第2课 相似多边形的性质及判定
- 格式:ppt
- 大小:2.64 MB
- 文档页数:13
北师大版九年级数学上册《相似多边形》评课稿1. 引言《相似多边形》是北师大版九年级数学上册的一章,主要介绍相似多边形的概念、性质和相关定理。
本评课稿旨在对该章节进行评价和总结,以便教师们能够更好地教授这一内容。
2. 内容概述2.1 相似多边形的基本概念在本章节开始,学生将首先了解到相似多边形的基本概念。
通过比较边长和角度等特征,学生能够理解相似多边形的定义以及相似比的概念。
2.2 相似多边形的性质在了解了相似多边形的基本概念后,本章节接着介绍了相似多边形的性质。
学生将学习到相似多边形的尺形性质、角度性质等。
2.3 相似多边形的判定通过本章节的学习,学生能够掌握相似多边形的判定方法。
学生将会学习到判定相似多边形的几何性质和镜像法、旋转法等判定方法。
2.4 相似多边形的应用本章节最后将给学生提供相似多边形的应用的案例。
通过这些应用案例的探究,学生能够将相似多边形的知识应用到实际问题中。
3. 学习评价3.1 教学目标通过本章节的学习,学生应能够: - 理解相似多边形的定义 - 掌握相似比的计算方法 - 了解相似多边形的性质和判定方法 - 掌握相似多边形在实际问题中的应用3.2 教学重点本章节的教学重点主要集中在: - 相似多边形的定义和概念 - 相似多边形的性质及其判定方法 - 相似多边形的应用3.3 教学难点相似多边形的判定方法是本章节的教学难点,需要学生综合运用相似多边形的性质,进行判定。
4. 教学过程4.1 设计教学活动本章节的教学活动设计如下: 1. 导入:利用生活中相似图形的例子引入相似多边形的概念,并与学生讨论相似的条件。
2. 概念讲解:通过教师的讲解,介绍相似多边形的定义和基本概念。
3. 实例呈现:通过展示一些简单的相似多边形实例,让学生观察并找出相似的特征。
4. 性质总结:学生学习相似多边形的性质,教师总结并与学生一起进行概括。
5. 判定方法讲解:教师讲解相似多边形的判定方法,并通过实例进行演示。
24.4 相似多边形的性质学习目标要求1、掌握相似多边形的性质。
2、会利用相似多边形的性质解决问题。
教材内容点拨知识点1:相似多边形边、角的性质:根据相似多边形的定义,可知当两个多边形相似时,它们的对应角相等,对应边对应成比例,其比叫做相似多边形的相似比。
知识点2:相似多边形的周长、面积的性质:相似多边形的周长比等于相似比,面积比等于相似比的平方。
由于从多边形的一个顶点出发,可引出(n-3)条对角线,这(n-3)条对角线将多边形分成了(n-2)个三角形,所以相似多边形具有与相似三角形相类似的性质,诸如相似多边形的周长比等于相似比,面积比等于相似比的平方。
典型例题点拨例1、已知图中的两个四边形相似,找出图中的成比例线段,并用比例式表示。
点拨:根据条件:“图中的两个四边形相似”,利用相似多边形的定义求解。
解答:∵四边形ABCD∽四边形EFGH,且∠A=∠E、∠B=∠F,∴。
例2、如图,在 ABCD中,延长AB到E,使,延长CD到F,使交BC于G,交AD于H,则的周长与的周长的比为_________。
点拨:在 ABCD中,AB∥CD,所以△CBE与△CFG相似,要求的周长与的周长的比,即是求这两个三角形的相似比。
解答:1:4。
例3、如图,将的高AD三等分,这样把三角形分成三部分,设三部分的面积为,则。
点拨:利用相似三角形的面积比等于相似比的性质,先求出△ADE、△AFG、△ABC这三个三角形面积之间的关系,进而求出之间的关系。
解答:∵平行线段DEFGBC将三角形的高三等分,∴,∴。
例4、如图,在梯形ABCD中,是AB上一点,,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若,求。
点拨:根据相似多边形的定义,对应边成比例,可得AD、EF、BC之间的关系式,解得EF,从而得解。
解答:∵EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,∴,即,解得EF=6,∴。
考点考题点拨1、中考导航中考中相似多边形的考察基本是通过选择题和填空题的形式出现,但近来也出现了不少考察相似多边形的综合题,往往与平行四边形和梯形相结合。
相似知识总结知识点一:放缩与相似形1图形的放大或缩小,称为图形的放缩运动。
2、把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴、相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵、相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶、我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷、若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.1. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1 )有关概念1、比:选用同一长度单位量得两条线段。
