无源互调解决方案
- 格式:pdf
- 大小:470.93 KB
- 文档页数:10
无源互调的机理分析及其抑制措施【摘要】本文讨论了无源互调产物的产生机理及其减小措施。
指出无源互调干扰主要来自两种无源非线性:接触非线性和材料非线性。
对几种重要的非线性机理进行了特别的描述,给出了PIM产物的主要抑制措施。
【关键词】无源互调;接触非线性;材料非线性;抑制措施一、引言近年来,随着通信系统及其用户数量大幅增加,移动通信系统中的无源互调产物,已成为影响系统通信质量的重要寄生干扰之一。
因此科学有效的分析无源互调机理及测量其产物对提高整个通信系统的通信质量将具有重要的意义。
为了比较全面地理解无源互调干扰问题,我们有必要首先了解无源互调的产生机理。
在大功率卫星通信系统和移动通信系统中,微波器件的PIM干扰主要来自两种无源非线性:接触非线性和材料非线性。
前者指的是具有非线性电流电压特性的任何金属接触;后者指的是具有固有非线性导电特性的铁磁材料、碳纤维和铁镍钴合金。
需要特别指出的是,除了上述两种无源非线性机理外,还可能存在一些其他的非线性效应,这对无源互调的产生也有一定的贡献。
二、无源互调的几种重要的机理分析(一)接触非线性机理接触非线性主要包括由材料结构和时间相关现象引起的非线性效应。
由材料结构引起的非线性产生机理主要包括:由接合面上的点接触引起的机械效应;由点电子接触引起的电子效应;由点电子接触和局部大电流引起的热效应。
由时间相关现象引起的非线性主要包括:斑点尺寸随着电流的通过而增大;由强直流电流引起的金属导体中离子的电迁移;引起接触面相对运动的热循环;引起接触面相对运动的振动和磨损;不同热膨胀系数的器件接触引起的热循环;金属接触的松动和滑动以及氧化层或污染物的增加。
1.量子隧穿与热电子发射效应根据经典的理论,“金属-绝缘体-金属”(MIM)式的结构是无法实现电流传导的。
但是,量子理论表明,对于表面氧化层很薄的情形,金属中的电子可以通过隧道效应穿过势垒,从一个金属到达另一个金属。
从上个世纪五六十年代以来,人们对于MIM结构的导电机理做了大量的研究,研究结果表明:量子隧穿和热电子发射效应是金属-金属接触中产生PIM的两个重要因素。
无源互调测量及解决方案1、概述无源器件会产生非线性互调失真吗?答案是肯定的!尽管还没有系统的理论分析,但是在工程中已经发现在一定条件下无源器件存在互调失真,并且会对通信系统(尤其是蜂窝系统)产生严重干扰。
无源互调(PassiveInter-Modulation,PIM)是由发射系统中各种无源器件的非线性特性引起的。
在大功率、多信道系统中,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱从而影响正常的通信。
所有的无源器件都会产生互调失真。
无源互调产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。
5年前,大部分射频工程师很少提及无源器件互调问题。
但是,随着移动通信系统新频率的不断规划、更大功率发射机的应用和接收机灵敏度的不断提高,无源互调产生的系统干扰日益严重,因此越来越被运营商、系统制造商和器件制造商所关注。
长期以来,无源器件的互调失真测量技术一直被国外公司所掌握,并垄断了测量产品市场。
今天这种局面发生了变化,无源互调测量技术难关已经被中国本土的射频工程师们攻克,而且低成本的商用无源互调测量系统也已诞生。
2、无源互调的表达方式无源互调有绝对值和相对值两种表达方式。
绝对值表达方式是指以dBm为单位的无源互调的绝对值大小;相对值表达方式是指无源互调值与其中一个载频的比值(这是因为无源器件的互调失真与载频功率的大小有关),用dBc来表示。
典型的无源互调指标是在两个43dBm的载频功率同时作用到被测器件DUT时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc。
3、无源互调测量方法由于无源互调值非常小,因此无源互调的测量非常困难。
到目前为止,无源互调的测量项目和测量方法尚无相应的国际标准,通常都是采用IE C推荐的测量方法。
