无源互调(PIM)影响因素及常见问题(一)
- 格式:doc
- 大小:37.00 KB
- 文档页数:12
射频无源连接器的互调特性与寿命1、射频无源器件的无源互调特性射频无源器件的互调失真,即无源互调(PIM)是由于其非线性特性而引起的,连接器也不例外。
产生射频连接器或电缆组件非线性的主要原因是导体的接触不良,而产生接触不良的主要原因有连接器的配接力矩不足,表面镀层不均匀,金属表面氧化,触点表面有杂质和表面腐蚀等。
此外,磁性材料如镍和钢均会产生非线性因素。
要保证射频连接器的低互调性能,在设计中可采用焊接的内导体和一体化的外导体结构,这样可以避免由于风、振动和热胀冷缩效应所产生的接触不良。
连接器的表面涂敷也很重要,内导体可以采用镀金或镀银工艺,外导体可以镀银或三元合金来保证无源互调指标。
在所有射频连接器中,N型和DIN7-16型具有最好的无源互调特性,其指标可以达到-165dBc~-168dBc@2x43dBm。
在所有无源器件中,射频连接器的无源互调测量是最困难的。
这种困难体现在两个方面:(1)—套精密的无源互调测量系统,最终也是靠射频电缆与被测器件连接的。
无源互调的测量是一个串联系统,如系统剩余互调为-168dBc@2x43dBm,其中必然包含了测试电缆自身的无源互调指标。
而用这样一套系统,要测量出同等指标的射频连接器的无源互调,从测量原埋上讲,其最终测量精度是值得商榷的。
(2)射频连接器不能独立参加测试,必须连接到电缆或者夹具进行测试,在此过程中,电缆和测试夹具的自身无源互调指标必须优于被测连接器。
要保证测试夹具的低无源互调指标比电缆更加困难。
2、射频连接器的寿命如果从射频测试和测量角度来评估一个射频转接器或测试电缆组件,应用工程师不仅关心其出厂时的指标,而且更加关心其使用寿命。
射频电缆组件的寿命取决于三个因素:电缆本身的抗弯曲性能;电缆和连接器之间的良好连接及其防折弯性能;连接器的寿命。
对于前两项因素,可以采取工装夹具或者规范操作。
1. 什么是无源互调(PIM)?无源互调与有源互调相类似,只是无源互调是无源器件产生的。
只要在一个射频导体中同时存在两个或两个以上RF信号,就会产生互调。
当器件中存在一个以上的频率时,任何无源器件都会产生无源互调产物。
由于不同材料的连接处具有非线性,信号会在结点混合。
典型地,其奇数阶互调产物(如IM3=2*F1-F2)会落在基站的上行或接收频段内,成为干扰接收机工作的信号。
它会造成独立于接收机随机底噪的接收机减敏现象。
2. 产生PIM的典型原因?在射频器件(天线、电缆、滤波器等)中,有三个典型的成因:1.射频通道中不良的机械结点;2.射频器件的材料具有磁滞现象(如不锈钢);3.射频通道中的表面或接触面受到污染。
例如,焊料(会吸附其他污染物)和加工过程中的金属微粒。
在一个完整的基站中,大功率放大器和接收机滤波器之间的任何无源器件都会产生严重的无源互调信号。
铁塔(“生锈螺钉噪声”)或发射天线的直射波周围的金属物质也会产生无源互调信号。
3. 什么是IM3和IM5?它一般用来说明我们所讨论的互调产物的阶数。
IM表示“互调(Inter-modulation)”。
紧跟着的数字是产生互调产物的两个母信号的整数倍频之和。
通过下表,可以很好的理解这个概念:IM Calculation互调计算IM Order互调阶数2*F1±1*F2 = F IM3Third Order (2+1=IM3)3*F1±2*F2 = F IM5Fifth Order (3+2=IM5)4*F1±3*F2 = F IM7Seventh Order (4+3=IM7)5*F1±4*F2 = F IM9Ninth Order (5+4=IM9)一般来说,阶数越小能量越大。
尽管如此,在选频系统中,接收机中的五阶互调产物大于三阶互调产物也是有可能的。