a、b的长度分别是m n,那么就说这两条线段的比是a:b= m: n (或—m)b n2、比的前项,比的后项:两条线段的比a:b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,女口a -b d4、比例外项:a在比例一c(或a:b = c:d)中a、d叫做比例外项。
b d5、比例内项:在比例- c(或a:b = c:d)中b、c叫做比例内项。
b d6、第四比例项:在比例a■—(或a:b = c:d)中, d叫a、b、c的第四比例项。
b da b7、比例中项:如果比例中两个比例内项相等,即比例为(或a:b = b:d时,我们把bb d叫做a和d的比例中项。
8、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长a c度的比相等,即一一(或a:b=c: d),那么,这四条线段叫做成比例线段,简称比例线b d段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)4、合比性质:--b d a b~b~ (分子加(减)分母,分母不变)1)定义:在线段AB上,点C把线段AB分成两条线段AC 和BC(AC >BC),如果ACABBCAC,(2 )比例性质1、基本性质:a:bc d ad bc (两外项的积等于两内项积)2、反比性质:a c b d一(把比的前项、后项交换)b d a c3、更比性质(交换比例的内项或外项):a-,(交换内项)c dd -,(交换外项)b ad b•(同时交换内外项)c a注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b a d c发生同样和差变化比例仍成立•如:a cb d a a bc cd 'a b c d5、等比性质: (分子分母分别相加,比值不变.)a c如果_ —b d 邑m(b df nf n 0),a书[7 Ac e m a那么b d f n b注意:(1)、此性质的证明运用了“设k法”,这种方法是有关比例计算,变形中一种常用方法;(2)、应用等比性质时,要考虑到分母是否为零;(3)、可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割即AC2=AB X BC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,ACU5 1与AB的比叫做黄金比。
多边形的相似性与性质解析多边形是几何学中常见的图形,而相似性是指两个或多个图形的形状相似。
本文将探讨多边形的相似性及其性质,帮助读者更好地理解和应用于实际问题中。
一、相似性的概念多边形的相似性是指两个多边形的对应边成比例,对应角相等。
具体来说,当两个多边形的所有对应边长度之比相等,且对应角度相等时,它们被认为是相似的。
二、相似性的判定条件在判定两个多边形是否相似时,我们可以根据以下条件进行分析:1. 角对应判定:两个多边形的对应角相等。
2. 边对应判定:两个多边形的对应边成比例。
这些判定条件是判断两个多边形相似的基本依据。
三、相似性的性质相似的多边形具有一些重要的性质,接下来我们将介绍其中几个:1. 周长比:相似的多边形的周长比等于任意一条对应边的长度比。
举个例子,若两个三角形相似,它们的周长比等于对应边的长度比。
2. 面积比:相似的多边形的面积比等于任意一条对应边长度的平方比。
对于两个相似的三角形,它们的面积比等于对应边长度的平方比。
3. 高度比:相似三角形的高度比等于对应边长度的比。
4. 布尔斯公式:布尔斯公式是用来计算三角形面积的公式,根据布尔斯公式,相似三角形的面积比等于对应边长度的平方比。
四、应用举例相似性在几何学中有着广泛的应用,特别是在测量和建模方面。
以下是一些应用举例:1. 比例尺计算:根据多边形的相似性,可以利用已知边长比例尺计算未知边长的长度。
2. 面积估算:通过相似多边形的面积比例,可以估算未知多边形的面积。
3. 空间几何建模:多边形的相似性可用于构建三维物体的模型,从而进行工程计算和设计。
五、总结多边形的相似性是几何学中重要的概念,通过判断角对应和边对应的比例关系,我们可以确定多边形之间是否相似。
相似性具有周长比、面积比和高度比等重要性质,并可以应用于测量和建模等实际问题中。
熟练掌握多边形的相似性与性质,对于解决几何问题将大有裨益。
