❖ 由于实现上用微分值代替原图的灰度值, 故最后的新图像灰度范围变小,边缘处亮, 非边缘处暗,丢失原图灰度信息
Sobel算子:系数大,故边缘亮 Prewitt算子:边缘较暗
二阶微分算法的基本原理
2 f 2 f 2 f x2 y2
2f x2
[fx(i,j)fx(i1,j)]
[ f ( i , j ) f ( i 1 , j ) [ ] f ( i 1 , j ) f ( i , j )
一阶水平方向锐化效果
一阶垂直方向锐化效果
Roberts梯度锐化效果 (与Roberts模板卷积)
Prewitt梯度锐化效果 (与Prewitt模板卷积)
❖ 用梯度算子锐化图像的过程
扩展原图(周围加边) 定义模板(水平+垂直)
对每个像素进行模板卷积,得到每个像素点的 Gx与Gy
G=sqrt(Gx*Gx+Gy*Gy)或者G=|Gx|+|Gy| G为处理后每个像素点的新灰度
❖ 分类
灰度线性变换
❖全局线性 ❖分段线性
灰度非线性变换
❖对数变换 ❖指数变换
❖ 线性变换
假设:原始图像为f ( i , j) ,灰度范围:[ a , b],变换后图像: g ( i , j) ,灰度范围:[ c , d],线性变换中,存在以下关系:
g(i,cj )dc(f(i,aj) 另一种情况,图像中大部b分a像素的灰度级在[a, b]范围内,
二阶微分滤波器-拉普拉斯算子
不同的算子有不同的模板,实现不同的一阶微分效果
图像中梯度的定义
❖ 考虑一个3×3 的图像区域,z 代表灰度级,上式在点z5 的∇f 值可用数字方式近似
❖
水平方向上的梯度
Gx