冀教版数学八年级上册14.1 第1课时 平方根
- 格式:doc
- 大小:85.00 KB
- 文档页数:5
平方根(第一课时)一、教材分析平方根是冀教版八上第十四章实数的第一节内容,是平方的逆运算,是在乘方的基础上引入开方运算,使代数运算得以完善;同时也由于实际计算的需要,借助平方根引出无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。
另外本节的学习也为更好地理解立方根的概念和求解提供了思路和方法。
因此,本节课是今后学习根式运算、直接开平方法、公式法解一元二次方程甚至函数等知识的重要基础。
二、学情分析本节知识是在学生学习了乘方后的学习,因而对平方运算较为熟悉,因而较易接受,但学生的逆向思维较弱,在得到概念的过程中要都理解。
同时这一阶段的学生注意力易分散,所以在教学中一方面要引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,让学生积极发表见解,发挥学生学习的主动性。
三、教学目标知识与技能目标:1)使学生理解平方根的概念,了解平方与开平方的关系;2)掌握平方根的表示法和求非负数的平方根;过程与方法目标:经历观察、思考、猜想与归纳的数学发现的过程,学会概念学习的方法,体会从特殊到一般的数学思维方法以及分类讨论、逆向思维等的数学方法。
情感与态度目标:1.通过熟悉的知识的直接引入来降低学生的学习的门槛,激发学生的学习兴趣及信心;2.通过平方根的计算,养成学生细心的心理品质;3.在学习探究活动中养成独立思考、合作交流的习惯。
教学重点与难点教学重点:理解平方根的概念,会平方根的表示法和求非负数的平方根。
教学难点:平方根的概念和表示关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。
四、教法与学法分析教法分析:根据学生已有的认知结构,以一条清晰的主线来完成本节课知识的教学,用多媒体辅助教学,从简单的求平方引入,突出知识的对比过程,在思维碰撞中得到知识发散和提升。
教师只是学习的组织者、引导者与合作者。
采用启发式和类比式教学法。
学法分析:学生主要是通过观察、思考、猜想,验证、归纳等学习环节,使学生思维在参与的过程中得到充分发展。
《平方根》教案一、教材与学生数学现实的分析:本节课是在前面学习了乘方运算的基础上安排的,是下节学习算术平方根的前提,是学习实数的准备知识,有助于了解n次方根的概念,为学习二次根式作出了铺垫,提供了知识积累。
本节课的重、难点都是平方根的概念,而突破难点的关键是抓住平方根概念的本质特征,逐层深入,多角度展示。
二、教学目标:新课标明确提出,义务教育阶段的数学课程,要从数学本身的特点出发,从学生学习数学的心理规律和学生已有的知识经验出发,让学生经历一个实践、思考、探索、交流、解释、应用的学习过程,在获得对数学理解的同时,在思维能力,情感态度与价值观等多方面都得到进步与发展。
因此,这节课教学三维目标就是:1、知识与能力目标:能让学生理解平方根和开平方的概念,能正确地读写有关平方根的式子。
2、过程与方法目标:让学生经历从实际例子归纳出平方根概念的过程,理解概念的本质。
3、情感态度与价值观目标:就是让学生在思考与探究,交流与合作中去体验数学的作用与价值,使人人学到有用的数学。
三、教法的确定与学法的指导:以前学生虽然学过乘方运算,但由于间隔时间太长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现新旧教学方式和学习方式的接轨,结合本课特点,我采取了以下教学方法:(1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考。
(2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学。
即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度。
(3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享。
学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。
新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习。
据此学生的学法我定为小组交流合作法和自主学习法。
这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台。
冀教版数学八年级上册14.1《平方根》教学设计一. 教材分析冀教版数学八年级上册14.1《平方根》是学生在掌握了有理数的乘方、相反数、倒数等概念的基础上,进一步研究平方根的性质和运算。
本节课的内容主要包括平方根的定义、求一个数的平方根、平方根的性质以及平方根的运算。
通过学习本节课,学生能够理解平方根的概念,掌握求一个数的平方根的方法,以及运用平方根的性质和运算解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了有理数的乘方、相反数、倒数等概念,具备了一定的数学基础。
但平方根的概念和性质较为抽象,对于一些学生来说可能存在一定的理解难度。
因此,在教学过程中,需要关注学生的学习情况,针对学生的实际情况进行针对性的教学。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.理解平方根的性质,能够运用平方根的性质解决实际问题。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.运用平方根的性质和运算解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过探究、思考来理解平方根的概念和性质。
2.运用实例讲解法,让学生通过具体的例子来掌握求一个数的平方根的方法。
3.采用小组合作学习法,培养学生的团队合作意识和数学思维能力。
4.运用巩固练习法,及时检查学生的学习效果,提高学生的数学应用能力。
六. 教学准备1.准备相关教学PPT,包括平方根的定义、性质和运算等内容。
2.准备一些实际问题,用于巩固和拓展学生的知识。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何求解这些问题。
例如,展示一个正方形的面积为4平方米,让学生求解这个正方形的边长。
通过解决这个问题,引出平方根的概念。
2.呈现(10分钟)利用PPT呈现平方根的定义和性质,让学生初步了解平方根的概念。
同时,通过PPT展示一些例子,让学生掌握求一个数的平方根的方法。
《14.1.1 平方根》“平方根”是第十四章“实数”的第一节内容。
由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。
运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。