相似多边形、相似三角形判定一、相似多边形1.相似多边形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.② 顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.四、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证A B C D E F △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.五、相似证明中的基本模型六、.黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果AC BCABAC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中618.0215≈-=AB ACA BC【例1】 三角形三边之比为357∶∶,与它相似的三角形最长边是21cm ,另两边之各是 ( ) A .15cm B . 18cm C . 21cm D . 24cm【巩固】ABC △的三边长分别为2、10、3,'''A B C △的两边长分别为1和5,若ABC △与'''A B C △相似,则'''A B C △的第三条边长 .【拓展】已知ABC △的三边长分别为20cm 、50cm 、60cm ,现要利用长度分别为30cm 和60cm 的细木条各一根,做一个三角形木架与ABC △相似,要求以其中一根为边,将另一根截成两段(允许有余料)作为另外两边,那么另外两边的长度(单位:cm )分别为 多少?【例2】 已知点M 将线段AB 黄金分割(AM >BM),则下列各式中不正确的是( )A.AM ∶BM=AB ∶AMB.AM=215-ABC.BM=215-ABD.AM ≈0.618AB【例3】 著名的斐波那契数列指的是数列:1,1,2,3,5,8,13,21,34,…,这个数列从第三项开始,每一项都等于前两项之和.该数列有很多性质,“相邻两个斐波那契数的比值随序号的增加而逐渐趋于黄金分割比=0.6180339887…”是其中的一个性质.请经过探究,猜测该数列中的第2010项与2011项的比值与黄金分割比的大小关系为( )A 、大于B 、等于C 、小于D 、无法确定【例4】 如果一个矩形ABCD (AB <BC )中,215-=BC AB ≈0.618,那么这个矩形称为黄金矩形.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图1),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.角角角判定法【例5】如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.【巩固】如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.【例6】在ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)试说明△AMD∽△EMB;(2)求FNNE的值.【巩固】已知,如图:CE 是Rt △ABC 的斜边上的高,在CE 的延长线上任取一点P ,连结AP 自B,作BG ⊥AP 于G 交CP 于D ,求证:2CE DE PE =∙【例7】 如图所示,E 是正方形ABCD 的边AB 上的一点,EF ⊥DE 交BC 于点F . (1)求证:△ADE ∽△BEF .(2)若AE :EB=1:2,求DE :EF 的比值.【巩固】如图,已知E 是正方形ABCD 的边CD 上一点,BF ⊥AE 于F ,求证:AB 2=AE•BF.【例8】如图,AD是Rt△ABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC于点E、F,则AF:AD=BE:BD吗?说明理由边角边判定法【例9】已知△ABC中,点D、E分别在AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE,若∠BDE+∠BCE=180°那么,△DCF∽△BEF? 为什么?【巩固】如图,点C,D都在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB(2)当△ACP∽△PDB时求∠APB的度数。
多边形的相似性质在几何学中,多边形是由连续的直线段组成的封闭图形,它是我们研究的重要对象之一。
在多边形的研究中,相似性质是一个关键概念,它描述了在一些特定条件下,两个多边形之间的形状和大小的关系。
本文将介绍多边形相似性质的定义、判定方法以及相关的应用。
一、多边形的相似性质定义在几何学中,两个多边形被认为是相似的,当且仅当它们每两个对应边的长度之比相等,并且对应的角度也相等。
简而言之,两个多边形相似意味着它们具有相似的形状,只是尺寸不同。
例如,在图形学中,我们常常遇到的问题是,如何判断两个多边形是否相似,并且根据相似性质进行进一步的推导和计算。
二、多边形的相似性质判定判断两个多边形是否相似的一种常用方法是通过比较它们的对应边的长度之比,并且对应的角度是否相等。
如果两个多边形的边长比和角度比都相等,那么它们就是相似的。
具体来说,可以通过以下步骤进行判定:1. 确定两个多边形的对应边;2. 计算对应边的长度之比;3. 计算对应角度之间的差值;4. 比较长度之比和角度差值是否满足相似性质。
三、多边形的相似性质应用多边形的相似性质在现实生活和各个学科中有广泛应用。
