淡水水体中蓝藻水华研究进展
- 格式:pdf
- 大小:289.68 KB
- 文档页数:2
第23卷 第11期2008年11月地球科学进展ADVANCES IN E ARTH SC I E NCEVol.23 No.11Nov.,2008文章编号:100128166(2008)1121115209湖泊蓝藻水华生态灾害形成机理及防治的基础研究3吴庆龙1,谢 平2,杨柳燕3,高 光1,刘正文1,潘 纲4,朱本占5(1.中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室,江苏 南京 210008;2.中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室,湖北 武汉 430072;3.南京大学,污染控制与资源化研究国家重点实验室,江苏 南京 210092;4.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085;5.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京 100085)摘 要:湖泊具有供水、渔业、旅游、维持区域生态系统平衡等功能,是支撑我国经济和社会发展的重要资源之一。
但是近30年来,湖泊富营养化所导致的蓝藻水华频繁暴发,生态灾害事件频发,严重影响湖泊功能的发挥,制约区域经济可持续发展。
针对国家在保障区域水安全和生态安全、保护人民健康及建设和谐社会等方面的重大需求,国家重点基础研究发展计划项目“湖泊蓝藻水华生态灾害形成机理及防治的基础研究”于2008年7月正式立项。
项目拟解决的关键科学问题包括:①湖泊蓝藻水华主要衍生污染物的形成机理、迁移转化规律和毒理效应;②蓝藻水华导致湖泊生态系统结构变化和功能退化的机理;③蓝藻水华生态灾害评估及调控机理。
针对上述科学问题,项目以蓝藻水华污染物的产生、湖泊生态系统结构与功能的响应以及生态灾害的评估与调控为研究主线,重点开展以下几个方面的研究:①蓝藻水华衍生污染物的产生及其环境过程;②蓝藻水华衍生污染物的毒理效应与生态和健康风险;③蓝藻水华导致湖泊生态系统结构变化与功能退化的关键过程和机制;④蓝藻水华灾害治理和调控的的技术原理和途径。
生态科学22卷或“水华”藻类进行快速准确的鉴定是环境微生物学研究的热点之一,人们期望通过对这些种类遗传特征的了解,建立起微藻的快速分子鉴定方法。
3藻类栖息地(生境)的多样性及其重要性藻类在地球上的分布极J。
,儿乎在有光年¨潮湿的任何地方,从炎热的赤道地区剑千年冰封的极地,无论在江河湖海、沟渠塘堰等各种水体中,还是在潮湿的十表、墙壁、树干、树叶、岩“上甚至沙漠中,都有其生长,此外它们还可以与其他生物营共生生活;人们熟知的地农(Lichen)就是I咎类和藻类的共生体;还有少数藻类的生境更为奇特,如生妖在满江红属(AzD砌)的叶子里的满江红鱼腥藻(^n口胁e月Ⅱnzofj“)、生在兽类的皮毛上如龟背上的龟背基枝藻(肋jfc如d缸出e如㈨m),以及内生丁鱼类、甲壳动物等水生动物体内的藻类。
在许多极端生境中微藻特别是监藻显得特别重要,例如碱性湖、温泉、酷热和寒冷的沙漠,蓝藻是环境中不多的初级生产者。
生活在热带雨林和温带的树术树皮上的微藻更为重要。
但也很少有人研究它们。
如果这些藻类突然更新,它们的生产率就能够与它们所居住的生故缓慢的树木的生产率相等。
邓新宴等道过在90℃的温泉中依然有蓝藻的生K,为什么在这么高的温度它们的蛋白质不凝周,这是一个有重要意义的生物学问题””。
藻类能够适应各种生活条件生存和繁衍,丰富多样的生态环境是藻类种类多样性的一个重要原因,研究藻类的多样性问题不可忽视对其生态环境的研究。
4我国淡水藻类多样性面临的问题4.1生态系统遭到破坏日益发展的生活生产活动严重破坏了藻类及其他赖以生存的生态系统。
在高度富营养水体中,生态环境咐破坏直接导致许多地域的藻类多样性指数的1F降。
以东湖为例:50年代,水草茂盛,水质清新,有机质含最低,对水质敏感的金藻门中如:棕鞭藻(Dc^,∞2Ⅲmj)、锥囊藻(DmD6won)、单鞭金藻(凸nⅢ“f抽口)等大越出现,且年平均变幅小,优势种的数量少。
随着水中氮、磷含量的增加,藻类优势种发生明显的变化。
蓝藻水华危害防治措施论文摘要:蓝藻水华会造成鱼虾死亡,导致水体污染,水道堵塞,对人类的生产和生活造成严重的影响。
除此之外,蓝藻毒素也会严重地危害人类的健康。
我国众多湖泊水体蓝藻水华发生频率高,藻类生物量巨大,水华种类的产毒力强,因此,迫切需要具有长效、经济和安全的预防和控制蓝藻水华策略和技术措施。
本文简要地介绍了蓝藻水华的发生机理,并结合国内外爆发蓝藻水华事件及后果,分析水华爆发的三大危害,提出防治措施。
关键词:蓝藻水华;发生机理;危害水资源是人类赖以生存的物质基础。
但近年来,我国的江河、湖泊及近海海域的氮磷污染呈加重趋势,内陆主要湖泊的水体富营养化程度加深。
水体富营养化导致部分藻类以及其他水生生物异常大量繁殖,造成水体透明度下降,产生异味,水体功能遭到破坏。
2007年太湖、滇池以及巢湖蓝藻暴发进一步引起了人们对水体富营养化的关注。
因此,治理富营养化水体,防治水华,恢复水体的综合功能,已成为当前水环境与水资源保护研究的中心问题之一。
一蓝藻与蓝藻水华蓝藻是藻类生物,又称蓝细菌或蓝绿藻,大多数蓝藻的细胞壁外面有胶质衣,因此又叫牯藻,一般呈蓝绿色,是地球上最早出现的光合自养生物。
已知蓝藻约2000种,中国已有记录的约900种,分布十分广泛,遍及世界各地,但大多数(约75%)生活在淡水中,少数分布在海水中。
在环境条件适宜时,某些蓝藻能快速生长,当达到一定生物量时,这些蓝藻在水体表层大量聚集。
形成肉眼可见的藻类聚集体,即蓝藻水华。
二水华的发生机理水华又称“水花”或“藻花”,是当水体处于富营养状态时,只要具备适当的温度、光照、风浪悬浮等有利于藻类滋生的气象、水文等自然地理条件,就能促使淡水水体中某些蓝藻类过度生长繁殖或聚集并达到一定浓度,引起水体颜色变化,并在水面上形成或薄或厚的绿色或者其他颜色的藻类的漂浮物的现象。
蓝藻水华爆发需有以下条件:水体处在重度富营养化状态。
富营养化是指水体中的主要营养物氮、磷含量增加导致浮游生物过量繁殖的现象。
Journal of Water Resources Research 水资源研究, 2023, 12(3), 226-237 Published Online June 2023 in Hans. https:///journal/jwrr https:///10.12677/jwrr.2023.123026湖库蓝藻水华应急治理技术研究现状与展望郝 越1,2,杨 霞3,龙 萌1,2*,王振华1,2,林 莉1,21长江科学院流域水环境研究所,湖北 武汉2长江科学院流域水资源与生态环境科学湖北省重点实验室,湖北 武汉3中国长江三峡集团有限公司流域枢纽运行管理中心,湖北 宜昌收稿日期:2023年2月28日;录用日期:2023年3月28日;发布日期:2023年6月27日摘 要针对我国湖库蓝藻水华治理需求,首先从蓝藻生理生态特性、水质条件、气象条件、水文水动力条件和水生生物群落结构等方面简要分析了湖库蓝藻水华暴发成因与机理,简述了湖库蓝藻水华产生的危害及监测手段,然后重点从物理、化学和生物三个方面对现有的应急除藻技术原理、适用范围、优势和不足进行了梳理总结,最后对蓝藻水华应急治理技术的研究方向与应用前景提出了展望。
