金融计算与建模:股票指数计算
- 格式:ppt
- 大小:1.78 MB
- 文档页数:15
数学建模简单13个例子全解数学建模是一种将数学方法和技术应用于实际问题解决的过程。
它是数学领域的一个重要分支,具有广泛的应用和重要的研究价值。
数学建模能够帮助我们理解和解决许多复杂的现实问题,对于推动科学研究和技术开发具有重要作用。
在现代科学和工程领域,数学建模被广泛运用于各种领域,包括物理、生物、经济、环境、社会等。
通过数学建模,我们可以通过数学方法对问题进行抽象和化简,然后利用数学工具和技术进行分析和求解。
数学建模的过程通常包括问题定义、模型构建、模型分析和模型验证等步骤,其中数学模型的选择和建立是关键的一步。
数学建模的重要性在于它能够帮助我们更好地理解和解决复杂的现实问题。
通过数学建模,我们可以用精确的数学语言和方法描述问题,通过数学分析和计算实现对问题的量化和定量化,为问题的解决提供科学的依据和方法。
数学建模还能够帮助我们发现问题中的规律和关联,提供新的洞察和预测,促进科学的发展和技术的创新。
本文将介绍数学建模的概念和重要性,并给出简单13个例子的全解。
通过这些例子,我们可以更加深入地了解数学建模的基本方法和技巧,培养和提高自己的数学建模能力,为解决实际问题提供有益的借鉴和参考。
描述如何利用数学建模解决鱼群聚集问题,并阐述模型的步骤和应用在鱼群聚集模型中,我们希望通过数学建模来解释鱼群在水中聚集的现象,并找到一种合适的模型来描述鱼群的行为。
步骤:收集数据:首先,我们需要收集关于鱼群聚集的现实数据。
这些数据可以包括鱼群的数量、鱼群的密度、鱼群的移动速度等。
建立模型:基于收集到的数据,我们可以建立一个数学模型来描述鱼群的聚集行为。
常用的模型包括离散模型和连续模型。
离散模型:离散模型将鱼群视为一组个体,每个个体根据一定的规则进行移动和相互作用。
常见的离散模型包括离散元胞自动机模型和离散粒子模型等。
连续模型:连续模型将鱼群视为一个连续的流体,采用偏微分方程来描述鱼群密度的演化。
常见的连续模型包括Navier-Stokes方程和Birds模型等。
附件一:
金融计算与建模选题
(以下题目仅供参考,实际题目以官网公布的为准)
1、沪深300股指期货套利策略研究
基本要求:论述已有的几种股指期货套利交易策略,并分析每种策略的特点及应用场景。
结合中国市场,为沪深300股指期货选取最有效的套利策略。
2、我国人口数量的变化预测
基本要求:利用我国历年人口数据,建立模型,找出影响我国人口数量的因素,验证模型的有效性,并预测未来我国各地区及全国的人口数量。
3、研究人民币汇率波动对我国国际贸易的传导效应
基本要求:考察我国与世界主要国际贸易伙伴的进出口贸易情况,建立模型分析人民币汇率波动对我国国际贸易的传导效应。
4、“一带一路”背景下的我国国际贸易的变化
基本要求:选取一种或多种进出口商品,分析在“一带一路”战略下,该类商品的进出口贸易变化,建立模型找出影响其变化的因素,并分析其未来贸易趋势。
5、上市公司财务危机预警模型研究
基本要求:利用定量分析,建立上市公司财务危机预警模型,找出影响上市公司财务危机的指标,并用我国上市公司的数据进行实证分析。
6、人工智能板块上市公司投资价值
基本要求:从多个角度考察影响上市公司发展的因素,对我国人工智能板块的上市公司建立价值评估体系,为投资者提供投资建议。
基于Matlab的股票市场收益率波动分析实验丛超;徐德玲;庞世达;孙凯旋【摘要】针对金融风暴背景下的股票市场价格的波动特性,应用数学分析、经济统计与计量知识,对中国上海、深圳股票综合指数2007 ~2009年的数据进行实验分析,并利用Matlab金融分析工具箱以及广义自回归异方差模型编程建模,实现对股票市场收益率的分析和预测.结果表明,股票市场收益率序列的波动有显著的畀方差性.【期刊名称】《实验科学与技术》【年(卷),期】2014(012)005【总页数】6页(P66-70,73)【关键词】股票市场;时间序列分析;广义自回归异方差模型;Matlab编程【作者】丛超;徐德玲;庞世达;孙凯旋【作者单位】重庆理工大学电子信息与自动化学院,重庆400054;重庆理工大学电子信息与自动化学院,重庆400054;重庆理工大学电子信息与自动化学院,重庆400054;重庆理工大学电子信息与自动化学院,重庆400054【正文语种】中文【中图分类】TP311;F832.5金融时间序列收益率的波动是动态变化的,不同金融市场的波动还存在波动溢出。