以下是一些具体的例子:1.建筑设计:在建筑设计中,多边形的相似性质可以应用于模型放大缩小、结构设计等方面,从而实现建筑设计的灵活性和优化效果;2.地图制作:在地图制作中,多边形的相似性质可以用于测量和推算地理距离、比例尺等,从而准确地绘制地理形状和位置;3.工程测量:在工程测量中,多边形的相似性质可以应用于实际测量,通过已知的尺寸计算未知的尺寸;4.数学推导:在数学推导中,多边形的相似性质可以用于证明几何定理和解决几何问题。
总结:多边形的相似性质是几何学中重要的概念,它描述了两个多边形之间的形状和大小的关系。
判断多边形的相似性质可以通过比较对应边的长度之比和对应角度之间的差值。
多边形的相似性质在实际应用中具有广泛的应用,涉及建筑设计、地图制作、工程测量等多个领域。
相似多边形的性质相似多边形是指具有相同形状但尺寸不同的多边形。
在几何学中,相似多边形具有一些独特的性质和特征。
本文将探讨相似多边形的性质,并展示一些相关的数学应用和实际问题。
1. 相似多边形的定义相似多边形是指具有相同形状但尺寸不同的多边形。
两个多边形相似的条件是它们的对应角度相等,并且对应边的比例相等。
由此定义可知,如果两个多边形相似,它们的边长比例是相等的。
2. 相似多边形的比例关系对于相似多边形,存在着一种特殊的比例关系。
设两个相似多边形的对应边长分别为a和b,对应的面积分别为A和B。
根据相似多边形的性质,可以得出以下结论:- 边长比例:a:b = A:B- 面积比例:A:B = (a^2):(b^2)这些比例关系对于解决与相似多边形有关的数学问题非常重要。
3. 相似多边形的角度关系对于相似多边形,其对应角度是相等的。
这意味着,如果我们知道一个相似多边形的对应角度,就可以确定其他相似多边形的对应角度。
这对于计算多边形的角度和解决三角学问题非常有用。
4. 相似多边形的周长和面积由于相似多边形的边长比例相等,所以它们的周长比例也相等。
假设两个相似多边形的边长比例为m:n,那么它们的周长比例也为m:n。
同样地,由于相似多边形的面积比例为(a^2):(b^2),所以它们的面积比例也为(a^2):(b^2)。
5. 相似三角形的应用相似多边形的性质在实际问题中有着广泛的应用。
其中最常见的应用是解决相似三角形问题。
通过利用相似三角形的角度和边长关系,我们可以确定无法直接测量的距离和高度。
例如,在地理测量中,我们可以利用相似三角形的性质来测算高山的高度或者海洋的深度。
6. 相似多边形与比例的关系相似多边形的性质与比例密切相关。
相似多边形利用比例关系来描述形状的相似性,从而在数学和实际问题中提供了有用的工具和方法。
比例的概念在解决与相似多边形有关的计算问题中起着关键作用。
综上所述,相似多边形具有一些独特的性质和特征。
一、相似多边形判定
如果对应角相等,对应边成比例的多边形是相似多边形.
如果所有对应边成比例,那么这两个多边形相似
(1)相似多边形的对应角相等,对应边的比相等。
相似比:把相似多边形对应边的比称为相似比。
(2)相似多边形的周长比等于相似比;
(3)相似多边形的面积比等于相似比的平方。
二、相似多边形的性质:
相似多边形的性质定理1:相似多边形周长比等于相似比。
相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
相似多边形的性质定理5:若相似比为1,则全等。
相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。
三、相似多边形:
如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。
(或相似系数)
相似的两个多边形称为相似多边形。
两个多边形的对应边成比例、对应角相等时,它们相似。
两个边数相等的正凸多边形一定相似。
两个相似多边形的周长的比等于它们的相似比,面积的比等于相似比的平方。
四、相似三角形判定定理
1、两角对应相等,则两个三角形相似。
2、两边对应成比例,及两边夹角相等,则两个三角形相似。
3、三边对应成比例,则两个三角形相似。
第2课时 相似多边形的性质【教学目标】1.掌握两个相似多边形的特征及两个多边形相似的判定方法. 【知识点梳理】1.对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 (或ad =bc ),那么,这四条线段叫做 ,简称 .2.相似多边形的对应角 ,对应边的比 ;若两个多边形的对应角 ,对应边的比 ,那么这两个多边形 .3.相似多边形的对应边的比称为 ;当相似比为1时,两个多边形 .【问题探究】 例1.(比例尺)球迷小明想知道从淄博到南非首都约翰内斯堡的距离大约是多少,因此他从一张比例尺是1:32000000的地图上量得淄博到约翰内斯堡的图上距离大约为35cm ,则北京到上海的实际距离大约是 km .变式:在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是 km .例2.(比例线段)如图,在等腰△ABC 和等腰△A 1B 1C 1中,底边的长BC =4cm ,B 1C 1=6cm ,它们的周长分别为16cm 和24cm .