FOV↑层厚↑,体素↑,SNR↑——矩阵↑,体素↓,SNR↓TR↑,SNR↑TE↑,SNR↓翻转角度为90°,信号量最大,SNR最高;角度越小,信号量越少,SNR越低NEX↑,SNR↑接收带宽↓,SNR↑采集线圈:多通道表面相控阵线圈优于表面线圈磁场强度↑,SNR↑;二.CNR(对比噪声比)1.组织间的固有差别,即T1值、T2值、质子密度、运动,差别大,对比好,CNR较大。
带你了解核医学的小知识四川省射洪市人民医院 629200核医学诊疗是应用放射性同位素的医疗技术,在肿瘤示踪、癌症治疗领域有着相当重要的地位。
但是,由于带着一个“核”字,公众对它有些敬而远之,甚至谈核色变。
为了让大家对核医学诊疗的放射风险和防护形成较为正确的认识和理解,下面给大家介绍核医学的一些小知识。
一、什么是核心医学?核医学是一种以放射性核素示踪作为发展的基础,利用现代核技术进行诊断或治疗的疾病的科学,是医学现代化的产物,是核技术在医学领域的应用科学。
目前,核医学科在我国的大型的三甲医院都设有其余的小医院的技术和经济资源尚无法承担该学科。
二、核医学显像检查和放射影像、超声检查方法存在本质区别不同于兼用的影像诊断技术,核医学影像是将治疗疾病所用的微量显像药物(即:探针)引入人体,随后在体外新技术探测下跟踪药物在机体的踪迹和分布。
这些被使用的微量显像药物通畅与机体代谢物的生理、生化特征类似。
借助其在人体器官内的分布状况可以对人体器官的代谢、功能甚至是基因等情况进行了解。
目前,临床上的多数疾病,在早期往往无明显的生理反映,仅有一些难以发现的血流、代谢和功能异常,且经过治疗,部分疾病也只能恢复对应病灶的结构,但相应组织、器官的功能异常可能仍未完全恢复,这种情况在常规的影像放射或超声诊断中多数结果会呈阴性。
核医学的应用则可提供更准确、可信的依据,为疾病的治疗提供参考,尤其是在疾病的早期定性阶段以及治疗后的疗效判定阶段。
核医学是根据人体内脏器或组织的细胞功能、代谢活跃程度、血流细胞数量等因素成像,是一种功能代谢成像检查手段;而B超、核磁共振、ct等放射影像或超声诊断,通过呈现出机体组织、器官的结构形态,转化成图像,虽然目前的医疗技术所达到的分辨率已较清晰,但仍然无法反映出内部结构的代谢动态情况,核医学显像可达到这种目的。
三、为什么说放射性核素示踪技术是核医学的最基本技术?放射性核素示踪技术是核医学的精髓,该项技术与疾病的诊断和治疗有着密切的联系。
核医学科普知识宣传问答核医学是一门应用核技术和放射性同位素研究医学和生物学的学科。
在医学领域中核医学技术被广泛应用,它能够帮助医生诊断疾病,也可以用于治疗某些疾病。
但是对于一般人来说,对于核医学常识的理解还比较少,下面我为大家整理了一些常见问题的答案,希望能够帮助大家对核医学有更深入的了解。
一、什么是核医学?核医学是一门应用核技术和放射性同位素研究医学和生物学的学科。
它运用放射性同位素和辐射特性,在生物医学领域进行了广泛的应用,主要包括核素显像、单光子发射计算机断层显像(SPECT)和正电子发射计算机断层显像(PET)等诊断和治疗技术。
二、核医学有哪些应用?核医学应用非常广泛,主要包括以下几个方面:1、核素显像:如甲状腺扫描、肿瘤显像等;2、心血管核医学:如心脏负荷试验、心血管事件的评价和预后判定等;3、心肌摄取、代谢显像:如单光子发射计算机断层显像(SPECT)和正电子发射计算机断层显像(PET)等诊断和治疗技术;4、核医学治疗:如放射性碘治疗甲状腺癌、骨转移瘤等;5、核素治疗:如球形放射治疗、选择性内突注射治疗等。
三、核医学技术的安全性如何?核医学技术的安全性是得到局部和全国监管机构高度认可的,它相对于传统医学来说更为安全。
核医学技术使用放射性同位素,虽然这种放射性物质的放射量会产生一定危害,但多数情况下,该物质并未对人体造成不良影响。
只需要按照正常的防护标准在严格的医学行业标准下使用,就能保证患者的安全。
四、需要使用核医学技术时,需要注意哪些问题?在使用核医学技术时,需要注意以下几个问题:1、申请检查前应充分向医生了解检查的具体信息、目的、方法、步骤以及可能涉及到的风险和注意事项;2、进行放射性物质注射前,应前来妇科做好心理准备;3、接受核医学检查或治疗时,应配合医生或技术人员的操作,并按照要求保持姿势、不动或不吸气等;4、接受核医学治疗时,应按照医生或技术人员要求配合好相关治疗,坚持治疗期间的康复锻炼;5、核医学治疗的药物需要接受放射性注射,不同药品有可能有不同的副作用,所以在治疗前需要详细询问注意事项,特别是对于孕妇及儿童等弱势人群应特别关注。
