描述统计-数据的收集与数字特征描述
- 格式:ppt
- 大小:574.00 KB
- 文档页数:68
数据的收集与统计数据的收集与统计是现代社会中重要的工作之一。
通过有效地收集和统计数据,我们能够了解并分析各种现象和趋势,为决策提供科学的依据。
本文将从数据的收集和统计方法、数据的应用以及数据分析的挑战等方面进行论述。
一、数据的收集方法数据的收集是用户了解和掌握所需的基本数据的过程。
为了保证数据的准确性和完整性,以下是一些常见的数据收集方法:1.问卷调查:通过设计问题和分发问卷来获取被调查者的意见和看法。
问卷调查可以通过线上或线下方式进行,确保样本的广泛性和代表性。
2.观察法:直接观察现象并记录下相关数据。
观察可以是主动的,也可以是被动的,取决于研究的目标和对象。
3.访谈法:与个人或群体进行面对面的交流,并记录相关数据。
访谈可以是结构化的,按照事先准备好的问题进行;也可以是非结构化的,根据实际情况自由对话。
4.文献研究法:收集已有的文献、报告或统计数据,并进行分析总结。
这种方法适用于已有大量研究成果的领域,并可以作为研究的参考。
二、数据的统计方法数据的统计是对收集到的数据进行处理和分析的过程。
以下是一些常见的数据统计方法:1.描述性统计:对数据进行整理、分类、归纳和描述。
常见的描述性统计方法包括频数分布、均值、中位数、众数和标准差等。
2.推论统计:通过对样本数据的分析得出总体特征的推断。
推论统计通常使用抽样方法,如随机抽样、系统抽样和分层抽样等。
3.回归分析:通过建立数学模型,研究自变量和因变量之间的关系。
回归分析可以用于预测和解释变量之间的相互影响。
4.因子分析:用于分析变量之间的相关关系,从而确定主要因素。
因子分析可以帮助理解复杂的数据结构和变量之间的相互作用。
三、数据的应用数据的应用涉及各个领域,以下是一些数据应用的例子:1.市场调研:通过分析市场数据,了解产品需求、竞争态势和消费者行为,为企业制定市场策略提供依据。
2.医学研究:通过统计疾病发生率、死亡率和治疗效果等数据,推导出有效的预防和治疗方法,促进健康和医疗的发展。
统计数据报告的描述和解释技巧统计数据是指通过对一定数量的对象或现象进行测量、调查和统计所得到的具体数值。
统计数据的描述和解释技巧是非常重要的,它们能够帮助我们更好地理解数据的含义以及数据背后的故事。
本文将以以下6个标题展开详细论述统计数据报告的描述和解释技巧。
一、数据来源的准确性与可靠性描述和解释统计数据之前,首先需要关注数据的来源是否准确和可靠。
数据的准确性与可靠性对后续的数据分析和解释至关重要。
在报告中,我们应该明确数据收集的途径和方法,并描述对样本的选择、数据收集过程和数据校正等步骤,以确保数据的精确性。
二、数据的基本特征及其统计度量在描述统计数据时,我们需要了解数据的基本特征。
常用的统计度量包括均值、中位数、众数、方差、标准差等,它们可以提供有关数据分布和集中趋势的信息。
我们需要根据自己的研究目的和数据特点选择合适的统计度量指标,并详细描述其含义和解释。
三、可视化工具的运用为了更好地描述和解释统计数据,我们可以利用可视化工具,如图表和图形,展现数据的特征和规律。
常见的可视化形式包括柱状图、折线图、散点图等。
通过图表和图形,我们可以直观地呈现数据之间的关系和趋势,使读者更容易理解和解释数据。
四、数据的解读与比较分析在描述和解释数据时,比较分析是一种常用的方法。
我们可以将不同时间点、不同地区、不同群体的数据进行对比,以揭示数据的变化和差异。
比较分析不仅可以提供对数据的深入理解,还可以发现数据之间的相关性和影响因素。
五、注意数据背后的故事统计数据报告不仅仅是给出冰冷的数字,更重要的是将数据背后的故事讲述出来。
例如,我们可以通过数据描述和解释社会问题的发展趋势,分析经济政策的效果,或者探讨人口变化对社会结构的影响。
通过将数据与现实情境相结合,我们可以更好地理解和解释数据的意义。
六、简洁明了的报告风格最后,在描述和解释统计数据时,我们应该采用简洁明了的报告风格。
避免使用过多的专业术语和复杂的句子结构,使报告易于理解和消化。
统计基础知识精品课程摘要:一、统计学概述1.统计学的定义2.统计学的研究对象3.统计学的应用领域二、统计数据的收集与整理1.统计数据的来源2.统计数据的收集方法3.统计数据的整理三、统计数据的描述1.数据的图表展示2.数据的数字描述3.数据的分布特征四、统计推断1.参数估计2.假设检验3.回归分析五、统计学在实际应用中的案例1.金融领域2.医疗领域3.市场营销正文:一、统计学概述统计学是一门研究如何收集、整理、分析、解释以及展示数据的方法论学科。