股票作为一种重要的金融产品,其价格行为理论是整个市场金融理论的基础,股市价格行为(behavior of stockmarket prices)一词最早由Fama提出[1],其核心含义是指股价的行为方式,即变动规律。
人们对股票预测也提出了各种不同的方法[2],从最初的图表分析、技术指标(成交量曲线图、K线图、移动平均线等),到建立数学模型的方法等。
随着经济学、数学以及计算机科学的发展,针对金融市场时间序列进行统计性的建模与分析已经成为一项跨学科的分析课题,成为国内外研究的重要方向。
本文通过Matlab编程建立模型,针对2007年1月1日到2009年12月31日中国上海、深圳股票综合指数数据进行实验分析。
首先,利用Matlab金融工具箱对股票市场的收益率曲线进行计算,并检验金融分指数序列的平稳性与波动性;其次,通过使用自相关(auto correlation function,ACF)和偏相关(partial auto correlation function,PACF)分析的方法检验序列的自相关性;随后,采用Q检验和自回归异方差检验(auto regressive conditional heteroskedasticity,ARCH)进行平稳性的验证,并使用GARCH(1,1)模型对收益率曲线进行建模分析;最后,本文对模型的优缺点进行了评价,并给出了推广与改进的建议。
清华大学经济管理学院硕士生导师简介-朱世武朱世武金融系副教授办公室伟伦楼321凯程教育是五道口金融学院和清华经管考研黄埔军校,在2014年,凯程学员考入五道口金融学院28人,清华经管11人,五道口状元武xy出自凯程, 在2013年,凯程学员考入五道口金融学院29人,清华经管5人,状元李少h出在凯程, 在凯程网站有很多凯程学员成功经验视频,大家随时可以去查看. 2016年五道口金融学院和清华经管考研保录班开始报名!个人简介研究成果研究项目朱世武,自2001至今,担任清华大学经济管理学院副教授。
1983年,他毕业于河南师范大学数学专业,并获得理学学士学位。
1987年,在武汉大学获得统计学专业的理学硕士学位。
1999年,赴上海财经大学学习,并获得该校数量经济学专业的博士学位。
1999年至2001年在清华大学经济管理学院作博士后研究。
他教授的主要课程包括:金融数据库、金融统计学、实证金融学、数据模型与决策、统计分析软件。
朱世武教授研究的主要领域是:固定收益、风险管理、金融计算与建模、金融数据库。
在从事的所有科研项目里,朱世武教授主要担任项目负责人。
他重点研究的项目包括:“随机边缘模型的统计分析”,“国家债务管理和利率研究”,“金融工程的理论,技术和方法”,“违约相关性度量与信用衍生工具定价研究”—国家自然科学基金委员会;“中国股票市场的证券模型”,“中国股票市场结构性指数设计”—中国证监会;“中信实业银行的私人金融模型”—中信实业银行;“基于微网格的网格计算研究,基础研究”,“度量违约相关性的研究”,“中国资本市场股权风险溢价的实证研究”—清华大学;“中国资本市场的股权风险溢价研究”—中国国家社会科学基金;“中国金融研究数据库”—清华211项目;“中国银行间债券市场期限结构最优化模型”—中国外汇交易中心和全国银行间同业拆借中心;“浙江财经学院金融实验室金融数据项目”—浙江财经学院;“浙江万里学院金融实验室金融数据项”—浙江万里学院;“人民币市场化利率中长期预测模型”—中国人寿资产管理有限公司;“农村金融市场风险管理研究”—香港汇丰银行;“青藏高原矿产资源开发利用战略研究”—中国地质大学(北京)地质调查研究院。