2023年医技类《核医学技术》知识题库第1题:A1型题 利用放射性核素标记变性红细胞进行脾脏显像主要是利用脾脏的哪一生理功能A.造血功能B.免疫功能C.血细胞阻留功能D.血液过滤功能E.吞噬功能【正确答案】:D【答案解析】::脾脏具有拦截和破坏衰老或损伤的红细胞功能,当放射性核素标记变性红细胞进入血液循环后,被脾脏的网状内皮细胞拦截,从而使脾脏显影。
第2题:A1型题 I-MIBG相对于I-MIBG其优点是A.成人剂量可以提高到370MBq(10mCi),而组织辐射吸收剂量仅与18.5MBq(0.5mCi)的I-MIBG相当B.提高了图像质量与灵敏度C.摄取速度较快,可缩短检查时间D.其γ射线能量适合SPECT检查E.以上都对【正确答案】:E【答案解析】::I-MIBG的γ射线能量适中(159keV),可以一次给予较大剂量(370MBq),提高图像质量,但由于其半衰期相对较短,且需回旋加速器生产,价格昂贵,限制了临床应用。
第3题:B型题 A.20mSvB.50mSvC.150mSvD.200mSvE.500mSv根据《电力辐射防护和辐射源安全基本标准》,职业照射一年中四肢或皮肤所受的剂量当量不应超过【正确答案】:E第4题:A1型题 下列关于放射性药物使用原则错误的是A.几种同类放射性药物可供诊断检查用时,选辐射吸收剂量最小者B.采用必要促排和保护措施,减少不必要照射C.对恶性疾病患者和小儿患者应用放射性药物要从严考虑D.尽量避免妊娠妇女使用放射性药物E.哺乳期妇女慎用放射性药物【正确答案】:C【答案解析】::对恶性疾病患者可适当放宽放射性药物限制。
第5题:A1型题 I治疗甲亢的育龄妇女需经多久方可妊娠A.3个月B.6个月C.12个月D.18个月E.24个月【正确答案】:B第6题:B型题 A.尊重患者的生命价值,确立双向作用的医患关系B.医患关系的个体性、稳定性、直接性C.医患关系的间接性、多元性、易变性D.医患关系的分解趋势和物化趋势E.扩大医学服务的范围古代医患关系特点()【正确答案】:B第7题:B型题 A.T c-MAAB.{图1}I-BMIPPC.{图2}I-MIBGD.{图3}F-F DGE.{图4}N-NH{图5}针对不同显像,选择正确的显像剂心肌脂肪酸代谢显像【正确答案】:B【答案解析】::MIBG是去甲肾上腺类似物,可以显示肾上腺素能受体第8题:A1型题 关于肾动态显像的血流灌注相,以下哪种说法不正确A.腹主动脉上段显影后2秒左右,双肾影隐约可见B.是反映肾内小静脉和毛细血管床的灌注影像C.双肾影形态完整,肾内灌注基本均匀D.两侧肾影出现的时间差<1~2秒E.双肾影峰值差<30%【正确答案】:B【答案解析】::肾动态显像的血流灌注相为肾内小动脉和毛细血管床的灌注影像。
核医学知识点笔记复习整理随着现代医学技术的进步和发展,核医学应用越来越广泛。
核医学是一门较为特殊的医学领域,它不同于其他医学科目,使用的主要是放射性核素技术和核物理技术。
本文将对核医学知识点进行笔记复习整理,让读者更直观地掌握核医学知识。
1. 核医学基本知识核医学是通过用放射性核素进行诊断和治疗的一种医疗方式。
核医学核素在体内的分布和代谢过程可以用各种成像技术进行定量和定位,从而达到诊断和治疗的目的。
核医学具有较高的生物学等效性。
放射性核素可以被身体吸收,利用放射性相互作用,植入到体内的精确位置,起到精确的定位和治疗作用。
目前临床上常用的核素有28种,其中放射性浓缩剂、伽马光谱仪、计算机处理和图像分析成为核医学影像学的主要发展方向。
2. 核医学影像学技术核医学影像学技术主要分为伽马相机等诊断影像学和内照射等治疗影像学两部分。
伽马相机是核医学最为基础的诊断影像学设备。
通过伽马相机和放射性核素手段,可以对身体内部的病变进行诊断。
一条伽马相机会对应一个放射性核素,因此不同的伽马相机能看到不同的肿瘤和内部病理变化。
内照射治疗是核医学影像学技术中常用的治疗方法。
内照射是通过放射性核素找到肿瘤细胞区域,从而达到杀灭肿瘤细胞的目的。
内照射可通过植入核素、口服核素和静脉注射模式进行,植入核素最常被使用,且效果较佳。
3. 核医学应用范围核医学应用范围非常广泛,常见的应用包括:1) 乳腺癌检测:常用探针是标记放射性核素的集合体,它们被注射到体内,然后通过伽马相机扫描整个身体,以发现分布在放射性核素内的信号。
2) 神经系统疾病:可使用单光子断层扫描(SPECT)进行检查,可检查痴呆,脑缺血,脑炎等疾病。
