细骨料对混凝土的影响
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
粗细骨料吸水率对混凝土性能的影响在拌和混凝土时,具有较高吸水率的粗细骨料由于本身存在吸水特性,会在搅拌过程中吸收水分,才能达到其自身饱和状态,那么它所吸收的水分就直接降低了混凝的水胶比,造成拌和后的混凝土坍落度小于设计时的坍落度,影响了试验人员对混凝土水胶比的判断。
这样的骨料不仅在拌和过程中会吸水,而且如果当时没有完全吸收达到饱和,那么混凝土在拌和完成以后在运输的过程中还会继续从混凝土中吸收水分,这种情况下混,凝土的保坍效果也会大大受影响,有时更会造成施工人员难以施工,从而浪费了大量的人力、物力等。
1 控制粗细骨料吸水率的必要性吸水率指的是粗细骨料表面缝隙在吸收足够的水分达到饱和面干时,吸收水的质量和烘干材料质量的比值。
混凝土是铁路工程建设行业中相对比较重要的原材料,而现如今为了加快经济建设我国在铁路工程建设中的投入也在不断的加大,所以也就导致了组成混凝土的原材料需求大大增加,造成了许多材料都是供不应求的现状,其中也以组成混凝土的材料中用量的砂石料为代表。
伴随着国家加大环境保护力度,在地材的生产开采也逐渐地向偏远的不影响地貌变化的地区靠拢。
在有些人迹罕至的地方,虽然有较多的砂石原材料,但原材料的质量不足以能得到保障,而在未生产之前,只能测试出来砂石料的一部分数据,例如母岩强度、碱活性和岩性等。
有些检测指标也是只能通过生产以后才能对其测定,如颗粒级配、含泥量和吸水率等。
而生产过程中虽然能通过控制筛网来控制好砂石料的颗粒级配,通过控制冲洗水量的大小来控制砂石料的含泥量以及石粉含量,但是吸水率的问题却不容易得到控制。
材料吸水率的大小和材料的本身的颗粒大小息息相关,相同质量的材料越小则其表面积也就越大,而表面积越大可吸收水的孔隙也就越多,吸水率也就相应地增大了。
吸水率这一指标直接影响了混凝土的工作性、抗压强度、耐久性等各项指标。
所以在选择材料的生产厂商时,一定要控制好质量,选择吸水率尽量偏小的母材,作为制作粗细骨料的原材料。
骨料对混凝土的影响骨料对混凝土的影响是混凝土性能的重要方面之一。
骨料是构成混凝土的主要成分之一,直接决定了混凝土的强度、耐久性和工作性能等特性。
下面将从五个方面介绍骨料对混凝土的影响。
1. 强度和耐久性:骨料的种类、粒径和形状对混凝土的强度和耐久性有着直接的影响。
一般来说,粗骨料的使用可以增加混凝土的强度,而细骨料则可以增加混凝土的致密性和耐久性。
同时,采用合适的骨料可以降低混凝土的收缩和开裂倾向,提高混凝土的抗磨损性、抗渗透性和耐久性。
2. 工作性能:骨料的形状、表面状况和粒度分布会影响混凝土的流动性、坍落度和可泵送性等工作性能。
粗砂状的骨料可以增加混凝土的流动性,而圆形的骨料可以提高混凝土的坍落度。
此外,骨料的表面状况会影响骨料与水泥浆液的黏附力,进而影响混凝土的工作性能。
3. 混凝土的体积稳定性:合理选择骨料可以改善混凝土的体积稳定性。
例如,在高温条件下,使用热稳定的骨料可以减少混凝土的热收缩,从而提高混凝土的体积稳定性。
另外,粗骨料的使用可以减少混凝土的干缩倾向,提高混凝土的体积稳定性。
4. 骨料与水泥胶浆的相互作用:骨料和水泥胶浆之间的相互作用对混凝土的性能有着重要影响。
一方面,骨料颗粒表面的覆盖薄膜可以减缓水泥胶浆中的溶解离子的渗透,从而改善混凝土的耐久性。
另一方面,骨料表面的覆盖薄膜可以减少骨料与水泥胶浆的黏着力,从而降低混凝土的黏稠度,提高混凝土的流动性。