认为应针对湖库富营养化特点及水体净化需求,研发适应于水体低浓度营养盐高效削减、轻度水华防控抑藻、中重度水华应急除藻、抑藻除藻后水质持续改善等多场景的水质净化关键技术及装备,同时提出“多技术优化集成开发、便捷智能化操作、绿色节能环保、除藻技术与湖库水质富营养化监测预警相结合”等是未来的发展方向。
关键词蓝藻水华,成因与机理,监测预警,应急治理技术Research Status and Prospect of Emergency Treatment Technology for Cyanobacteria Bloom in Lakes and ReservoirsYue Hao 1,2, Xia Yang 3, Meng Long 1,2*, Zhenhua Wang 1,2, Li Lin 1,21Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan Hubei 2Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Changjiang River Scientific Research Institute, Wuhan Hubei 3Operation and Administration Center for River Basin Hydro Complex, China Three Gorges Corporation, Yichang Hubei Received: Feb. 28th , 2023; accepted: Mar. 28th , 2023; published: Jun. 27th , 2023 作者简介:郝越(1997-),男,河北石家庄人,硕士研究生,研究方向为流域水环境与生态,*通讯作者湖库蓝藻水华应急治理技术研究现状与展望AbstractAiming at the demand of cyanobacterial bloom control in lakes and reservoirs in China, this paper briefly analyzes the causes and mechanisms of cyanobacteria blooms in lakes and reservoirs from the aspects of physiological and ecological characteristics of cyanobacteria, water quality, meteorology, hydrology and hydrodynamics, and aquatic communities. The harm and monitoring methods of cya-nobacterial bloom in lakes and reservoirs are briefly described. The principles, application scope, advantages and disadvantages of the existing emergency algae removal technology are summarized from three aspects of physics, chemistry and biolog. Finally, the research direction and application prospect of emergency management technology are prospected. The key technologies and equipment for water purification should be developed according to the characteristics of eutrophication of lakes and reservoirs and the needs of water purification, such as efficient reduction of low-concentration nutrients in water bodies, prevention and control of mild algal blooms, emergency algae removal of moderate and severe algal blooms, and continuous improvement of water quality after algae inhibi-tion and algae removal. The multi-technology optimization and integrated development, convenient and intelligent operation, green energy conservation and environmental protection, algae removal technology and lake water eutrophication monitoring and early warning are suggested the future development directions. KeywordsCyanobacteria Bloom, Causes and Mechanisms, Monitoring and Early Warning, Emergency Treatment TechniquesCopyright © 2023 by author(s) and Wuhan University. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). /licenses/by/4.0/1. 引言随着全球气候变化和人类活动影响的加剧,生态环境正在面临着严峻的风险与挑战,湖库蓝藻水华频发即是流域水环境领域所面临的重要挑战之一,蓝藻又称“蓝细菌”,是一种光合自养型原核生物,广泛分布于全世界水体中。
蓝藻调研报告蓝藻调查报告一、背景介绍蓝藻,又称蓝藻藻类,是一类原生质中含有蓝绿色叶绿素的微生物。
它们是最早出现在地球上的有鬃毛的微生物,生活在淡水、海水和土壤中。
蓝藻在地球生态系统中发挥着重要的作用,但它们也带来了一些负面影响。
二、资源调查我们选择了一个公园作为研究区域,对蓝藻进行了资源调查。
我们首先进行了蓝藻的采样工作。
采样时我们注意选择了不同的水域位置,包括湖泊和小溪,并收集了多个样本。
我们对每个样本进行了记录,并在实验室中对样本进行了分离和鉴定。
三、调研结果通过对蓝藻的调研,我们得出了以下结论:1. 蓝藻丰富多样:在我们的调查中,我们发现了多种不同类型的蓝藻。
虽然大多数样本属于同一属的蓝藻,但它们的形态、颜色和生长环境存在差异。