这两个等腰三角形的腰与底边是否成比例线段.变式:下列各组线段(单位:cm )中,成比例线段的是( )A.1、2、3、4B.1、2、2、4C.3、5、9、13D.1、2、2、3 例3.(相似多边形的性质)小明家有一个矩形相框,其边长为10cm ,20cm ,小明还想做一个与该相框形状完全相同的相框,但手中只有一根作为一边的30cm 长的框料,那么小明还要准备多长的框料?变式:两个相似五边形,一组对应边的长分别为3cm 和4.5cm ,则这两个多边形的相似比可能是 . 例4.(相似多边形的判定)如图,一幅矩形油画的长为40cm ,宽为25cm ,此幅油画的外围镶有画框,已知画框的宽度为5m ,则画框内外所构成的两个矩形相似吗?说明理由.变式:如图一是一个正六边形,现将A 、D 两点拉长后,图一与图二相似吗?为什么?将图一中DE 、DC 这两条线段向右平移一些后所得图三与图一相似吗?为什么?C1 A B1.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是()A.1:50 B.1:500 C.1:5000 D.1:500002.(2010上海中考)下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似3. 下列四组线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b=2,c=6,d=3C.a=4,b=6,c=5,d=10D.a=2,b=5,c=15,d=234.已知矩形ABCD与矩形EFGH相似,若AB=5cm,BC=6cm,EF=10cm,则FG=_____.5.△ABC与△DEF是两个相似三角形,∠A=50°,∠B=70°,∠D=60°,则∠E的度数可以是______.6.一个四边形的边长分别是3,4,5,6,另一个与它相似的四边形最小边长为6,则另一个四边形的最长边是___________.7.如图是两个相似四边形,根据已知数据,求x、y、α.8.在中国地理地图册上,连结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1 286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为多少千米?一、选择题(每题5分,共25分) 1.某市的两个旅游景区之间的距离为105km ,则在一张比例尺为1∶2 000 000的交通旅游图上,它们之间的距离大约相当于( ) A .一根火柴的长度 B .一支钢笔的长度 C .一支铅笔的长度 D .一根筷子的长度2.若四边形ABCD 相似于四边形D C B A '''',且AB ∶B A ''=1∶2 ,已知BC =8,则C B ''的长是( )A .4B .16C .24D .64 3.下列各组线段中,能成比例的是( )A .1cm ,3 cm ,4 cm ,6 cmB .30 cm ,12 cm ,0.8 cm ,0.2 cmC .0.1 cm ,0.2 cm ,0.3 cm ,0.4 cmD .12 cm ,16 cm ,45 cm ,60 cm4.下列说法正确的是( )A .两个矩形相似B .两个梯形相似C .两个正方形相似D .两个平行四边形相似5.将一个矩形纸片ABCD 沿AD 和BC 的中点的连线对折,要使矩形AEFB 与原矩形相似,则原矩形的长和宽的比应为( ) A .2:1 B .1:3 C .1:2 D .1:1 二、填空题(每题5分,共25分)6.甲,乙二人按2∶5的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14 000元,那么甲应分得 元. 7.如图,有两个形状相同的星星图案,则x 的值为 .8. 如图,四边形ABCD 和四边形A 1B 1C 1D 1相似,已知∠A =120°,∠B =85°∠C 1=75°,AB =10, A 1B 1=16,CD =18,则∠D 1= ,C 1D 1= ,它们的相似比为 .9.如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是 .10.如图所示,是比例尺为1:200的铅球场地的意示图,铅球投掷圈的直径为2.135m.体育课上,某生推出的铅球落在投掷区的点A 处,他的铅球成绩为____________m.(精确到0.1m )三、解答题(每题10分,共50分)11.我们已经学习了相似三角形,也知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.12.已知梯形ABCD 和梯形A B C D ''''中,AD ∥BC ,A D B C ''''∥,∠B =∠B ′,∠D =∠D ′,且AD BC AB CDA DBC A B C D==='''''''',你能说明梯形ABCD 相似于梯形A B C D ''''吗?13.如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似,已知AB =4. (1)求AD 的长.