因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。
【知识与能力目标】1、让学生了解平方根的定义,掌握平方根的性质,会用根号表示一个数的平方根【过程与方法目标】2、让学生知道开平方与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的平方根【情感态度价值观目标】3、感受数学与生活的联系,获得积极的情感体验。
【教学重点】开平方运算.【教学难点】平方根的性质及开平方运算多媒体课件一、情境引入问题1 如果一个正方形的边长为1,那么它的面积是多少?问题2 如果一个正方形的面积2,那么它的边长是多少?二、探究新知(一)自主学习1、自学课本60页“做一做”,完成第1题。
2、自学课本60--62页“一起探究”和“大家谈谈”,完成第2-4题。
(二)归纳总结1、一般地,如果一个数x的平方等于a,即x 2=a,那么这个数x 就叫做a的_________.也叫做a的_________2、一个正数有两个平方根,它们互为_________。
0只有一个平方根,是_________。
负数_________平方根。
3、一个正数有两个平方根:一个____,一个____。
我们把正数a的正的平方根用符号____表示,读作____;把正数a的负的平方根用符号____表示,读作____。
正数a的两个平方根记为____。
其中, a称为____。
4、求一个数的平方根的运算,叫做_________,_________与平方互为逆运算(三)合作学习例1 求下列各数的平方根,(1)81;(2)36121;(3)0.04例2 (1)已知3+a的平方根是±5,求a的值;(2)一个正数x的两个平方根分别是-a+2与2a-1,求a的值和这个正数x的值.三、巩固深化1、下列说法正确的有( )①-2是-4的一个平方根;②a2的平方根是a;③2是4的平方根;④4的平方根是-2.A.1个 B.2个 C.3个 D.4个2、2 下列关于“0”的说法中,正确的是( )A.0是最小的正整数B.0没有相反数C.0没有倒数D.0没有平方根。
14.1 平方根 第1课时 平方根
学习目标:
1.理解平方根的概念及表示方法.
2.理解并掌握平方根的性质.(难点)
3.理解开平方运算,体会数学中的互逆思想.(重点) 学习重点:开平方运算.
学习难点:平方根的性质及开平方运算.
一、知识链接
1.(1)10与-10的平方等于________,
81 与-81
的平方等于________,
(2)平方等于100的数有________,平方等于64
1
的数有__________.
(3)满足2
x =25的x 的值是__________. 二、新知预习
2.一般地,如果一个数x 的平方等于a ,即2
x =a ,那么这个数______就叫做a 的_________.也叫a 的_________.
(1)因为_____2=64,所以64的平方根是______. (2)因为_____2=0.25,所以0.25的平方根是______. (3)因为_____2=
1649,所以1649
的平方根是______. (4)因为_____2=0,所以0的平方根是______.
3.若正方形的面积如下,请填表:
答:一个正数有_____个平方根,它们互为________. 0只有_____平方根,是____本身,负数____平方根.
4.完成框图,说一说求一个数的平方运算和求一个数的平方根运算具有怎样的关系.
.
我们把求一个数的__________的运算,叫做_______。
因为负数没有平方根,所以被开方数一定是_________.
对于正数来说,开平方与平方互为逆运算. 三、自学自测
1.144的平方根是________(-3)2的平方根是________(-1.5)2的平方根是________
2.求下列各数的平方根 (1)100;(2)
6449;(3) 0.0001 ;(4)2
)3( ; (5)49
151;
3.求下列各式中的x 的值
(1)2
x =169 (2)2
x -4=0 (3)2
x =2
四、我的疑惑
_____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________
一、要点探究
探究点1:平方根的概念及性质 问题1:求下列各数的平方根:
(1)124
25;(2)0.0001;(3)(-4)2;(4)10-6;(5)81.
合作探究
【归纳总结】把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根. 【针对训练】
求下列各数的平方根
(1)225; (2)1600; (3)0.36; (4)0.0144;(5)(-1.7)2 (6)
900
169 (7)10-6
问题2:一个正数的两个平方根分别是2a +1和a -4,求这个数.
【归纳总结】一个正数的平方根有两个,它们互为相反数,即它们的和为零. 【针对训练】
一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?
探究点2:开平方运算
问题1:求下列各式中x 的值. (1)x 2=361; (2)81x 2-49=0; (3)49(x 2+1)=50; (4)(3x -1)2=(-5)2.
【归纳总结】利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根. 【针对训练】 求下列各式中的x.
(1)(x-1)2=36;(2)4x2-16=0.
二、课堂小结
内容
平方根的概
念
一般地,如果一个数x的平方等于a,即2x=a,那么这个数______就叫做a
的_________.也叫a的_________.
平方根的性质一个正数有_____个平方根,它们互为________.
0只有_____平方根,是____本身,负数____平方根.
开平方运算我们把求一个数的__________的运算,叫做_______。
因为负数没有平方根,所以被开方数一定是_________.
1.下列个数有平方根吗?如果有,写出它的平方根,如果没有,说明理由.
(1)64;(2)
1
6;
4
(3)0;(4)
2
2
3
⎛⎫
- ⎪
⎝⎭
;(5)
16
25
-
.
2.如果一个数的两个平方根时a+3,2a-15,那么这个数是多少?
3. 求下列各式中x的值
①x2 = 361;②81x2−49 = 0;③49(x2+1) = 50.
当堂检测
当堂检测参考答案:1.(1)有平方根,±8;
(2)有平方根,±2
5
;
(3)有平方根,0;
(4)有平方根,±2
3
;
(5)没有有平方根,负数没有平方根;
2.因为一个数正数的两个平方根互为相反数,所以(a+3)+(2a-15)=0,解得a=4,当a=4,a+3=7,2a-15=-7.即这个数是7,-7.
3.①x =±19;②x =±;③x =±.。