2. 蓝藻分布广泛:我们的调查结果显示,蓝藻在我们研究区域内广泛分布。
无论是在湖泊还是小溪中,蓝藻都可以找到。
这表明蓝藻对不同水域环境具有适应性。
3. 蓝藻对水质的影响:一些蓝藻在适宜的生长环境下会繁殖迅速,导致水域中产生大量蓝绿色的藻菌。
这种现象叫做蓝藻水华,它会给水体的生态环境和生物多样性带来很大的压力,同时可能释放一些有毒物质。
四、影响和应对措施1. 生态系统稳定性受到威胁:蓝藻水华会严重影响水域的生态环境,导致鱼类和其他水生生物的死亡,破坏水体的氧气平衡。
这对于维持生态系统的稳定性是一个严重威胁。
2. 水域保护和管理:为了应对蓝藻水华带来的问题,需要加强对水域的保护和管理。
减少农业、工业等人类活动对水体的污染是一个关键措施。
此外,定期监测水质和采取相应的预防措施也是必要的。
3. 科学研究和技术创新:为了更好地了解蓝藻的生态特点和形成机制,还需要开展相关的科学研究。
通过对蓝藻的基因组学和生物化学研究,可以找到更有效的防控措施。
五、结论在我们的蓝藻调研中,我们了解到了蓝藻的丰富多样性和广泛分布。
尽管蓝藻对生态系统有一定的负面影响,但通过加强水域保护和管理,以及开展科学研究和技术创新,我们可以更好地应对蓝藻水华问题。
蓝藻水华的爆发机制及控制对策研究摘要:本文旨在介绍以太湖为例的蓝藻水华的爆发机制及控制对策。
文章简述了蓝藻的构成及对蓝藻水华的定义;从内外两个方面深入探讨引起蓝藻爆发的原因;详述了如何以控污截源、生态修复、流域管理等手段控制蓝藻水华的持续爆发;并概括了蓝藻水华对当地水生态系统带来的危害及如何有效利用蓝藻水华。
关键词:太湖,蓝藻水华,爆发机制,控制对策1.蓝藻1.1基本特征1)细胞壁由纤维素(内层)和果胶质(外层)组成,细胞外有的具胶被或胶鞘。
2)无色素体,色素均匀地散在细胞周围的原生质内。
色素成分主要为叶绿素a、β胡萝卜素、藻胆素。
藻胆素是蓝藻的特征色素,包括蓝藻藻蓝素(c-phycocyanin, C34H47N4O8)、蓝藻藻红素(c-phycoerythrin, C34H42N4O9) 和别藻蓝素(Allophycocyanin)等。
3)无细胞核,只具核质而无核仁和核膜。
属原核生物,称为蓝细菌(Cyanobacteria)4)同化产物主要是蓝藻淀粉(Cyanophycean starch)。
1.2繁殖方式主要为营养繁殖和孢子繁殖,未发现有性繁殖,可产生的孢子有:内生孢子、外生孢子、厚壁孢子(休眠孢子)、藻殖孢。
营养繁殖常见为细胞分裂,特殊为藻殖孢繁殖。
(1)段殖体是蓝藻藻丝上两个营养细胞间生出的胶质隔片(凹面体)或由间生异形胞断开后形成的若干短的藻丝分段,又称藻殖段或连锁体。
图1 繁殖方式图(2)厚壁孢子系由普通营养细胞增大体积,积累丰富营养,然后细胞壁增厚而成。
厚壁孢子有极强的生命活力,能在不利环境条件下长期休眠。
(3)异形胞是丝状蓝藻类(除了颤藻目以外)产生的一种与繁殖有关的特别类型的细胞,它是由营养细胞特化而成的。
具有异形胞的蓝藻能固氮,当水中氮缺乏时,异形胞的数目显著增加。
2.蓝藻水华蓝藻水华指淡水水体中蓝藻大量繁殖的一种自然生态现象,是水体富营养化的一种特征,主要由于生活及工农业生产中含有大量氮、磷的废污水进入水体后,蓝藻大量繁殖后使水体呈现绿色的一种现象。
淡水藻类及藻类毒素研究进展徐立综述徐顺清审阅藻类是水环境中的初级生产者,对维持水环境的生态平衡起着举足轻重的作用。
首先,它们通过光合作用为水中生物提供氧气;其次,它们可分解水生生物的代谢产物及水环境中的有机物质,而成为水环境中的清洁工;另外,由于许多藻可以固氮或含有丰富的营养,可作为水生生物的优良饵料。
然而近些年来,随着工农业生产的迅速发展和城市规模的扩大,大量工业污水和生活污水排入水体,使天然水体的富营养化日益严重。
富营养化的重要特征是在夏季高温时期藻类大量滋生,形成绿色丝带状的水华,漂浮在水面影响水环境的美观。
藻类的比重在1左右,蓝藻中的微囊藻细胞内具有气囊,它的比重小于1,多漂浮在水面上,外有衣胞包裹,呈絮团状,其它种类的藻类多悬浮在水体中。
形成水华的某些蓝藻是有毒的,大量藻类死亡后被水中异养菌分解,产生恶臭进一步释放体内毒素,将严重恶化水质。
长期低浓度藻毒素的摄入会对人体造成危争。
目前,淡水藻类污染己成为全球范围内日益严峻的环境和公共卫生问题,各国学者围绕该问题开展了很多极有意义的研究工作,涉及生态学、毒理学等各个方面。
1.藻类污染的生态学研究1.1藻类的生态藻类植物是地球上最重要的初级生产者。
它们合成的有机碳总量是高等植物的7倍。
全世界藻类植物约有40000种,其中淡水藻类约25000种左右,而中国己发现的淡水藻类约9000种。
包括:原生动物们的蓝藻们,原生动物门的硅藻门、甲藻门、金藻门、黄藻门、隐藻门、裸藻门以及属于植物界的红藻门、褐藻门、绿藻门和轮藻门。
淡水藻类在自然界里的分布非常广泛,适应性很强,对环境条件的要求不很严格,就是微不足道的营养和只有微弱的光照强度以及较低的温度下也能得到满足。
淡水藻类中大多数的种类是水生的,包括浮游的和底栖的各种类群,分布于不同水体中。
静止绿色的池塘和水坑中都含有大量的单胞藻。
其中最常见的有绿藻类的栅藻属、盘星藻属等种类。
随着数量的多少而决定水色的深浅,呈现黄绿或浓绿。
我国蓝藻水华遥感监测研究进展摘要近年来,蓝藻水华频繁暴发,成为备受关注的环境问题。
遥感技术具有快速、大范围、动态的特点,在蓝藻水华监测中广泛应用。
在总结我国蓝藻水华遥感监测研究成果的基础上,对现有研究中的数据源、研究方向进行了分析,对未来发展方向提出展望。
关键词蓝藻水华;遥感监测;原理;数据源;研究方向;展望ReviewonRemoteSensingMonitoringofCyanobacteriaBloominChinaXIONG Chun-ni 1TIAN Xiao-feng 2TANG Ai-yi 3WEI Hong-hui 1(1 Guangzhou Environment Monitoring Centre in Guangdong Province,Guangzhou Guangdong 510030; 2 Guangzhou Guangya Experimental Middle School; 3 Guangzhou Peiying Middle School)AbstractCyanobacteria bloom occurred frequenctly in recent years and became one offocal points of environmental problems. Remote sensing monitoring was quick,abroad-area,dynamic monitoring technology,and was used widely in cyanobacteria bloom monitoring. Based on the study results of remote sensing monitoring of cyanobacteria bloom,the remote sensing data used in current researches and research direction were reviewed,and the future development tendency was proposed.Key wordscyanobacteria bloom;remote sensing monitoring;principle;data source;research interests;prospect湖泊富营养化是全世界面临的水环境问题,我国尤其严重。