统计学的研究对象包括各种数据,例如数值型数据、分类数据、顺序数据等。
统计学的应用领域广泛,包括自然科学、社会科学和商业等领域。
二、统计数据的收集与整理统计数据的来源多样,包括问卷调查、实验数据、政府发布的数据等。
收集数据的方法有抽样调查、全面调查等。
在收集到数据后,需要进行整理,包括数据清洗、数据转换、数据汇总等步骤,以便进一步分析。
三、统计数据的描述数据的描述包括数据的图表展示和数据的数字描述。
图表展示包括条形图、折线图、饼图等。
数据的数字描述包括平均数、中位数、众数、方差等。
此外,还需要了解数据的分布特征,如正态分布、偏度、峰度等。
四、统计推断统计推断是通过样本数据对总体参数进行估计和推断的过程。
参数估计是利用样本数据估计总体参数,例如均值、方差等。
假设检验是利用样本数据判断关于总体的某个假设是否成立。
回归分析是研究两个或多个变量之间关系的方法。
五、统计学在实际应用中的案例统计学在实际应用中具有广泛的应用价值。
例如,在金融领域,可以通过统计分析预测股票价格走势;在医疗领域,可以通过统计分析研究某种疾病的发病率、死亡率等;在市场营销中,可以通过统计分析了解消费者需求、市场占有率等。
统计学中常用的数据分析方法描述统计描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。
描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。
例如被试的平均成绩多少?是正偏分布还是负偏分布?离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。
例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。
相关分析:相关分析探讨数据之间是否具有统计学上的关联性。
这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括A大B就大(小),A 小B就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是A、B变量同时增大这种正相关关系,也可以是A变量增大时B变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。
实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。
获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。
例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。
我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。
假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的A、B两列变量)。
质量统计分析5.2.1 质量数据收集方法1.质量数据收集的常用方法如表5-9所示。
表5-9 质量数据收集方法整群抽样整群抽样一般是将总体按自然存在的状态分为若干群,并从中抽取样品群组成样本,然后在中选群内进行全数检验的方法多阶段抽样1.是指在抽取样本时,分为两个及两个以上的阶段从总体中抽取样本的抽样方式 2.具体操作步骤(1)第1阶段,将总体分为若干个一级抽样单位,从中抽选若干个一级抽样单位入样(2)第2阶段,将入样的每个一级单位分成若干个二级抽样单位,从入样的每个一级单位中各抽选若干个二级抽样单位入样 (3)依此类推,直到获得最终样本2.质量数据的分类根据质量数据数量化的要求,可以将质量数据进行如图5-14所示的划分。
图5-14 质量数据的分类5.2.2 质量数据的特征值质量数据特征值是由质量数据计算的用来描述质量数据波动规律的指标,具体内容如图5-15所示。
计数值数据1.计量值数据是可以连续取值的数据,属于连续型变量。
其特点是在任意两个数值之间都可以取精度较高一级的数值。
2.该类数据通常通过测量获取,如重量、强度、尺寸、标高、位移等。
3.一些属于定性的质量特性,可由专家主观评分、划分等级而使之数量化,得到的数据也属于计量值数据。
1.计数值数据是只能按0,1,2,……数列取值计数的数据,属于离散型变量。
2.该类数据由计数得到。