5. 粒度分布对混凝土的影响:合理的骨料粒度分布可以改善混凝土的工作性能和强度。
粗骨料的使用可以降低混凝土的收缩倾向,提高混凝土的强度;细骨料的使用可以填充水泥胶浆中的微观孔隙,提高混凝土的密实性。
通过合理控制骨料的粒度分布,可以获得更好的混凝土性能。
总之,骨料是混凝土性能的关键因素之一。
选择合适的骨料类型、粒径和形状,并控制好骨料与水泥胶浆的相互作用以及骨料的粒度分布,可以显著提高混凝土的强度、耐久性、工作性能和体积稳定性等关键性能。
细骨料细度模数
【实用版】
目录
1.细骨料的定义和重要性
2.细度模数的概念和作用
3.细骨料细度模数的要求及其对混凝土性能的影响
4.结论
正文
一、细骨料的定义和重要性
细骨料,又称为细碎石,是指粒径在 2.5mm 至 40mm 之间的碎石。
在混凝土中,细骨料作为胶凝材料的填充物,能够提高混凝土的密实性和强度,从而改善混凝土的整体性能。
因此,细骨料在混凝土工程中具有举足轻重的地位。
二、细度模数的概念和作用
细度模数(Fineness Modulus)是衡量细骨料粗细程度的一个重要指标,通常用 FM 表示。
细度模数是根据细骨料的粒径分布和重量分布来计算的。
细度模数的值越大,表示细骨料越粗;反之,值越小,表示细骨料越细。
在混凝土工程中,细度模数对于混凝土的性能有着重要影响。
合适的细度模数能够使骨料、细骨料和胶凝材料形成最佳的级配比例,从而提高混凝土的密实性、抗压强度和抗折强度。
三、细骨料细度模数的要求及其对混凝土性能的影响
客运专线等高性能混凝土工程中,细骨料细度模数的要求通常为
2.6-
3.0。
在这个范围内,细骨料能够形成与胶凝材料和粗骨料最佳的级配比例,从而提高混凝土的性能。
研究发现,当细度模数在 2.6-3.0 时,混凝土的密实性、抗压强度和抗折强度均能达到最佳值。
具体来说,混凝土的抗压强度可以提高10%-20%,抗折强度可以提高 20%-30%。
四、结论
综上所述,细骨料细度模数对于混凝土工程具有重要意义。
合适的细度模数可以提高混凝土的密实性和强度,从而改善混凝土的整体性能。
混凝土用细骨料定义及性能变化对混凝土的影响一、部分细骨料定义1.机制砂定义将岩石、尾矿、建筑垃圾等通过破碎、筛分形成的细骨料称为机制砂,俗称机制砂。
发展机制砂产业,可以利用一些废弃采石场,有效解决我国庞大的尾矿资源再利用问题,促进建筑垃圾资源化,并可以为建筑业解决当前普遍存在的天然砂匮乏的问题。
2.尾矿砂定义尾矿砂是铁、铜等矿山开采后的废弃物,经破碎、筛分而制成的机制砂。
试验研究证明,尾矿砂MB值不大于1.4,石粉含量不大于7%,混凝土收缩并无明显增大。
尾矿砂的保水性不如天然砂,因此,在配制混凝土时应注意避免泌水。
3.钢渣砂钢渣砂是炼钢过程产生的副产品经陈化、热闷、风淬、水淬等工艺稳定化处理后,再经磁选除铁处理,具有砂级配的细骨料。
因为经过热闷处理,钢渣砂中的游离氧化钙和氧化镁已被有效消解,从而消除了钢渣砂的不稳定因素。
钢渣砂中存在耐磨矿物如蔷薇辉石和橄榄石等,使其具有耐磨、硬度高等特点。
根据我国目前的行业标准,钢渣砂细度模数分为粗、中、细三级。
钢渣砂单粒级最大压碎指标规定为25%%大部分钢渣砂都能满足此要求。
钢渣砂表观密度大于2800kg/m2,空隙率平均47%表面粗糙多棱角,可采用浸水膨胀率对钢渣砂的体积稳定性进行检查。
浸水膨胀率不大于2.0%合格。
钢渣砂无须测定泥土、石粉和泥块含量。