4. 如果定义“良好”的PIM值?一个给定的RF器件所要求达到的无源互调水平对于该器件所在的最终系统的性能来说,是非常重要的。
无源互调(PIM)影响因素及常见问题(一)无源互调(PIM)影响因素及常见问题(一)随着通信技术的快速发展,特别是5G天线,通信频率的增高,以及语音和数据信号容量的增加,之前对信号产生影响较小的因素也被越来越重视起来,无源互调就是其中之一。
1什么是无源互调(PIM)无源互调(Passive Inter-Modulatio)又称无源交调、互调失真等,是由射频系统中各种无源器件产生的,只要一个射频导体中存在两个或两个以上的RF信号,就会产生互调,产生一个或多个新的频率,这些新产生的频率与工作频率混合在一起就会影响到通信系统。
无源互调值非常小,一个典型的无源互调指标是在二个+43dBm的载频功率同时作用到被测器件(DUT)时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc,相当于一根头发丝的直径对比地球到太阳之间的距离。
因此测试非常因难,大多采用IEC 推荐的正向和反射互调产物的测量方法。
2无源互调的来源PIM可以发生在任何两种不同金属的连接点或接口处,例如连接器和电缆组件的连接处,天线和天线馈源的连接处。
接触不良的连接器,内部生锈或氧化的连接器也可能会导致PIM。
PCB材料也可能是PIM的来源,它可能来自于材料本身,也可能来自馈电点。
3无源互调分类(1)正向互调正向互调也被称为传输互调,其定义是当两个载频同时输入到一个双端口(或多端口)器件时,在输出端所产生的互调。
在测试过程中,任何空闲端口必须接低互调负载。
从频段细分,正向互调又可分为落入发射频段和落入接收频段两种,它们的区别取决于f1和f2的之间的差值△,2f1—f2和f1之间的间隔、2f2—f1和f2之间的间隔都等于△,从这个规律可以直观判断互调产物的位置。
同样是正向互调,落入发射频段和接收频段互调的测试方法却大相径庭。
GSM基站互调干扰
通信系统中的无源互调干扰(PIM)来自于两种无源非线性,即无源接触非线性和无源材料非线性,无源非线性将引起射频信号产生大量的谐波信号,通常我们说的三阶、五阶、七阶互调产物都是由于射频电路无源器件的非线性引起的互调谐波。
PIM受射频电路中的无源器件性能、馈线接头性能、天线性能影响,当无源器件采用材质较差,杂质较多的铝合金,或接头等镀层磨损氧化后,另外器件接头部分工艺粗造等原因都有可能导致器件的非线性性增强,从而引起较大的谐波互调信号。
中国移动互调分量干扰分析(见附件)
中国移动GSM互调模拟图
对于GSM系统来说,由下行信号产生的互调分量中三阶分量并没有落到上行的频段内,但是5阶分量却大量落到上行频段内,至于7阶和9阶分量由于其强度已衰减过大,在考虑对上行信号的干扰时可以忽略不计算,因此对于GSM900系统来说,无源器件的互调分量干扰主要来自于5阶互调干扰,5阶互调干扰也是造成GSM系统上行干扰的一个重要原因。
对于DCS1800系统来说,3阶和5阶分量都不会落到上行频段,7阶、9阶分量会落到上行频段,但由于其强度衰减过大,故DCS1800系统无需考虑无源器件互调干扰的影响。
安立公司无源互调分析仪操作手册PIM Master TM MW82119A40W 高功率、电池供电、故障定位、手持式无源互调分析仪安立公司市场部2013 年 7 月一、什么是无源互调(Passive Intermodulation, PIM)?无源互调(PIM)是一种发生在无源器件上的互调失真,比如滤波器,合路器,浪涌保护 器,线缆,连接头,天线等,这些器件通常被认为是线性的,但是他们受到高功率信号激励 时会产生杂散信号,当这些杂散信号落入到基站接收频段内时,就会对基站形成干扰,影响 正常通信的进行。
无源互调(PIM)显示一系列由两个或多个强射频信号在非线性器件(比如松散或腐蚀的连 接头,或附近生锈物)中混频产生的不需要的信号, 无源互调(PIM)现象又称为“环境二极管 效应”或“锈门栓效应”。