IEC推荐的正向和反射互调产物的测量方法分别如图1和2所示。
图1正向互调测量示意图2反射互调测量示意图1表示一个两端口或多端口器件在两个大功率信号的同时作用下所产生的互调产物。
微波天线的无源互调问题分析【摘要】无源互调(PIM)是由无源电路(如基站移动通信系统中的基站天线)的非线性造成的。
当测量一个微波天线的PIM性能时,标准的PIM产生器对评估测量系统的性能是非常有用的。
本文最终目的是使用一个小型阵列天线或单元天线评估大型阵列天线情况下的小测量环境。
因此我们应该讨论在一个小空间中的天线增益对PIM测量的影响。
【关键词】无源互调;微波天线;小型阵列天线;天线增益1.引言在微波通信系统中,与外界传播媒介接口是天线系统。
天线的选取和设计直接关系到整个网络的质量。
无源互调干扰会使大功率无线通信系统的传输过程中产生畸变从而影响正常通信(如GSM基站)。
其中最关键的部件是天线。
当今天线结构变得越来越复杂,受无源互调干扰影响的风险也随之增加。
因此,天线设计者有必要掌握无源互调干扰及其解决办法,从而针对PIM干扰调整各种天线结构的配置。
本文提出了一个安装在印刷偶极天线上的PIM源,它是文献[6]的修正,还提出了外界PIM源[7]的简化模型。
根据PIM特性给出了它们的性能之后,采用所提出的天线和文献[3][4]中的贴片天线讨论了天线增益对PIM测量的影响。
2.装载在印刷偶极天线上的PIM源和外来的PIM源本文使用一个厚度为1.6mm、介电常数为的印刷电路板,这里铜箔的厚度为。
在半刚性电缆中,印刷电路板上与缝隙线相重叠的外导体有一部分被移去的激励天线。
一个长为的开路短线和长度为的短路线连接到激励点,这对天线的带宽起增大作用。
在天线的顶端安装PIM源(二极管1),二极管安放在狭缝之上,且有一个小的空气间隙存在。
使用了一个由轴向肖特基二极管(RB721Q-40)做成的环状PIM源,本文中选其周长为30mm。
当时提出的天线产生最大的PIM,当时产生最小PIM。
因此,PIM电平由二极管角度决定。
除了产生的PIM之外,这并不影响天线的基本特性。
本文也准备了两种外加PIM源,其组成结构如图1所示。
强功率无源互调RSSI异常处理周期降低方法A01--强功率无源互调RSSI异常处理周期降低方法【摘要】CDMA网络中金属接触非线性或引起的无源互调可对系统性能造成严重影响。
本文讨论了CDMA频段金属接触导致的非线性主要原理,推导了双正弦输入时(即双载波)任意奇数阶无源互调幅度的多项式表示式和矩阵表示式,并给出了三阶和五阶无源互调功率的表示式。
并且结合实际优化过程中所处理的RSSI异常问题,掌握RSSI异常处理的关键点,通过后台日常观察分析方式,把强功率无源互调问题日常化,以工单形式下发代维处理,降低了RSSI指标处理周期。
【关键词】强功率无源互调RSSI CDMA 金属接触导致的非线性主要原理1、概述在大功率CDMA通信网络中,多载波在无源器件中将会产生基本信号频率的线性组合产物(即强功率互调)落入接收频带内形成的干扰信号。
这么强功率通过无源器件,产生新的频率的方式,就是强功率无源互调。
无源器件包括室内分布系统中功率分配器件,如耦合器、功分器、合路器等;也包括把电信号传换电磁信号的天线;以及其他无源器件如下避雷器、TRX等。
由于早期中兴通讯厂家CDMA的HIRS基站的功率相对较低,如HPA功率为10W、20W 居多,所以RSSI问题相对较少。
随着EVDO的载波开通,BS8800新站(HPA可达80W)型的应用,无源互调引发了较多的RSSI异常问题,而基站的接收机的灵敏度越来越高,对于CDMA 这样的自干系统来说,即使非常微弱反向噪声信号,都能引发诸位呼叫失败、终端发射功率不足引起的掉话等问题,从而使得通信网络中基站中的RSSI异常小区无法正常工作。
近期出现十天全天掉话高小区,如下表。
其中RSSI异常导致占有3席,且已处理2席。
表1-全网全天高掉话小区所以,我们需要对RSSI异常导致全天掉话次数高,所以本文从RSSI异常处理为基础,形成一种简单而有效的处理方法与实用流程,从而减少故障处理周期时间,保障网络KPI 指标的稳定性。