二、砂子性能变化对混凝土的影响1.砂子过细、过粗会带来什么影响?细度模数1.6~2.2的砂为细砂,1.5~0.7的为特细砂。
砂子太细,混凝土需水量上升,当混凝土用砂从中砂变为细砂时,若保持相同流动性,则单方用水量需上调5kg。
同时,用细砂配制的混凝土流动性、可泵性和保塑性都很差,混凝土强度会下降,梁板结构易开裂。
细度模数3.1~3.7的砂为粗砂。
采用粗砂配制的混凝土和易性、可泵性差,不黏稠,极易泌水。
此时应掺入一些细砂,将细度模数降到2.7左右。
例如:粗砂细度模数为3.3,细砂细度模数为1.5,此时,可用70%粗砂加30%细砂调成细度模数为2.76的中砂。
浅谈在混凝土浇筑中粗细骨料的使用对混凝土工程质量的影响摘要:在建筑施工管理中混凝土质量是保证建筑施工质量的关键。
在影响混凝土质量的因素中,水泥和水是相对固定的条件,而粗骨料(卵石、碎石)、细骨料(砂)却总会在不同条件和环境之下而不同。
在建筑施工技术上,探讨粗骨料与细骨料活性的质量对钢筋的质量、硬度、变形能力和耐久性的关系,使我们可以在节能、保护环境的前提下,对增强钢筋的品质和整个施工的效率方面具有很大的作用。
关键字:粗骨料细骨料混凝土强度影响因素混凝土是指用水泥作胶凝物质,以砂、石作集料,与普通水泥(可含外加剂和掺合料)按比例配制后,经拌和而得的水泥混凝土,它应用于土木建筑。
而混凝土的产品质量和技术特性,很大程度上是由原料的特性以及相对含量所决定,同时与设计及施工的主要工艺手段(配制、拌和、捣实成型、养护等)有关系。
混凝土广泛应用于建筑、交通、水利等工程建设中,是工程结构的重要组成部份,其质量的优劣直接关系到钢筋混凝土构件的总体品质,而其原材料的优劣和选用是否恰当又直接关系到混凝土施工的品质。
所以,保证钢筋混凝土构件品质的一项关键性要素必须从其原材料的品质管理入手,原材料使用不正确将使得混凝土施工出现品质上的问题,从而直接关系到整体施工构件的品质。
关于这个问题现就对混凝土的粗骨料和细骨料的使用、粗骨料、细骨料的作用对混凝土工程质量的影响,作出分析和研究。
一、粗骨料(碎石、卵石)对混凝土的影响1.1骨料的分类普通混凝土,一般将粗骨料分成卵石与碎石二大类。
石子,是指由自然石块通过自然界的风化、雨水搬运,或分选、堆砌而产生的粒径超过4.75mm的细微粒。
根据其来源,可分成河卵石、海卵石、火山石子等多种。
以河卵石使用的较多。
碎石主要是通过将自然石块进行粉碎、筛选而制备的,也可将自然石子轧碎筛选而制备。
碎石、卵石的质量根据其大小尺寸分成单颗粒级和连续颗粒级,亦可按照要求选择将不同单级粒径的碎石、卵石等混合制成不同颗粒级别的石子。
细骨料对混凝土和易性的影响细骨料是混凝土的主要组分,约占混凝土体积总量的30%~40%,其性质的好坏将直接影响到新拌混凝土和硬化后混凝土的性能,如和易性、强度、耐久性等。
随着聚羧酸减水剂的广泛使用,细骨料与其适应性好坏同样影响到新拌混凝土和硬化后混凝土的性能,成为业内人士关注的焦点之一。
已有文献介绍,聚羧酸减水剂对混凝土中砂子含泥量十分敏感,既能影响混凝土的坍落度及坍落度损失,在砂子含泥量超过3%时还会对强度产生不利影响。
事实上,除了砂子含泥量之外,砂子的其他性质也将对聚羧酸减水剂的适应性产生影响,进而影响混凝土的各项指标。
实验实例选用两组胶凝材料及两种砂子进行试验,其中1号砂是由于不合格而被施工方否定掉的砂子,2号砂是施工最终选用的砂子。
本实验中为了对比细骨料对混凝土所产生的影响,特选用这两种砂子做了一个对比分析。