3) 心力衰竭:除了使用SPECT检查器检测血流量以外,还可以使用PET检查器检测心肌代谢及运动的情况。
PET检查器获得的影像图像更为清晰,对心血管疾病患者分子水平的代表性评价更好。
4)癌症治疗:经经典的使用方法是放射性核素植入探针或植入细胞进行乳腺癌等癌症治疗。
核医学题库(附答案)一、单选题(共70题,每题1分,共70分)1、人工辐射源主要有核设施.核技术应用的辐射源和核试验落下灰等。
在人工辐射源中,( )是最大的人工辐射源。
A、核能发电B、工业探伤C、辐射育种D、医疗照射正确答案:D2、中子是从( )发射出的。
A、电子束快速减慢时B、核外电子C、不稳定原子核D、原子核能级跃迁退激时正确答案:C3、不用的核素发生器常规处理方法为( )。
A、送交城市废物库B、按一般医疗废物处理C、作为放射性废物放置在放射性废物暂存库D、返回给生产销售厂家正确答案:D4、屏蔽 90%放射性核素 18F 造成的辐射剂量所使用铅的厚度为( )。
A、16 mmB、11mmC、16.6mmD、1mm正确答案:C5、低放废液可以直接排入流量大于 10 倍排放流量的普通下水道,每月排放总活度不超过( ) 倍 ALImin 。
A、1B、5C、10D、20正确答案:C6、放射源具体分类办法由( )主管部门制定。
A、国务院卫生B、国务院生态环境C、国务院生态环境主管部门商国务院卫生D、国务院卫生主管部门商国务院其他正确答案:B7、按照操作放射性核素的日等效最大操作量,把非密封放射工作场所分为( )级A、BCB、BCDC、甲.乙.丙D、甲.乙.丙.丁正确答案:C8、采用擦拭法测量敷贴器源窗表面β 放射性活度,其值小于( )的源可视为不泄露。
A、1000BqB、150BqC、200BqD、300Bq正确答案:C9、从辐射产生的来源可将辐射源分为天然辐射源和( )A、氡照射B、人工辐射源C、核电厂D、医疗照射正确答案:B10、32P 敷贴器制作时应在( )内进行操作。
A、手套箱B、通风橱C、操作台D、热室正确答案:B11、放射性同位素的转出、转入单位应当在转让活动完成之日起( )日内,分别向其所在地省自治区、直辖市人民政府生态环境主管部门备案。
B、20C、10D、15正确答案:B12、在相同能量下,哪种射线的外照射危害最大( )A、电子B、γ 射线C、阿尔法粒子D、质子正确答案:B13、辐射安全许可证内容中不包括( )信息。
一、前三章: 1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。
②核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。
③同位素isotope :具有相同质子数而中子数不同的核素互称同位素。
同位素具有相同的化学性质和生物学特性,不同的核物理特性。
④同质异能素isomer :质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。
⑤放射性活度radioactivity 简称活度:单位时间内原子核衰变的数量。
⑥放射性药物(radiopharmaceutical )指含有放射性核素供医学诊断和治疗用的一类特殊药物。
⑦SPECT :即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。
⑧PET :即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。
⑨小PET :即经济型PET ,也叫SPECT_PET_CT ,是对SPECT 进行稍加工后,使其可行使PET 的功能。
⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。
⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。
“闪烁现象 (flare phenomenon ): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。
2、人工放射性核素的来源:加速器生产11C 、13N 、15O 、18F 、反应堆生产、从裂变产物中提取、放射性核素发生器淋洗99mTc 3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET 显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。