蓝藻水华治理技术对湖泊环境保护工程效果评估湖泊是自然界中重要的淡水资源,拥有丰富的生物多样性和重要的生态功能。
然而,近年来湖泊水质恶化的问题越来越突出,其中蓝藻水华是湖泊环境保护的一大挑战。
为了解决蓝藻水华问题,许多治理技术被开发和应用。
本文将对蓝藻水华治理技术对湖泊环境保护工程的效果进行评估,并探讨其优缺点以及适用范围。
一、生物修复技术生物修复技术是通过引入或增强一些天然的生态系统来改善湖泊环境。
在蓝藻水华治理中,常见的生物修复技术包括湖泊水生植物的种植和人工鱼类的投放。
水生植物能够吸收湖泊中的营养盐和蓝藻,从而降低水体中的营养盐浓度,减少蓝藻水华的发生。
人工鱼类投放可以通过捕食蓝藻来控制水华的扩散。
生物修复技术的优点是相对简单、成本较低,对湖泊生态系统的破坏较小。
同时,引入的水生植物和鱼类还能提供生态服务,例如增加湖泊的景观价值和游乐价值。
然而,生物修复技术也存在一些缺点,首先是治理效果相对较慢,需要长时间的持续投入。
其次,生物修复技术对湖泊水质的改善有一定的限制,对于富营养化程度较高的湖泊,效果可能不明显。
因此,生物修复技术适用范围较窄,需要根据实际情况进行选择和评估。
二、物理修复技术物理修复技术主要通过物理手段去除蓝藻水华,常见的方法包括曝气、搅拌、沉淀和超滤等。
曝气和搅拌可以增加湖泊水体的溶氧量,改善水体的氧化还原环境,抑制蓝藻的生长。
沉淀技术通过添加化学沉淀剂,促使蓝藻和营养盐沉积到湖底,达到去除水华的效果。
超滤技术则通过膜过滤的方式去除蓝藻和其他有机物质。
物理修复技术的优点是处理效果迅速,能够在较短的时间内降低蓝藻水华的浓度。
此外,物理修复技术对湖泊的生态系统影响较小。
然而,物理修复技术也存在一些不足之处。
首先,物理修复技术只是暂时解决了蓝藻水华问题,没有从根本上解决湖泊富营养化的原因。
其次,物理修复技术对于水体中的营养盐无法彻底去除,容易引发再次水华爆发。
因此,物理修复技术通常需要与其他治理技术相结合,才能取得更好的效果。
微囊藻水华成因及其控制技术研究随着城市化的加速和农业活动的不断增长,水体中的营养物质浓度急剧上升,这种现象被称为水体富营养化。
一旦水体中的营养物浓度超过一定的阈值,富营养化就会推动水生植物的繁殖,这就是微囊藻水华的成因。
一、微囊藻水华的成因微囊藻又称为蓝藻,是一种原生质菌类,在自然水体中广泛分布。
在水体中,微囊藻细胞可以进行自我繁殖,形成囊状结构,这就是所谓的水华。
微囊藻水华的形成是水体富营养化的直接结果,具体原因主要有以下几个方面:1. 水体富营养化富营养化是微囊藻水华的主要成因。
水体富含氮、磷等营养物质,微囊藻可以利用这些营养物质进行生长、繁殖。
此外,水体富营养化还会导致水体呈现黑、臭、腐的状态,使水体清洁和透明度降低,加速水华的形成。
2. 水流停滞或缓慢微囊藻喜欢静止的水体,因为这种情况下水体中的养分更容易稳定地停留在细胞内,使微囊藻更容易形成水华。
此外,水流缓慢也会使水体的富营养化更加严重。
3. 温度和光照微囊藻适合在温度较高、光线充足的环境中生长和繁殖。
当水体达到适宜生长和繁殖的温度和光照强度时,微囊藻会迅速生长,形成水华。
二、微囊藻水华的危害微囊藻水华以其危害性来被人们所知晓。
首先,微囊藻水华能降低水质,影响水体生态系统的平衡。
其次,水华会发出难闻气味,影响周围空气的质量,造成视觉和嗅觉上的污染。
最为严重的是,微囊藻水华还会释放出毒素,对人和动物的健康造成威胁。
三、控制微囊藻水华的方法为了避免微囊藻水华的危害,控制其生长和繁殖非常必要。
目前已有许多控制微囊藻水华的方法:1. 生态防治生态防治是实施起来相对简单的微囊藻水华防治方法。
其中包括增加水体的流动性,增加水草覆盖面积,调节环境温度等。
这种防治方法可以很好地减少富营养化,降低水体中微囊藻的繁殖量。
2. 化学防治针对微囊藻水华的化学防治方法多为化学药品加药控制。
经过实践发现,氢氧化钙、过氧化氢等药品具有很好的抑制微囊藻水华的效果,但使用这类药品时需要注意对人与生态环境的影响。
太湖蓝藻水华的遥感监测研究一、内容简述太湖蓝藻水华是近年来我国太湖地区较为严重的环境问题之一,对太湖水质和生态环境造成了严重影响。
为了及时了解太湖蓝藻水华的分布、变化和严重程度,本文采用遥感技术对太湖蓝藻水华进行了监测研究。
本文首先介绍了太湖蓝藻水华的基本概念和形成原因,然后详细阐述了遥感技术在太湖蓝藻水华监测中的应用,包括卫星遥感、航空遥感和地面遥感等。
接着本文分析了太湖蓝藻水华的空间分布特征,包括大范围、高密度分布和季节性变化等特点。
本文结合实际数据,对太湖蓝藻水华的发展趋势进行了预测,并提出了相应的防治措施,以期为太湖地区的环境保护和生态修复提供科学依据。
A. 研究背景随着人类活动的不断增加,太湖地区面临着严重的水环境问题,其中蓝藻水华是最为突出的一种。
蓝藻水华是一种由蓝藻类植物引起的水体富营养化现象,其生长速度快、覆盖范围广,对水生生物和人类健康造成严重影响。
近年来太湖地区蓝藻水华的发生频率呈上升趋势,给水资源管理和环境保护带来了巨大挑战。
因此对太湖蓝藻水华的遥感监测研究具有重要的现实意义。
遥感技术作为一种非接触式的监测手段,具有实时、动态、高时空分辨率等特点,能够有效地反映地表生态环境的变化。
目前国内外学者已经开展了大量关于太湖蓝藻水华遥感监测的研究,但仍存在一定的局限性,如数据源单算法不够精确等问题。
因此开展太湖蓝藻水华遥感监测研究,对于提高太湖蓝藻水华监测的准确性和时效性具有重要意义。
B. 研究目的和意义随着人类活动的不断增加,太湖地区的水体污染问题日益严重,尤其是蓝藻水华的发生频率逐年上升,对太湖生态环境和周边居民的生活造成了严重影响。
因此开展太湖蓝藻水华的遥感监测研究具有重要的现实意义。
建立太湖蓝藻水华遥感监测模型,提高监测数据的准确性和时效性。
通过对太湖地区不同时间段的遥感影像进行分析,揭示蓝藻水华的发生规律,为政府部门制定针对性的防治策略提供依据。
探讨太湖地区蓝藻水华与气象、水文等环境因素的关系,为综合防治提供理论支持。