试验中发现,采用2号砂子拌制的混凝土没有出现分层、离析,也没有出现泌水现场,黏聚性和保水性较好;而采用1号砂子拌制的混凝土出现了泌水现象,和易性欠佳。
使用同一种砂子,选取不同组胶凝材料时,混凝土的和易性基本一致,说明该工程现场使用的胶凝材料对混凝土和易性无不良影响。
而在胶凝材料相同,砂子不同时,均需增加50%的减水剂,且W-1尚需多加2kg水才能勉强达到施工要求。
此外,由表2还可以看出,1号砂子比2号砂子拌制的混凝土含气量高,含气量偏高将会影响混凝土的后期强度。
原因分析影响混凝土和易性的因素很多,如单位用水量、水泥品种、水泥与外加剂的适应性、骨料性质、水泥浆的数量、水泥浆的稠度、砂率,以及环境条件(如温度、湿度等)、搅拌工艺、放置时间等。
我们根据以往的经验认为,在配合比一定的混凝土设计中,对混凝土和易性影响最大的是胶凝材料和外加剂,尤其是近年来外加剂的广泛使用所引起的胶凝材料水泥适应性问题层出不穷。
但事实证明,细骨料的性质,以及细骨料与外加剂的适应性对混凝土的和易性也有很大的影响,有时能直接决定拌制的混凝土和易性的好坏。
混凝土弹性模量与混凝土配合比相关探讨混凝土的弹性模量是指在应力作用下,单位截面的应变与应力之间的比值。
它是描述混凝土在受力时变形和回弹性能的重要参数。
混凝土的配合比则是指水泥、骨料、细粒填料和水等组成混凝土的各个材料的比例关系。
它对混凝土的性能有着重要的影响。
因此,混凝土的弹性模量与混凝土配合比之间存在一定的相关性。
混凝土的弹性模量与混凝土配合比相关性的探讨主要涉及以下几个方面:1.水灰比对混凝土弹性模量的影响:水灰比是指水与水泥质量之比。
水灰比的大小直接影响到混凝土的工作性能、耐久性和强度等方面。
研究表明,水灰比的增加会导致混凝土的弹性模量下降,即混凝土的变形率增加。
这是因为水灰比的增加会提高混凝土的孔隙率,降低其内部的致密程度,从而降低混凝土的刚度。
2. 细骨料对混凝土弹性模量的影响:细骨料是指粒径小于5mm的骨料。
细骨料在混凝土中起到填充物的作用,对混凝土的力学性能有着重要的影响。
研究表明,细骨料的使用可以改善混凝土的强度和抗裂性能,从而提高混凝土的弹性模量。
这是因为细骨料的添加可以填充混凝土中的空隙,增加混凝土的致密程度,提高其刚度。
3.骨料粒径对混凝土弹性模量的影响:骨料粒径的大小会直接影响混凝土的颗粒排列和孔隙率等性能。
研究表明,骨料粒径的增大会降低混凝土的弹性模量。
这是因为粒径较大的骨料在混凝土中容易形成空隙,破坏混凝土的致密结构,导致混凝土的刚度下降。
4.混凝土配合比对弹性模量的影响:混凝土配合比的优化对混凝土的性能有着重要的影响。
研究表明,适当增加骨料的用量和减少水灰比可以有效提高混凝土的弹性模量。
合理的配合比可以提高混凝土的致密性和孔隙率控制,在一定程度上提高混凝土的刚度和强度。
总结起来,混凝土的弹性模量与混凝土配合比之间存在关联。
水灰比、细骨料、骨料粒径和配合比等因素都会对混凝土的弹性模量产生影响。
因此,在混凝土设计和生产过程中,需要综合考虑这些因素,合理优化配合比,以满足混凝土的工作性能和力学性能要求。
混凝土的细骨料的作用一、引言混凝土是一种常用的建筑材料,由水泥、细骨料、粗骨料和掺合料组成。
其中,细骨料在混凝土中起到了关键作用。
本文将深入探讨细骨料在混凝土中的作用及其影响因素。
二、细骨料的定义和分类2.1 定义细骨料是指粒径小于5mm的颗粒状物质,常见的细骨料有砂、石粉等。
2.2 分类根据来源和性质,细骨料可以分为天然细骨料和人造细骨料。