下面这组方程可以精确描述两个载波 F1,F2 的无源互调产物频率:IMn+m = nF1 – mF2IMn+m = nF2 – mF1F1 和 F2 是发射载波频率,常数 n 和 m 是正整数。
当提到无源互调产物时, n + m 称为互调阶数。
例如,当 m 等于 2,n 等于 1,则他们的和 (2+1=3)称为 3 阶交调 即 IM3。
载波 F1,F2 和对应的 3 阶、5 阶、7 阶互调产物 调制信号无源互调产物的带宽随着其阶数的增加而增加典型情况是,3阶互调产物是电平幅度最大,且最可能落在接收频段内,从而对接收 信号造成危害的互调产物。
由于无源互调产物的幅度随着阶数的增高而变低,高阶的互调产 物一般情况下不会强到直接导致频率问题,但是他们通常会是导致临近频段噪底电平上升的 原因。
一旦这些上升的噪底电平落入接收频段,他们便进入到基站接收信号范围内(有时候 通过低噪放),会对基站信号接收造成影响。
而且,还要认识到,由调制信号引起的互调信 号比从基波信号引起的互调信号的带宽要宽得多。
因此,互调产物可以有非常宽的频带,占 用好几个通频带。
卫星通讯天线无源互调原理
卫星通讯天线的无源互调(PIM)原理是指,在射频信号路径中,由于各种无源器件(如天线、电缆或连接器)的非线性特性,导致两个或更多的射频信号相互混合,产生新的杂散信号。
在大功率、多信道系统中,这种互调现象更为显著,可能由铁磁材料、异种金属焊接点、金属氧化物接点、被污染的器件和松散的射频连接器等因素引起。
如果两个基波信号的频率分别为f1和f2,那么PIM干扰信号的频率(F_PIM)可以用以下公式来描述:F_PIM = m * f1 ± n * f2,其中m和n是正整数,m 和n的乘积叫做混频信号的阶数。
虽然通过滤波可以把信号发射路径中由功放产生的干扰信号去掉,但是射频信号路径中由无源器件(如天线、电缆或连接器)引起的PIM干扰信号是无法滤掉的。
信号发射(Tx)通道中的PIM干扰信号会进入信号接收(Rx)通道,这会增加接收通道中的噪声功率从而降低无线通信的质量。
因此,无源互调是限制系统容量的重要因素,制造商需要对应用在基站中的射频器件进行100%的检查,以确保器件的无源互调始终维持在合格范围。
以上信息仅供参考,如需获取更多详细信息,建议查阅相关文献或咨询卫星通讯专家。
无源互调(PIM)影响因素及常见问题(二)6.2.2 PCB对PIM影响因素总结(1)PIM值受电流密度的影响与设计的电路有关,电流密度越小,其PIM性能越好。
(2)铜箔表面越粗糙,其PIM性能越差,反之铜箔表面越光滑,PIM性能越好。
(3)线路使用阻焊油和化学锡进行表面处理可以优化PIM,约小4-6dBc。
不过化学锡的厚度对于PIM值几乎没有影响,化学镍金的PIM性能较差。
(4)材料结构,尽量避免出现阻抗不连续性,尽可能保持一致的阻抗特性,选用低PIM 的材料(如PTFE或PIM材料)。
(5)介质层厚度对PIM影响还需进一步验证。
(6)铜厚越小,互调性能越好,这是因为越厚的铜厚,蚀刻效果越差,蚀刻毛边对互调性能产生影响。
(7)线路蚀刻的毛边/蚀刻因子,蚀刻因子控制≧3.0,毛边越小,PIM性能越好。
阻焊前处理建议采用微蚀工艺。
(8)表面油墨厚度,油墨越厚,PIM性能越好。
(6)镀层表面氧化,导电性不好,镀层厚度不够。
(7)含有磁性材料,如铁、钴、镍等。
(8)介电常数温度系数(TCDk,用于衡量Dk随温度变化),越低越好。
(9)线长从254mm-76.2mm为材料损耗性能最常见的规格,线长254mm,127mm,76.2mm。
线长越长,互调值越差。
(10)线宽从2.0mm开始减半直径到0.25mm,可考察驻波差异对互调的影响。