J. Lake Sci.(湖泊科学), 2009, 21(6): 749-757. E-mail: jlakes@©2009 by Journal of Lake Sciences水华蓝藻产毒的生物学机制及毒素的环境归趋研究进展*宋立荣, 陈伟(中国科学院水生生物研究所淡水生态与生物技术国家重点实验室, 武汉430072)摘要: 本文介绍并评述了蓝藻水华中最常见的毒素——微囊藻毒素的产生途径和环境归趋的国内外研究进展. 主要内容包括: 微囊藻毒素的来源、结构和一般特性; 微囊藻毒素的分子合成机制、分布、产生规律及其功能; 以及微囊藻毒素的环境归趋. 重点介绍了在毒素环境归趋研究方面的重要突破, 指出了该领域研究中存在的问题和今后研究的重点方向.关键词: 蓝藻; 微囊藻; 微囊藻毒素; 合成; 归趋; 研究进展Production of microcystins in bloom-forming cyanobacteria and their environmental fates: a reviewSONG Lirong & CHEN Wei(State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, P.R.China)Abstract: The present paper introduces the recent progresses on the production mechanisms and environmental fates of microcystins —the most common toxins produced in bloom-forming cyanobacteria, in particular, Microcystis. The review contains three parts: (1)biological origin, structure and properties of microcystins; (2)synthesis, cellular distribution, production and possible function of the toxins; and (3)environmental fates of the toxins. Recent progresses, problems and perspectives in the study of environmental fates of toxins are viewed and discussed.Keywords: Cyanobacteria; Microcystis; microcystins; synthesis; fate; review1 微囊藻毒素的来源、结构和一般特性微囊藻毒素(microcystins, 简称MCs)是由在水体中生长并能形成水华的几种蓝藻(blue-green algae, 亦称为蓝细菌cyanobacteria), 尤其是微囊藻(Microcystis)产生的一类藻类毒素. 在我国富营养化淡水水体中, 蓝藻水华污染造成的最主要危害之一就是产生和释放以微囊藻毒素为主要类型的蓝藻毒素. 除了微囊藻外, 蓝藻门中的鱼腥藻属(Anabaena)、浮丝藻属(Planktothrix)、束丝藻属(Aphanizomenon)中的某些种类也能产生此类毒素.MCs是一类环状七肽化合物(分子结构如图1所示). 其中, 环肽结构中含有X和Y两个可变的氨基酸基团. X和Y的不同氨基酸组合可以形成相应的MCs异构体, 如在LR型中, X和Y分别代表亮氨酸和精氨酸, 此外, 还有RR、YR等其他多种类型藻毒素. 迄今, 从野外或实验室培养微囊藻中已分离出近70种毒素异构体[1]. 在已知的MCs的异构体中, 以MC-LR的生理毒性最强(是目前已知毒性仅次于二噁英的剧毒化合物). MCs结构中所含共轭二烯型β氨基酸, Adda(3氨基-9-甲氧基-2,6,8三甲基-10-苯基4,6-二烯酸)是表达该类毒素生理活性的最主要特征结构, 分别通过形成1,2两个肽键与其他氨基酸缩合成环. 除MCs外, 还有一类名为节球藻毒素(Nodularin)的环状五肽也具有Adda结构.MCs和Nodularin 两类肝毒素主要通过生物体的胆汁酸传输系统在生物体内运输并在肝脏、肾脏及消化道组织中累积, 然后通过共价键与蛋白磷酸酶结合. 这种结合将直接抑制蛋白磷酸酶1和2A的活性,*国家重点基础研究发展计划项目(2008CB418000)和中国科学院重大交叉项目(KZCX1-YW-14-1)联合资助. 2009-08-03收稿; 2009-08-25收修改稿. 宋立荣, 男, 1961年生, 研究员; E-mail: lrsong@.J. Lake Sci.(湖泊科学), 2009, 21(6) 750阻断蛋白磷酸化过程, 最终导致肝脏等器官的纤维化, 促发肿瘤形成. 研究表明, 当MCs特征结构Adda 结合不等数量的氨基酸形成不同长度的肽键后, 就会对蛋白磷酸酶1和2A表现出不同程度的抑制作用, 即不同的毒性效应[2]. 即使Adda只和一个氨基酸结合形成肽键后, 也会对蛋白磷酸酶起到一定的抑制作用. 但未形成肽键的Adda经生物检测, 未表现出明显毒性效应[3]. 因此, Adda结构对这两类肝毒素的毒性行为起到至关重要的作用.1996年, 在巴西Caruaru市, 由于医院使用的血液透析水被微囊藻毒素污染, 造成至少76人发生肝功能衰竭症状, 最终导致死亡[4]. 这是因微囊藻毒素污染引起人类死亡的首次报道. 同年, 德国研究小组发现微囊藻中含有与已知的多肽合成酶同源的DNA序列, 由此推测微囊藻毒素的合成和其它环状小肽一样, 是由非核糖体合成的[5]. 此突发重大事件的发生及其在蓝藻毒素分子生物学研究的突破性进展, 引起世界各国对蓝藻水华及其毒素问题的再次重视, 推动了相关研究领域的进一步深入.在蓝藻毒素相关的研究领域之中, 其产生的生物学过程和机制, 尤其是环境归趋方面一直受到重点关注, 也是该领域研究的难点之一. 本文将重点介绍国内外在这方面的相关研究进展.图1 微囊藻毒素化学结构通式Fig.1 Chemical structure of MCs2 微囊藻毒素合成的分子机制、分布、产生规律及其功能2.1 产毒基因的发现长期以来, 人们认为微囊藻毒性的有无和大小主要由环境因子决定. 但越来越多的证据表明, 并非所有的微囊藻都能够产生微囊藻毒素, 因此遗传学家认为, 微囊藻产毒株(Toxic strains)和无毒株(Nontoxic strains)的毒性是由遗传决定的. 为证实这一观点, 研究者进行了大量的微囊藻遗传结构研究, 但均未能找出真正产毒基因. 1996年, Meiβner等发现有毒和无毒微囊藻中都含有与已知的多肽合成酶同源的DNA序列, 由此他们推测微囊藻毒素的合成和其它环状小肽一样, 是由非核糖体合成的(Non-Ribosome Peptide Synthesis)[5]. Dittmann等从铜绿微囊藻HUB5-2-4中分离到一段称为mapep1的DNA 片断, 它能特异地与产毒微囊藻杂交, 对这个片断的侧翼序列进行测序, 发现它是由一个多肽合成酶基因家族组成; 同时利用插入突变的方法敲除该基因的突变株失去了产毒特性, 由此证明该片段参与了微囊藻毒素的合成[6].2.2 微囊藻毒素合成酶基因的研究及基因转移系统的建立在Dittmann等研究的基础上, Nishizawa等根据多肽合成酶基因的腺苷酸形成区域的保守氨基酸设计寡核苷酸引物, 在微囊藻中扩增, 以扩增得到的PCR产物为探针, 筛选基因组文库. 