天然细骨料包括河砂、海砂等,而人造细骨料包括砂石粉、碎石等。
三、细骨料在混凝土中的作用3.1 填充孔隙细骨料在混凝土中填充了水泥颗粒之间的孔隙,增加了混凝土的密实性和抗渗性。
同时,细骨料的填充还可以减少混凝土的收缩。
3.2 增加强度细骨料中的颗粒与水泥颗粒发生化学反应,形成硬化产物,增加了混凝土的强度。
较小的细骨料中的颗粒更容易与水泥发生反应,因此常用于制备高强度混凝土。
3.3 改善工作性能细骨料的形状、表面性质和颗粒大小分布对混凝土的工作性能有重要影响。
合理选择细骨料可以改善混凝土的可塑性、流动性和分散性,提高施工的可操作性。
3.4 影响混凝土的耐久性细骨料的碱含量、含尘率和矿物成分等因素会影响混凝土的耐久性。
例如,含有酸性物质的细骨料可能会导致混凝土的腐蚀。
四、影响细骨料性能的因素4.1 颗粒形状细骨料的颗粒形状可以分为圆形、角形和片状等。
不同形状的细骨料对混凝土的性能影响不同。
圆形颗粒的细骨料易于流动,角形颗粒的细骨料有利于提高混凝土的抗剪强度。
4.2 颗粒大小和分布细骨料的颗粒大小和分布会影响混凝土的工作性能和强度。
过多的细骨料会增加混凝土的内部摩擦,降低混凝土的流动性和可塑性。
4.3 颗粒表面性质细骨料的表面性质直接影响细骨料与水泥的粘结性能。
表面处理可以改善细骨料与水泥浆液的粘结强度,提高混凝土的强度和耐久性。
4.4 细骨料的含水率细骨料的含水率会影响混凝土的含水率和流动性。
过高或过低的细骨料含水率都会导致混凝土的性能下降。
五、结论在混凝土中,细骨料起到了填充孔隙、增加强度、改善工作性能和影响耐久性的重要作用。
不同粗细骨料对混凝土性能的影响一、目前骨料使用的现状1 砂的质量状况目前大多数预拌混凝土生产企业使用的细骨料为河砂,河砂的细度模数受自然条件的影响不太稳定,市场上砂的细度模数大部分在2.3~2.9,有时最小为2.0,最大为3.2,根据预拌混凝土的生产经验,细度模数在2.6左右比较好用,在一般情况下砂的细度模数在2.4~2.8之间,基本上符合正常生产的需要,这样不用调整其他材料的用量,对生产成本也没有太大的影响。
但是有的砂场产的砂很粗(细度模数大于2.9)、而有的砂场产的砂又比较细(细度模数小于2.3),用这二种砂对混凝土的性能有较大的影响,仅仅对砂率进行调整还不能确保混凝土的工作性能,对混凝土强度也有一定的影响。
2 碎石的质量状况现在大部分搅拌站进货使用的粗骨料主要有16~31.5mm单粒级、10~20mm单粒级、5~16mm连续粒级(也有5~25mm连续粒级碎石,但极不稳定)。
石场在生产碎石时只是大致的分类,并没有严格控制碎石的级配,加上在运输、装卸和堆放过程中颗粒不可避免的存在离析和不均匀性。
因此在生产的混凝土中碎石的级配并不一定是较好的。
近年以来虽然也有采取一些搭配使用措施,但也只是凭经验确定的一种粗略的方案,碎石的空隙率不一定是最少,用水量不一定是最少。
二、关于砂的细度模数、碎石颗粒级配的调整方法1 砂的细度模数的调整河砂的供应受多种因素的影响细度有时并不稳定。
当细度模数在2.6左右时比较适合配制各混凝土(对于高强度混凝土宜用细度模数更大的砂)。
砂源充足在不影响到停产的情况下,对于细度模数大于3.0或小于2.3的砂会拒收。
根据我们的经验如果砂的细度模数与基准配方所选用砂的细度模数偏差不大的情况下,通过调整砂率就可以改善混凝土的和易性达到所需要的工作性能。
然而在砂源紧张的情况下,不管细度模数是多少都得收货。