多载波无源互调干扰抑制技术研究多载波无源互调干扰抑制技术研究摘要:随着通信技术的发展,无线通信在现代社会中的地位日益重要,而无源互调干扰作为通信系统中的一种重要干扰,限制了通信系统的发展。
传统的解决方法是使用滤波器或放大器等有源设备,但这些方法消耗较大且相对低效。
为了提升无线通信系统的性能和效率,本文探究了多载波无源互调干扰抑制技术。
该技术采用了全新的无源抑制方法,能够有效地抑制无源互调干扰,提高通信系统的性能和效率。
本文首先介绍了多载波系统的基本概念和无源互调干扰的产生机制,然后详细阐述了多载波无源互调干扰抑制技术的原理与方法。
其中,对于不同类型的干扰信号,本文分别提出了相应的抑制方法,并对比了其优缺点。
最后,本文通过仿真实验验证了该技术的可行性和有效性,证明了其在抑制无源互调干扰方面具有较好的性能和应用前景。
关键词:多载波,无源互调干扰,抑制技术,性能,效一、引言随着数字通信技术的发展,无线通信在现代社会中扮演着越来越重要的角色。
然而,在通信系统中,干扰是无法避免的问题之一。
其中,无源互调干扰作为一种常见且严重的干扰,已经成为限制通信系统性能和效率的主要因素。
在传统的解决方法中,使用滤波器或放大器等有源设备,但这些方法消耗较大且相对低效。
因此,本文将探究一种新的无源互调干扰抑制技术,即多载波无源互调干扰抑制技术,以提高通信系统的性能和效率。
二、多载波系统的基础多载波系统是一种用于将数字信号传输到目标设备的通信系统。
该系统将多个载波信号组合成一个更高频率的信号,并在接收端将其分解回原始信息。
这种系统在无线通信中得到了广泛的应用,例如Wi-Fi、蓝牙、无线电等。
然而,在多载波系统中存在着许多的干扰,其中最常见的是无源互调干扰。
无源互调干扰是一种由于不同载波信号间的非线性交互而产生的干扰。
当两个或更多的载波信号同时存在于系统中时,它们之间会相互干扰,导致接收信号质量降低。
三、多载波无源互调干扰抑制技术的原理与方法多载波无源互调干扰抑制技术是一种可以有效地抑制无源互调干扰的新技术。
无源互调对通信系统的影响及其抑制措施[摘要] 本文讨论无源互调对移动通信系统造成的影响,基于幂级数模型介绍了一般无源互调器件的无源互调特征及其对通信系统的影响,并提出了通信系统无源互调的预防和抑制措施。
[关键词] 无源互调通信系统抑制引言随着科技的日益进步,信息和通信对人类所起的作用越来越重要,各种不同类型的通信系统不断更新。
为了使自己公司设计的通信系统立于不败之地,在现代移动通信网络中,一般通过一付发射天线发射几个频道(每个频谱的功率为几瓦到数十瓦),发射天线或者同时作为接受天线使用(双工状态),或者至少位于某个接受天线附近,而通道中这些信号通过无源器件的任何相互作用和混合都会引起不需要的混合信号——无源互调产物(PassiveInterModulation产物)。
它可以直接到达接收通道或者发射天线到达接收天线,成为影响通信系统性能的干扰信号,使通信系统存在一种潜在危险。
二十世纪六、七十年代,国外有不少通信卫星因PIM产物影响而发生故障。
如FLTSATCOM(美国舰队通信卫星)的3阶,MARISAR(美国海事卫星)的13阶,MARECS(欧洲海事卫星)的43阶以及IS-V(国际通信卫星V号)的27阶等的PIM产物落入接收通带,引起干扰,一度影响了一些国外卫星系统的研制进展和开发使用。
近年来,由于通信设施的增加,无源互调问题引起广泛关注。
2. 无源互调干扰及其影响当两个或两个以上的发射载波在无源器件中相遇时产生的基本信号频率的线性组合产物落入接收通带内,产生无源互调产物。
PIM产物称为1阶、2阶、3阶等。
奇数阶PIM产物最靠近主发射频率,3阶互调产物通常最强,并且不能通过一般的滤波器方法加以抑制。
通常情况下,使用两载波输入时PIM产物之间的频率关系如图1所示。
图1 无源器件非线性的输出频谱图2无源互调干扰的简化说明图图2为无源互调干扰的简化模型。
这些互调产物以下列基本方式产生,考虑频率分别为f1和f2、电压幅度分别为V1和V2的两个非调制信号,其合成电压为(1)当这些信号与非线性器件和材料作用时,输出信号电压是输入信号电压的幂级数,令是依赖于特定非线性的系数。