金融工程,是现代金融领域中最尖端、最技术性的部分,其根本目的就在于为各种金融问题提供创造性的解决方案,满足市场丰富多样的金融需求。
冗长的定义:金融工程是将工程思维引入金融领域,融合现代金融学、信息技术与工程方法于一体的一门交叉性学科,它综合采用各种工程技术方法(主要有数学建模、数值计算、网络图解、仿真模拟等)设计、开发和应用新型的金融产品,创造性地解决各种金融问题。
金融工程运用的工具主要可分为两大类:基础性证券与金融衍生证券。
基础性证券主要包括股票和债券。
金融衍生证券则可分为远期、期货、互换和期权四类。
金融工程技术的发展为风险管理提供了创造性的解决方案。
金融工程推动了现代风险度量技术的发展衍生证券是风险分散与对冲的最佳工具:成本优势/更高的准确性和时效性/灵活性根据参与目的的不同,衍生证券市场上的参与者可以分为套期保值者(Hedgers)、套利者(Arbitrageurs)和投机者(Speculators)。
在一个完善的市场上,这三类投资者缺一不可。
绝对定价法:根据金融工具未来现金流的特征,运用恰当的贴现率将这些现金流贴现成现值。
股票和债券定价大多使用绝对定价法。
现金流和贴现率难以确定相对定价法:利用基础产品价格与衍生产品价格之间的内在关系,直接根据基础产品价格求出衍生产品价格。
衍生产品定价主要运用相对定价法。
相对定价法的优点主要有两个:一是在定价公式中没有风险偏好等主观的变量,因此比较容易测度;二是它非常贴近市场。
套利是指利用一个或多个市场存在的价格差异,在不冒任何损失风险且无需自有资金的情况下获取利润的行为。
严格套利的三大特征:无风险/复制/零投资在套利无法获取无风险超额收益的状态下,市场达到无套利均衡,此时得到的价格即为无套利价格。
无套利分析法是衍生资产定价的基本思想和重要方法,也是金融学区别于经济学“供给需求分析”的一个重要特征。
在对衍生证券进行定价时,我们可以作出一个有助于大大简化工作的简单假设:所有投资者对于标的资产所蕴涵的价格风险的态度都是中性的,既不偏好也不厌恶。
数学建模中经济与金融优化模型分析在当今复杂多变的经济与金融领域,数学建模已成为一种不可或缺的工具。
通过建立数学模型,我们能够对经济和金融现象进行定量分析,预测趋势,制定优化策略,从而为决策提供有力支持。
本文将深入探讨数学建模中常见的经济与金融优化模型,分析它们的原理、应用以及优缺点。
一、线性规划模型线性规划是数学建模中最基本也是应用最广泛的优化模型之一。
它主要用于解决在一组线性约束条件下,如何使线性目标函数达到最优值的问题。
在经济领域,线性规划常用于生产计划的制定。
例如,一家工厂生产多种产品,每种产品需要不同的原材料、生产时间和劳动力,同时市场对每种产品的需求也有限制。
通过建立线性规划模型,工厂可以确定每种产品的生产数量,以在满足各种约束条件的前提下,实现利润最大化。
在金融领域,线性规划可用于资产配置。
投资者拥有一定的资金,并希望在多种资产(如股票、债券、基金等)之间进行分配,以在风险限制和预期收益目标下,实现投资组合的最优配置。
线性规划模型的优点在于计算简单、易于理解和求解。
然而,它也有局限性,比如只能处理线性关系,无法准确描述现实中许多复杂的非线性现象。
二、整数规划模型整数规划是在线性规划的基础上,要求决策变量取整数值的优化模型。
在经济领域,整数规划常用于项目选择和人员分配问题。
例如,一个企业有多个项目可供投资,但每个项目的投资金额是整数,且资源有限。
通过整数规划模型,可以确定投资哪些项目,以实现企业的长期发展目标。
在金融领域,整数规划可用于股票的买卖决策。
假设投资者只能以整数股买卖股票,且有资金和风险限制,整数规划可以帮助确定购买哪些股票以及购买的数量。
整数规划模型相较于线性规划更加符合实际情况,但求解难度也更大,往往需要更复杂的算法和计算资源。
三、非线性规划模型非线性规划用于处理目标函数或约束条件中包含非线性函数的优化问题。
在经济领域,非线性规划可用于研究成本函数和需求函数为非线性的企业生产决策。