砂的细度模数变化太大,生产配方的调整幅度就较大,对混凝土的工作性能和强度有较大的影响,有时就算进行较大幅度的调整其结果也并不理想。
再生细骨料适用的混凝土强度等级
再生细骨料通常是由废弃的混凝土或建筑材料经过破碎、筛分和处理而得到的细料。
这些再生细骨料可以用于制备混凝土,但其适用的混凝土强度等级可能受到一些因素的影响。
一般而言,再生细骨料可用于制备中低强度的混凝土,例如普通混凝土(C15至C30等级)。
具体的适用等级可能受以下因素的影响:
1.再生细骨料的质量:
•再生细骨料的物理和力学性质会影响混凝土的强度。
如果再生细骨料的质量稳定,符合相关标准,那么它们更适合
用于高强度混凝土。
2.混凝土配比的调整:
•使用再生细骨料时,可能需要对混凝土的配比进行调整,以确保其力学性能和工作性能。
这可能包括水灰比、胶凝
材料含量、骨料比例等的调整。
3.使用环境和要求:
•在一些特殊的工程项目或具体的使用环境中,可能对混凝土的强度等级有更高的要求。
在这种情况下,需要仔细评
估再生细骨料是否满足相应的技术规范。
4.法规和标准要求:
•不同地区和国家可能有不同的法规和标准,规定了再生材料在混凝土中的使用要求。
在选择再生细骨料时,必须遵
循当地的法规和标准。
总体而言,再生细骨料可以在一定范围内用于制备混凝土,但具体的适用强度等级需要结合实际情况和当地法规来评估。
在使用再生细骨料时,建议进行实验室测试,以确保混凝土的力学性能和耐久性能能够满足项目要求。
细骨料对混凝土和易性的影响
细骨料是混凝土的主要组分,约占混凝土体积总量的30%~40%,其性质的好坏将直接影响到新拌混凝土和硬化后混凝土的性能,如和易性、强度、耐久性等。
随着聚羧酸减水剂的广泛使用,细骨料与其适应性好坏同样影响到新拌混凝土和硬化后混凝土的性能,成为业内人士关注的焦点之一。
已有文献介绍,聚羧酸减水剂对混凝土中砂子含泥量十分敏感,既能影响混凝土的坍落度及坍落度损失,在砂子含泥量超过3%时还会对强度产生不利影响。
事实上,除了砂子含泥量之外,砂子的其他性质也将对聚羧酸减水剂的适应性产生影响,进而影响混凝土的各项指标。
实验实例
选用两组胶凝材料及两种砂子进行试验,其中1号砂是由于不合格而被施工方否定掉的砂子,2号砂是施工最终选用的砂子。
本实验中为了对比细骨料对混凝土所产生的影响,特选用这两种砂子做了一个对比分析。
试验中发现,采用2号砂子拌制的混凝土没有出现分层、离析,也没有出现泌水现场,黏聚性和保水性较好;而采用1号砂子拌制的混凝土出现了泌水现象,和易性欠佳。
使用同一种砂子,选取不同组胶凝材料时,混凝土的和易性基本一致,说明该工程现场使用的胶凝材料对混凝土和易性无不良影响。
而在胶凝材料相同,砂子不同时,均需增加50%的减水剂,且W-1尚需多加2kg水才能勉强达到施工要求。
此外,由表2还可以看出,1号砂子比2号砂子拌制的混凝土含气量高,含气量偏高将会影响混凝土的后期强度。
原因分析
影响混凝土和易性的因素很多,如单位用水量、水泥品种、水泥与外加剂的适应性、骨料性质、水泥浆的数量、水泥浆的稠度、砂率,以及环境条件(如温度、湿度等)、搅拌工艺、放置时间等。
我们根据以往的经验认为,在配合比一定的混凝土设计中,对混凝土和易性影响最大的是胶凝材料和外加剂,尤其是近年来外加剂的广泛使用所引起的胶凝材料水泥适应
性问题层出不穷。
但事实证明,细骨料的性质,以及细骨料与外加剂的适应性对混凝土的和易性也有很大的影响,有时能直接决定拌制的混凝土和易性的好坏。
细骨料的性质