对克隆的片段测序分析, 发现了3个与微囊藻毒素合成有关的基因: mcyA, mcyB, mcyC. mcyA全长8361bp, mcyB位于mcyA的宋立荣等: 水华蓝藻产毒的生物学机制及毒素的环境归趋研究进展751下游12bp处, 全长6378bp, mcyC全长3870bp, 与mcyB有一个碱基的重叠, 即mcyB的终止密码子TGA中的A与mcyC起始密码子ATG共用. 这3个基因共同组成5个氨基酸的激活module, 即Mdha, D-Ala, L-Leu, D-MeAsp, L-Arg. 为了证明mcy基因的功能, mcyA中包括氨基酸激活和差向异构约2.7kb的DNA片段被突变, 并通过大肠杆菌-微囊藻混合进行结合转移. 分离到的突变株显示, 该微囊藻不再产生野生株的主要毒素[7]. 此后, Nishizawa仍然用筛选文库的方法克隆和测序了34kb的产毒微囊藻DNA片段, 再次分离到4个基因: mcyD, mcyE, mcyF, mcyG, 这4个基因组成的操纵子位于mcyA的上游, 与mcyABC组成的操纵子方向相反. 通过基因mcyB, mcyD, mcyE的插入突变使该微囊藻不再产生毒素. 经分析, mcyDEFG组成一个多酮类合成酶复合物, 负责微囊藻毒素结构中Adda和谷氨酸的合成[8]. Tillett等通过基因突变和突变体分析, 在一55kb长的DNA片段中找到了2个操纵子, 由10个双向转录的开放阅读框组成即mcyA-C和mcyD-J. 在微囊藻毒素合成的48个顺序催化反应中, 45催化区域定位于6个多酶合酶/合成酶(McyA-E, G)中, 它们将前体苯基乙酸, 丙二酰辅酶A, S-腺苷甲硫氨酸, 谷氨酸, 丝氨酸, 丙氨酸, 亮氨酸, D-甲基-异-天冬氨酸和精氨酸转入毒素的合成中. 另外4个基因为单体酶, 蛋白McyJ的作用为O-甲基化, McyF为差向异构, McyI为脱氢, McyH为定位. 至此, 微囊藻毒素合成酶基因的结构基本清楚, 即mcyABC(多肽合成酶)和mcyDE(杂合的多酮-多肽合成酶)2个主要操纵子, 另外还有修饰辅助基因[9].微囊藻毒素合成酶基因的分离和功能研究不仅揭示了微囊藻毒素合成的遗传基础, 还在微囊藻中建立了基因转移系统, 即大肠杆菌-微囊藻混合转移系统. 这是不同于前面直接用质粒转化的另一种基因转移系统. 方法上也存在较大差异: (1)氯霉素抗性基因盒中自身的启动子被切除, 换上的是M.aeruginosa K-81基因rpoD1的启动子P1和P2, 该启动子在微囊藻中的转录表达非常强烈; (2)转化质粒中被插入了mob 基因, 该基因可使质粒高效率转移. 基因转移系统的建立为在微囊藻中开展其它基因的功能研究奠定了一定的基础, 但两种基因转移系统的效率都很低. 目前, 在数种形成水华的蓝藻中, 除浮丝藻易于基因操作外, 其他如微囊藻等水华蓝藻的基因转化方法目前仅在少数几个实验室中能够进行, 难以重复. 这是迄今为止在微囊藻毒素的分子生物学研究进展缓慢的主要原因.2.3 微囊藻毒素在细胞内的分布和形成规律确定毒素在细胞内的合成位点是了解其功能的前提之一. Shi等利用多克隆抗体, 纳米尺度金标记蓝藻毒素microcystins和nodularins, 发现毒素主要集中在细胞的类囊体和核区, 在细胞壁和细胞的鞘壁上也有少量存在[10]. 由于超显微样品制备中使用的有机溶剂乙醇可提取胞内的毒素, 对毒素定位实验可能产生干扰, Young等利用低温切割技术进行了毒素在细胞定位, 发现毒素大量存在于细胞的类囊体和核质区以及在多聚磷酸体, 在细胞膜和细胞壁周围仅有少量分布[11-12]. Orr和Jones研究首次证明微囊藻毒素的产率与细胞的分裂速率具有显著的正相关关系, 随后他们证明在氮限制培养下, 细胞毒素的含量可由生长速率预测[13-14]. 其他一些研究者采用连续培养方式, 也发现在限制光强[15]或磷限制条件下[16], 毒素浓度的变化与生长速率呈线性相关. 上述重要发现, 为开展环境因子对毒素含量和合成速率的研究提供了新的思路. Kameyama等指出, 毒素的浓度与细胞DNA的含量有着正的线性关系, 随着细胞的分裂, 毒素含量增多, 在G0/G1期最小, G2/M期达到最大[17].2.4 微囊藻毒素的功能初探长期以来, 微囊藻毒素产生的生物学意义及功能一直受到研究者的关注, 但进展甚微. 早期研究表明, 微囊藻毒素可作为微囊藻抵御捕食者或竞争者的防御分子或化感物质[18], 或作为胞内金属离子螯合剂[19], 也有报道毒素的形成与水华爆发和优势维持相关[20-21]. 近年来, 德国研究小组发现微囊藻毒素可能参与胞内信号传递与基因调控[22-23]. 2004年, 芬兰Sivonen研究小组报道毒素合成酶基因早于后生生物基因出现, 此前所认为的毒素为防御分子的观点并不可信[24].3 微囊藻毒素的环境归趋3.1 藻细胞中毒素的释放及水柱中溶解态毒素的形成如前所述, MCs是一类受产毒基因调控, 在胞内代谢产生的毒素. 蓝藻细胞正常生长过程中, MCs主要贮存于藻细胞内, 当藻细胞死亡后, 胞内毒素就会释放到水柱中形成溶解态毒素. 从20世纪90年代至J. Lake Sci.(湖泊科学), 2009, 21(6) 752今, 国际上一些实验室相继开展了室内培养试验考察MCs在藻细胞和培养基之间的分配过程, 研究发现: 处于对数生长期的微囊藻培养物中至多能释放10%-20%的毒素到培养基中, 大多数毒素依然存在于细胞内; 当细胞进入静止生长期时, 可能随着藻细胞死亡数量的增加, 释放到培养基中的毒素的比例也会有所增加. 研究还发现, 即使在对数生长期已经结束, 并且藻类培养物的生物量已经非常大的时候, 可能只是很少一部分藻细胞会死亡[11,25-27]. 因此, 藻类生长周期里的大部分时间, 溶解态毒素的含量维持在较低水平. 在自然水体中微囊藻毒素大量释放到水柱中一般出现在水华大量衰亡的季节, 或者水体中使用了杀藻剂后都会引起胞内毒素大量的释放. 已报道的自然水体中微囊藻毒素的含量一般为0-10μg/L[28-29], 大多数水体中MCs的含量不会超过1μg/L. 即使在我国滇池等富营养化污染十分严重的大型水体中, 在水华季节水体中溶解性毒素含量也基本在世界卫生组织规定的1μg/L以下[30]. 所以微囊藻毒素在环境中是如何消失的?其最终归趋是什么?探索这些问题的答案一直是该研究领域的热点之一.3.2 底泥沉积物吸附及降解蓝藻毒素主要以细胞结合态、溶解态和吸附于悬浮物或沉积物等多种形式存在于水环境中, 它在水体中悬浮颗粒物上的吸附量并不大, 不像多环芳烃等非极性污染物那样易于吸附在颗粒物上, 该类毒素主要存在于水柱中. Rapala等在实验室内模拟研究了微囊藻毒素从水柱中溶解态向底泥中迁移的过程, 结果显示自然水体中悬浮颗粒物吸附水柱中溶解态毒素的能力非常有限, 通常至多20%的MCs能被水柱中悬浮颗粒物吸附. 他们认为底泥沉积物对微囊藻毒素的吸附作用有限, 与水柱中悬浮颗粒物相似, 从而认为水环境中微囊藻毒素的归趋主要发生在水柱中[31]. 受上述研究结果的影响, 此后若干年很少有关于微囊藻毒素在底泥界面的研究报道. 直到2001年, Tsuji等利用MMPB方法测定了湖泊底泥沉积物中的微囊藻毒素, 该研究发现在测定的11个样品中有6个显示了阳性结果[32], 因此他们认为自然条件下底泥沉积物对微囊藻毒素归趋的影响不容忽视. 