(2)求矩形DMNC 与矩形ABCD 的相似比.14.如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“能相似分割的图形”如图所示的等腰三角形和矩形就是能相似分割的图形. (1)你能否再各举出一个 “能相似分割”的三角形和四边形?(2)一般的三角形是否“能相似分割的图形”?如果是的话给出一种分割方案,否则说明原因.【参考答案】【要点梳理】 1.b a =dc成比例线段 比例线段 2.相等 相等 相等 相等 相似 3.相似比 全等 【问题探究】例1.11200 提示:设坐标到约翰内斯堡的实际距离大约是x km ,根据比例尺=实际距离图上距离,可得x=135320,解得x =11200 km . 变式:600 例2.分析:要判定四条线段是否成比例,只要找出其中两条线段之比等于另两条线段之比即可.另外,若最长线段与最短线段长度之积等于另两条线段长度之积,则这四条线段成比例.解:因为AB +BC +AC =16cm ,且AB =AC ,BC =4cm ,所以AB =)416(21-=6cm .同理可求得A 1B 1=9cm .因为 329611==B A AB ,326411==C B BC ,所以 1111C B BC B A AB =.变式:B 例3.分析:因为两个矩形形状完全相同,所以它们相似,对应边成比例.设相框另一边长为x cm.则有:①2010=30x ; ②2010=x30两种情况,分别求出x ,再计算需准备的框料. 解:因为两个矩形形状完全相同,所以它们相似,对应边成比例.设相框另一边长为x cm ,根据相似的特征有:①2010=30x,解得∴x =15cm ,所以还需准备的框料为:(30+15×2)=60cm ; ②2010=x30,解得∴x =60cm ,所以还需准备的框料为:(30+60×2)=150cm.综上所述,小明还要准备60cm 或150cm 的框料.变式:32 提示:4.5323=.例4.解:外框两边长为45cm ,30cm ;内框两边长为40cm ,25cm.∵45304025≠,∴画框内外所构成的两个矩形的长和宽不构成比例线段.∴两个矩形不相似 变式:解:不相似,因为对应角不相等;不相似,因为对应边不成比例. 【课堂操练】1.B 2.D 3.C 4.12 cm 提示:∵FG ∶BC =EF ∶AB ,∴FG =6×10÷5=12(cm). 5.0°或70° 提示:∠E 可能和∠A 对应,也可能和∠B 对应,所以∠E 的度数可以是0°或70°. 6.12 提示:设最长边是x ,所以有x ∶6=6∶3,∴x =12. 7.解:由于四边形的内角和等于360°,所以∠C =360°-30°-120°-130°=80°,所以α=80°.由于AB 和GD 是对应边,所以两个相似四边形的相似比是5∶8,BC 的对应边为DE ,所以58BC DE =,即458x =,解得x =6.4.由于AD 与GF 是对应边,所以658y =,解得y =9.6.8.解:飞机从台湾绕道香港再到上海的飞行距离约为x 千米,则3 5.4 3.61286x+=,解得x =3858千米,∴飞机从台湾绕道香港再到上海的飞行距离约为3858千米. 【每课一测】1.A 提示:设图上距离为x cm ,则1∶2 000 000=x ∶10 500 000,解得x =5.25cm. 2.B 3.D 4.C 5.C6.4 000 7.8cm 8.80°1445 589.8 cm 2 提示:设留下的矩形的宽为xcm ,则有448x=,解得x =2,所以留下矩形的面积为:2×4=8 cm 2.10.5.1 提示:连接AO 并延长交⊙O 于B ,度量AB =3.6cm ,设AB 的实际长度为x cm ,则2001=x6.3,解得x =720,即AB 的实际长度为7.2m.故该生推铅球的实际成绩为7.2-2.135≈5.1m.11.解:圆和正六边形是相似图形,因为它们的形状相同;菱形和长方形不是相似图形,因为它们的形状不一定相同.12.能说明梯形ABCD 相似于梯形A B C D ''''. 13.解:(1)由已知,得MN =AB ,MD =12 AD =12BC .∵矩形DMNC 与矩形ABCD 相似,D M M N A B B C =,∴12AD 2=AB 2,∴由AB =4得,AD(2)矩形DMNC 与矩形ABCD的相似比为2DM AB = 14.例如直角三角形,一组底角是60°、三边相等的等腰梯形. 三角形都是“能相似分割的图形”(提示:顺次连结三角形三边中点,将三角形分成的四个三角形都和原三角形相似)B。