1号砂偏细,细度模数只有2.2,而且级配不良,出现中间级配脱节的现象。
一般来说,细骨料越细,比表面积越大,需要越多的水泥浆来润湿,使得混凝土拌合物的流动性降低。
砂的级配不良,以至空隙率和比表面积过大,需要消耗更多的水泥浆才能使混凝土获得一定的流动性,对混凝土的密实性、强度、耐久性等性能也会有一定影响。
GBl4684-2001标准中规定了砂子的含泥量、泥块含量,以及轻物质含量等,如表2所示,1号砂子含泥量较高,含有一定量的泥块,轻物质含量也偏高。
砂子中的泥会吸附一定量的外加剂,同等条件下相当于减少了外加剂的掺量,使混凝土达不到预期效果。
此外,泥的颗粒极细,会黏附在砂粒表面,影响砂粒与水泥浆体的黏结,导致新拌混凝土和易性不佳。
而当泥以团块存在时,会在混凝土中形成薄弱部分,对混凝土的质量危害更大,且混凝土强度越高影响越明显。
砂子中氯离子含量较高,有可能是将海砂混入河砂中使用。
海砂的吸附能力大于河砂,使得新拌混凝土和易性变差。
轻物质多为轻质多孔结构,会吸附外加剂,还会使砂子的蓄水量增大,它的存在降低了混凝土中外加剂的有效掺量,若黏结在骨料表面,还会破坏水泥浆包裹骨料的黏结力,起隔层的反作用。
砂率的确定
实验选取42%的砂率,针对该配合比而言是合适的,但由于1号砂子细度偏细,相当于增加了骨料的总表面积和空隙率,在水泥浆用量一定的条件下,相对而言水泥浆的用量变小了,减少了颗粒表面具有的润滑层,增加了集料颗粒间的摩擦力,从而降低了拌合物的流动性。
细骨料一般采用中砂,要求细度模数为2.6~2.9,当实际使用的砂子偏细时,应相应的减少砂率或增加水泥浆用量(同时提高胶凝材料与水的用量,保证水胶比不变,但这势必造成施工成本的增加)以便达到设计要求。
控制措施
从原因分析中不难看出,细骨料含泥量、氯离子含量,以及轻物质含量显著影响减水剂效用和掺量,究其原因是其对减水剂会有很强的吸附作用,消耗掉了相应减水剂用量的效能。
因此,如何降低细骨料对混凝土外加剂的吸附成为解决问题的关键所在。
鉴于国内砂源紧张,机制砂和海砂利用的技术尚不成熟,单单依赖严格控制砂源已经不太现实,因此,如何使外加剂能够有效抑制混凝土细骨料对减水剂用量的影响,降低减水剂的掺量,保持减水剂的使用效能,成为混凝土外加剂供应商需要解决的难题。
目前,日本学者已有研究表明,在制备聚羧酸时引入阳离子单体,可以有效抵抗骨料中泥的吸附问题,还有学者通过聚羧酸和二丙稀二甲基氯化胺共聚物盐的复配解决了此问题。
而我国也有学者着手研究该问题,如刘国栋等研制的Z剂等,其主要作用机理很可能是细骨料对Z剂有更强或更快的吸附作用所致,即泥土会选择性地优先吸附Z剂,从而减少了对减水剂的吸附。
但这些研究尚处于起步阶段,需要大量的试验研究来证实、优化。
在工程建设过程中,砂子作为混凝土结构材料的重要组成部分,其质量优劣对整个工程的质量及耐久性具有举足轻重的影响。
随着建筑业发展和对建筑工程质量的重视,建筑市场用砂数量越来越大,质量上要求越来越高,而合格的河砂资源却越来越少,由此引发的工程质量,破坏农田、水利资源等问题日趋严重,砂子生产也因资源的变化而有所改变,建筑用砂的质量和数量对建筑市场的影响日益明显。
在河砂资源缺乏的地区,合理使用海砂和优质机制砂进行混凝土施工生产不仅是可行的,其综合效益也是显著的。
同时在海砂和机制砂使用中,也可以进行建筑材料学科方面的研究试验,积累经验,为学科的发展奠定基石。
此外,
及时研制出具有抵抗骨料中泥、有害物质等吸附外加剂迫在眉睫,这将对混凝土外加剂行业提出新的挑战。