此后, Chen等基于微囊藻毒素与底泥和土壤颗粒中金属离子形成配合物的吸附机制, 建立了底泥和土壤中微囊藻毒素的提取分析方法[33]. 该研究还对武汉东湖关桥鱼塘底泥中的毒素进行测定, 发现多数底泥样品呈现阳性结果. Chen等在太湖一周年的原位跟踪实验并结合模拟试验发现: 底泥界面是微囊藻毒素主要的归趋场所, 其自然归趋的主要途径是生物降解途径, 底泥沉积物中的细菌对微囊藻毒素的生物降解起到关键的作用[34].3.3 微囊藻毒素的光降解微囊藻毒素因为具有环状的结构, 化学性质十分稳定, 其理化性质第一节已经作了详细介绍. 在无光接近自然水体理化性质的条件下, 微囊藻毒素可稳定存在数月甚至几年. 但在有光的条件下, 会发生缓慢的光降解反应. 特别在有溶解性色素的存在下, 光降解速率会显著加快[30,35]. 如果在水体中含有大量色素, 最快在两周内, 微囊藻毒素可降解90%, 降解过程最慢也不会超过6周. 上述研究认为: 光降解速率的快慢主要取决于色素或者毒素的初始含量(但关于这方面的研究依然需要深入开展). 近年来, 关于毒素降解的另外一些报道[36-37]认为: 微囊藻毒素在自然水体中能快速被降解的原因是水体中有丰富的光敏剂——溶解性腐殖质, 它们的存在将为降解反应起到光催化作用, 进而加速降解反应的进程. 研究发现, 当自然水体中溶解性腐殖质含量达到2-16mg/L的时候, 夏天日光照射的条件下大约每天40%的微囊藻毒素将会从水体中去除. 但在透明度低和浊度高的水体中, 这个降解过程会变得很慢. 张维昊等在云南滇池开展的光降解研究中也获得了类似的结果[30]. 于是他们提出光降解是微囊藻毒素在自然水体中不能持久存在和含量较低的主要原因. 然而, 在大型富营养化的自然水体中, 透明度和浊度与实验室条件下的相比往往相差甚远. 由于多数水华型湖泊水面被厚厚的水华所覆盖, 透明度非常低, 加之风浪等原因, 水体非常混浊, 因此, 光降解所起到的作用可能非常有限. 近几年, Welker和Steinberg等在德国的一些湖泊中继续开展了毒素的光降解研究, 他们又提出在自然条件下由于光照很难穿透水柱, 因此光降解对毒素归趋的真正贡献可能不大. Welker和Steinberg最近的研究认为微囊藻毒素在单独自然阳光的照射作用下很难降解, 只有在光敏剂如水体腐殖质的催化作用下光降解反应才会发生[38]. 该研究认为太阳光降解作用对蓝藻毒素自然归趋过程的贡献十分有限, 估计原位光降解半衰期在90-120d左右. 可见, 针对自然环境下光降解对微囊藻毒素环境归趋的贡献大小尚存争议, 需要开展进一步研究进行宋立荣等: 水华蓝藻产毒的生物学机制及毒素的环境归趋研究进展753论证.3.4 微囊藻毒素的生物降解微囊藻毒素虽然在自然条件下表现出很强的化学稳定性, 但已经在水体里发现了许多水生细菌可以降解微囊藻毒素. 具有降解MCs能力的细菌种类很多, 常见的主要是Pseudomonas aeruginosa[39]和Sphingomonas sp.等属中的一些菌株[40]. 这些细菌在世界范围内各种水体中的分布相当普遍, 有的分布在污水沟里[41], 有的分布在湖水里和湖泊底泥中, 还有些细菌是在河水里发现的[31,42-45]. 细菌降解一般都有一个滞后期, 在滞后期内毒素浓度无明显减少. 滞后期时间少则两天, 多则三周以上, 主要取决于水体理化性质, 气候条件等[42,46], 滞后期过后, 90%毒素会在接下来的2-10d内快速降解. 1994年Jones等分离出一种水生细菌Sphingomonas, 可将微囊藻毒素环状结构打开变成直链毒素, 最后进一步发生降解[42] . 他们还对降解产物的毒性进行了生物测试, 发现直链毒素的毒性比微囊藻毒素LR的毒性降低了200倍; 最终降解产物以500μg/kg的剂量腹腔注射小白鼠没有发现明显的毒性症状. 2004年Harada等同样以细菌Sphingomonas strain, B-9对微囊藻毒素进行降解, 从微囊藻毒素的降解产物中分离纯化出了Adda并鉴定了其化学结构[47]. Ishii等也在日本的淡水湖泊中分离了一种能降解微囊藻毒素细菌, 该革兰氏阴性菌被命名为7CY, 经过16S rRNA鉴定确定为Sphingomonas属中的某种[48]. 目前国际上发现并鉴定的可降解微囊藻毒素的细菌很多是Sphingomonas属中的种类. 生物降解可能是微囊藻毒素降解的重要途径之一, 但生物降解作用在微囊藻毒素归趋的众多途径中究竟能起到多少作用, 目前还没有确切的数据. 虽然水体中存在可以降解毒素的细菌, 但这些降解数据绝大多数是在实验室培养条件下获得的; 而实验室培养条件下单位培养基中细菌的生物量远远大于自然水体中这种细菌存在的数量, 如果将实验室培养物浓度稀释成自然体积条件下细菌浓度, 还能否有效降解毒素?除此, 温度、酸度等气候和水体理化性质因素也是影响细菌降解能力的重要原因. 究竟自然水体中细菌能否快速清除微囊藻毒素?围绕上述问题, Chen 等近期在江苏太湖开展的研究表明: 在太湖这类浅水大型湖泊中, 微囊藻毒素在底泥中的生物降解过程及源于底泥的细菌导致MCs在水柱中发生的生物降解过程可能是微囊藻毒素主要的自然归趋途径[34]. 3.5 微囊藻毒素在水生生物体内的积累及代谢微囊藻毒素在水生生物体内的积累和代谢也是其非常重要的环境归趋途径之一. 微囊藻毒素进入水生动物主要的途径有三: 水生动物摄食有毒蓝藻, 溶解态毒素通过皮肤及消化道等器官吸收, 以及摄食其他水生生物通过食物链转移进入体内. 在过去的十多年中, 已有较多研究表明微囊藻毒素可以在水生生物体内积累, 这些研究主要包括MCs在鱼体中的累积[49-50]; 蚌类中的累积[51-54]; 螺中的累积[55-56]以及浮游动物中的累积[57-58]. 这些研究发现微囊藻毒素对脊椎动物的靶器官主要为肝脏, 并且在肝脏中可以大量积累, 而对于无脊椎动物其攻击的靶位器官主要为肝胰腺和消化道组织, Falconer, Eriksson和Watanabe等开展的MCs暴露蚌的研究, 发现在蚌的肝胰腺中积累了大量的微囊藻毒素. 到目前为止, 大量关于微囊藻毒素在水生动物体内积累的研究, 大多是聚焦于毒素对水生动物的毒性作用机制方面, 目的在于寻找毒素作用的器官, 试图发现像哺乳动物肝脏一样被MCs进攻的靶位器官. 尽管有大量报道证实了毒素在水生生物体内的累积和迁移, 但对鱼类等水产品中累积毒素的量是否能够对人类健康产生真正的威胁还无确切的答案. 国际上负责水产品安全的权威机构也只是向人们建议不要食用鱼等水产品的内脏, 并未对其安全性给出确切的评价. 除了水生动物外, 近年来也陆续报道了一些关于毒素在水生植物和藻类中累积的一些研究结果. 当微囊藻毒素进入水生生物体内, 一部分会被积累在生物体内, 还有一部分会被生物体代谢降解[59-60]. 因此水生生物, 特别是大型水生植物对溶解性毒素的吸收和降解也可能是微囊藻毒素在水生环境中的降解途径之一, 这也为利用生态修复途径治理蓝藻毒素的污染提供新的思路. 1998年, Pflugmacher等先后在实验室中发现当大型沉水植物、鱼和溞等生物体吸收积累了微囊藻毒素后, 累积的MCs会与生物体中谷胱甘肽转移酶形成结合物, 进而进行开环降解[60]. 