相似多边形、相似三角形判定一、相似多边形1•相似多边形具有相同形状的图形叫做相似形•相似形仅是形状相同,大小不一定相同•相似图形之间的互相变换称为相似变换.2•相似图形的特性两个相似图形的对应边成比例,对应角相等.3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形对应角相等,对应边成比例的三角形,叫做相似三角形•相似用符号表示,读作“相似于” •相似三角形对应边的比叫做相似比(或相似系数)•相似三角形对应角相等,对应边成比例.注:①应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似•简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.四、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”.1 .横向定型法AB BC欲证力〃 =BC,横向观察,比例式中的分子的两条线段是 AB和BC,三个字母A , B , C恰为△ ABC BE BF的顶点;分母的两条线段是 BE和BF,三个字母B , E , F恰为△ BEF的三个顶点.因此只需证△ ABC EBF .2.纵向定型法欲证二匹,纵向观察,比例式左边的比AB和BC屮的三个字母A , B , C恰为△ ABC的顶点;右BC EF边的比两条线段是DE和EF中的三个字母D , E, F恰为△ DEF的三个顶点.因此只需证△ABCs" DEF3. 中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换 后,再考虑运用三点定形法寻找相似三角形•这种方法就是等量代换法•在证明比例式时,常用到中间比.五、相似证明中的基本模型六、•黄金分割AC BC在线段AB 上,点C 把线段AB 分成两条线段AC 和BC,如果s',那么称线段AB 被点C 黄金分害ij (golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比•其中【例1】三角形三边之比为3:5:7,与它相似的三角形最长边是21cm,另两边之各是4 A'B'C'的第三条边长 _____________________【拓展】已知4 ABC 的三边长分别为20cm. 50cm 、60cm,现要利用长度分别为30cm 和60cm 的细木条各一根,做一个三角形木架与 △ ABC 相似,要求以其屮一根为边,将另一根截成两段(允许有余料)作为另外两边,那么另外两边的长度(单位: cm )分别为 _____________ 多少? AC 5^1 AB 2:0.618 AA. 15cmB. 18cmC. 21cmD. 24cm【巩固】△ ABC 的三边长分别为 2、・10、3 , △ A' B' C'的两边长分别为1和.5,若厶ABC 与厶A' B ,C 相似,则BCDD B【例2】已知点M将线段AB黄金分割(AM> BM),贝U下列各式中不正确的是()A.AM: BM=AB AMB.AM=— AB2C.BM= 4 AB2D.AW 0. 618AB【例3】著名的斐波那契数列指的是数列:1 , 1, 2, 3, 5, & 13, 21, 34,-,这个数列从第三项开始,每一项都等于前两项Z和.该数列有很多性质,相邻两个斐波那契数的比值随序号的增加而逐渐趋于黄金/1TF — 1分割比二0.6180339887•…是其屮的一个性质.请经过探究,猜测该数列中的第 2010项与2011项的比2值与黄金分割比的大小关系为()A、大于B、等于C、小于D、无法确定【例4】如果一个矩形ABCDAB< BC中,AB—.. 5J -0.618,那么这个矩形称为黄金矩形.BC 2在黄金矩形ABCD内作正方形CDEF得到一个小矩形ABFE如图1),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.角角角判定法【例5】如图,在△ ABC中,CD AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.【巩固】如图,等腰直角三角形 ABC中,顶点为C,Z MCN=45,试说明厶BCMTA ANC【例6】在 ABCC屮,M, N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)FN 试说明△ AMDS EMB (2)求——的值.NE【巩固】已知,如图:CE是RtA ABC的斜边上的高,在CE的延长线上任取一点P,连结AP自B,作BG丄AP 于G交CP 于D,求证:CE?二DE・PECP【例7】如图所示,E是正方形ABCD勺边AB±的一点,EF丄DE交BC于点F.(1)求证:△ ADOA BEF.(2)若 AE EB=1: 2,求 DE EF 的比值.【巩固】如图,已知E是正方形ABCD的边CD上一点,BF丄AE于F,求证:AB=AE?BFC【例8]如图,AD是Rt △ ABC斜边BC上的高,DEL DF,且DE和DF分别交AB AC于点E、F,则AF: AD=BE BD吗?说明理由边角边判定法【例9]已知△ ABC中,点D E分别在AB AC上,连接DE并延长交BC的延长线于点F,连接DC BE,若/ BDE+Z BCE二 180 那么,△ DC3A BEF?为什么?【巩固】如图,点C,D都在线段AB上,A PCD是等边三角形(1)当AC, CD, DB满足怎样的关系时,△ ACNA PDB(2)当厶ACP"A PDB时求/ APB的度数。