线宽缩窄,阻抗增加,反射能量也随之增加,反射能量与入射能量叠加导致能量汇集,最终导致被测线路的温度上升。
互调值与温度呈反比,线宽缩窄导致温度升高,从而互调变差。
(11)PCB级要在RF板的微带线两边引入接地,最好不要单纯的只是一根线而不去选择顶层地,测试结果表现顶层地会改善一些PIM。
(12)板内微带线如需要电容,尽量用Q值小的,其选频效果要稍好一些。
无源交调干扰(PIMI)的产生与预防1.定义当两个信号频率为f1和f2或多个信号频率同时通过同一个无源射频传输系统时,由于传输系统非线性的影响,使基频信号之间产生非线性频率分量。
这种现象称为互调(或交调),把非线性频率分量称为交调产物,这些交调产物如果落在接收频带内,又足够强,则形成对基波信号频率的干扰,称这种干扰为无源交调干扰(PIMI)或称无源交调失真(PIMD)。
交调产物用F式表示:F1m=mf1±nf2f1、f2为输入的载波频率,F1m为交调产物。
m n为包括1在内的正整数;m+n 称为互调产物的阶数,或称次数。
通常所说的三阶是指m+n=32.产生特点:PIM的产生是固有的,不随频率选择而变化;PIM的产生不遵守二次方程定律,精确计算不可能。
3.PIM现象产生的潜在因素:a.铁磁材料(diff)例如:钢铁镍钼等。
.b.腐蚀过的材料会产生相当高的电平c.同轴连接器连接的紧固状态d.微小裂缝、微小碎屑、金属结构种的砂眼e.金属连接处有脏东西、因涂覆形成的“电容现象”金属绝缘物金属连接物的存在,引起非线性。
f.温度、热胀冷缩改变机械加载影响PIMg.同轴电缆屏蔽层(编组物)材料及填充因子会产生一定的电平等,铝和不锈钢编织物或镀镍铜产生相当高的电平。
4.结论无源互调通俗的讲是一种电磁干扰,它是指由无源部件的固有非线性导致的产物,基本的PIM现象是由电流流过非线性部件产生的,例如:滤波器、同轴电缆及连接器、金属连接面、天线馈源及天线等无源部件由于多种原因可能产生固有的非线性。
引起无源部件非线性的微观原理非常复杂,它不仅与材料性质、结构形式由关,还于通道加载及系统装配的工艺质量相关。
无源互调(PIM)影响因素及常见问题(一)
随着通信技术的快速发展,特别是5G天线,通信频率的增高,以及语音和数据信号容量的增加,之前对信号产生影响较小的因素也被越来越重视起来,无源互调就是其中之一。
1什么是无源互调(PIM)
无源互调(Passive Inter-Modulatio)又称无源交调、互调失真等,是由射频系统中各种无源器件产生的,只要一个射频导体中存在两个或两个以上的RF信号,就会产生互调,产生一个或多个新的频率,这些新产生的频率与工作频率混合在一起就会影响到通信系统。
无源互调值非常小,一个典型的无源互调指标是在二个+43dBm的载频功率同时作用到被测器件(DUT)时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc,相当于一根头发丝的直径对比地球到太阳之间的距离。
因此测试非常因难,大多采用IEC 推荐的正向和反射互调产物的测量方法。
2无源互调的来源
PIM可以发生在任何两种不同金属的连接点或接口处,例如连接器和电缆组件的连接处,天线和天线馈源的连接处。
接触不良的连接器,内部生锈或氧化的连接器也可能会导致PIM。
PCB材料也可能是PIM的来源,它可能来自于材料本身,也可能来自馈电点。
3无源互调分类
(1)正向互调
正向互调也被称为传输互调,其定义是当两个载频同时输入到一个双端口(或多端口)器件时,在输出端所产生的互调。
在测试过程中,任何空闲端口必须接低互调负载。
从频段细分,正向互调又可分为落入发射频段和落入接收频段两种,它们的区别取决于f1和f2的之间的差值△,2f1—f2和f1之间的间隔、2f2—f1和f2之间的间隔都等于△,从这个规律可以直观判断互调产物的位置。
同样是正向互调,落入发射频段和接收频段互调的测试方法却大相径庭。