根据上述研究理念, Nimptsch等在中国巢湖开展了深入研究, 提出高等水生植物可以作为自然水体中MCs解毒的“绿色肝脏”[61].3.6 微囊藻毒素在土壤中的归趋迄今为止, 微囊藻毒素的归趋研究主要集中在水柱中以溶解态、细胞结合态、悬浮颗粒物吸附、在J. Lake Sci.(湖泊科学), 2009, 21(6) 754生物体内积累及生物降解等方面. 我们认为, 在土壤中归趋也是微囊藻毒素必须关注和研究的重要途径之一. 目前, 在该领域的研究报道很少. 其中一个研究报道了土壤对节球藻毒素的吸附作用[62], 该研究主要为了考察土壤能否有效去除水体中溶解性毒素, 为使用河岸粘土滤床去除饮用水源中溶解态MCs的工艺寻找理论依据. Chen等研究了微囊藻毒素在土壤中的吸附动力学及迁移渗透行为, 该研究评价了机械收获蓝藻水华进入土壤界面后的安全性[63]. 由于蓝藻水华污染在全球范围内日趋严重, 各国都加大了对富营养化湖泊的整治力度. 其中尝试之一是通过机械方法收集水面漂浮的水华以减轻污染. 但收集有毒水华的堆放和处理可能会造成毒素进入土壤界面. 在我国将大量收获蓝藻生物量进行资源化利用, 其中方法之一是用来当作有机肥料肥田, 这势必造成毒素在土壤中的释放、迁移甚至存在导致地下水污染的潜在威胁. 微囊藻毒素进入土壤界面除了机械收集蓝藻生物量的不合理堆放及肥田等资源化处理外, 还有其他途径: (1)人工湿地进行富营养化修复和河岸沙滤水处理工艺及粘土滤床水处理工艺等; (2)使用蓝藻水华污染的水进行农业灌溉活动; (3)洪涝灾害将含蓝藻水华和毒素的水带入土壤界面. 2000年Eynar 等经取样调查发现: 在Riga河附近的土壤为沙质土壤, 因而不能有效防止含有MCs河水的渗漏, 最终导致河水中溶解态的MCs渗透到地下水中, 引起了地下水的污染[64]. Codd等还发现使用含有水华的水进行农业灌溉, 会造成微囊藻毒素在莴苣中积累[65]. 在国际上, 最近还有研究开始关注采用富营养化湖水(含有痕量的溶解态MCs)灌溉, 导致MCs在苜蓿草、黑麦草等植物中的累积现象. 研究结果显示: 即使采用含痕量溶解态毒素的湖水进行灌溉, 可导致作物中累积MCs的量达到0.12-1.45g/kg, 进而潜在地影响畜牧业和乳制品的质量[66]. 随着人类实践活动的不断深入, 蓝藻毒素进入土壤界面后的生态及环境安全性评价已经不容忽视. 因此, 该领域的研究将成为今后可能的热点之一.致谢: 甘南琴、胡臣林参与相关研究资料的收集, 谨致谢忱.4 参考文献[1] Diehnelt CW, Dugan NR, Peterman SM et al. Identification of microcystin toxins from a strain of Microcystis aeruginosa byliquid chromatography introduction into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer.Anall Chem, 2006, 78: 501-512.[2] Holmes CFB, Boland MP. Inhibitors of protein phosphatase-1 and -2A; two of the major serine/ threonine protein phosphatasesinvolved in cellula r regulation. Curr Opin in Struc Biol, 1993, 3: 934-943.[3] Imanishi S, Kato H, Mizuno M et al. Bacterial degradation of microcystins and nodularin. Cheml Resh Toxicol, 2005, 18:591-598.[4] Jochimsen EM, Carmichael WW, An JS et al. Liver failur e and death after expos ure tomicrocystins a t a hemodialysis center inBrazil. The New England Journal of Medicine, 1998, 338: 873-878.[5] Meiβner K, Dittmann E, Borner T. Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequenceshomologous to peptide synthetase genes. FEMS Microbiol Letts, 1996, 135: 295-303.[6] Dittmann E, Neilan BA, Erhard M et al. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxinproduction in the cyanobacterium Microcystis aeruginosa PCC7806. Mol Microbiol, 1997, 226: 779-787.[7] Nishizawa T, Asayama M, Fujii K et al. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystinin Microcystis spp. J Biochem, 1999, 126: 520-529.[8] Nishizawa T, Ueda A, Asayama M et al. Polyketide synthase gene coupled to the peptide synthetase module involved in thebiosynthesis of the cyclic heptapeptide microcystin. J Biochem, 2000, 127: 779-789.[9] Tillett D, Dittmann E, Erhard M et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806:an intergrated peptide-polyketide synthetase system. Chem Biol, 2000, 7: 753-764.[10]Shi L, Carmichael WW, Miller I. Immuno-gold localization of hepatotoxins in cyanobacterial cells. Arch Microbiol, 1995, 163:7-15.[11]Young FM, Thomson C, Metcalf JS et al. Immunogold localisation of microcystins in cryosectioned cells of Microcystis. JStruct Biol, 2005, 151: 208-214.。