计数值数据又可分为计件值数据和计点值数据。
计件值数据,表示具有某一质量标准的产品个数。
如总体中合格品数、一级品数;计点值数据,表示个体(单件产品、单位长度、单位面积、单位体积等)上的缺陷数、质量问题点数等。
计量值数据图5-15 质量数据的特征值5.2.3 质量数据处理方法质量数据处理方法如表5-10所示。
表5-10 质量数据处理方法方法内容特点列表法制作一份表格把测量数据按照对应关系一一排列在表中即列表法1.能够简单反映出相关量之间的对应关系2.清楚明了地显示出测量数值的变化情况3.较容易从排列数据中发现有错误的数据4.为用其他方法处理数据创造了有利条件作图法把一系列相互对应的数据及变化的情况用曲线表示出来即作图法1.能够形象、直观、简便地显示出变量的相互关系以及函数的极值、拐点、突变或周期性等特征2.有助于发现测量中的个别错误数据3.在报告质量数据处理结果时用曲线描述较为直观逐差法当两质量数据成线性关系时,常用逐差法来计算因变量变化的平均值;当函数关系为多项式形式时,也可用逐差法来求多项式的系数1.充分利用测量数据2.绕过某些定值未知量3.可验证表达式或求多项式的系数最小二乘法和一元线性从测量数据中寻求经验方程或提取参数,称为回归问题,用作图法获得1.回归分析方法用来处理变量之间的相关关系,应用广泛描述数据集中趋势的特征值描述数据离中趋势的特征值●算术平均数(1)总体算术平均数(2)样本算术平均数●样本中位数●极差●标准偏差(1)样本标准偏差(2)总体标准偏差●变异系数5.2.4 质量统计分析方案。
统计学知识点(前四章)第1章导论1.统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2.按数据分析方法分类:↗描述统计—数据收集、处理、汇总、图表描述↘推断统计—利用样本数据推断总体特征3.统计数据是对现象进行测量的结果。
4.按照计量尺度的不同,将统计数据分为分类数据、顺序数据和数值型数据。
1)分类数据:对事物分类的结果,用文字表述,数据表现为类别(男女);2)顺序数据:有序的类别,如,一等品二等品、小学初中高中、同意;3)数值型数据:按数字尺度测量的观察值,具体的数值。
5.数据的计量尺度:1)定/分类尺度:数据表现为类别,按照事物的属性平行的分类,计量层次最低,具有“=”或“≠”的数学特性;2)定/顺序尺度:数据表现为有序的类别,具有“>”或“<”的数学特性;3)定距/间隔尺度:数据表现为数字,没有绝对零点;4)定比/比率尺度:数据表现为数字,有绝对零点。
3、4统称数值型数据。
6.定性/品质数据:分类数据和顺序数据统称。
定量/数量数据:数值型数据。
7.按照数据的收集方法:观测数据和实验数据。
按时间状况:截面数据和时间序列数据。
(统计数据的分类)8.总体:是包含所研究的全部个体(数据)的集合。
组成总体的每个元素成为个体。
按包含数目是否可数,分为有限总体和无限总体。
9.样本:是从总体中抽取的一部分元素的集合。
构成样本的元素的数目成为样本量。
抽样的目的是为了根据样本提供的信息推断总体的特征。
10.参数:是用来描述总体特征的概括性数字度量。
是研究者想要了解的总体的某种特征值,如,总体平均数μ、总体标准差σ。
11.统计量:是用来描述样本特征的概括性数字度量。
是根据样本数据计算出来的量,如,样本平均数χ 、样本标准差s。
12.变量:是说明现象某种特征的概念。
如,商品销售额、受教育程度。
变量的具体值称为变量值,比如商品的销售额可以是20万、30万。
13.变量的分类——分类变量:性别、行业;顺序变量:产品等级、受教育程度;数值型变量:↗离散型变量:产品数量、企业数(取值以整数位断开)↘连续性变量:年龄、温度、零件尺寸(取值连续不断)随机变量和非随机变量,经验变量和理论变量第2章数据的搜集1.数据的来源:间接来源和直接来源2.间接来源的数据:对原信息重新加工、整理,数据可以取自系统外部或内部。
统计学各章节期末复习知识点统计学是一门研究数据收集、分析和解释的学科。
作为一门广泛应用于各个领域的学科,统计学的知识点非常丰富。
以下是统计学各章节的期末复习知识点汇总:1.数据收集与描述-数据类型:定量数据和定性数据-数据收集方式:问卷调查、观察、实验-描述统计:中心趋势(均值、中位数、众数)、离散程度(范围、方差、标准差)、数据分布(直方图、条形图、饼图)2.概率论基础-随机试验与样本空间-事件与事件概率-古典概型、几何概型和统计概型-条件概率与独立性-伯努利试验与二项分布3.随机变量及其分布-随机变量与分布函数-离散型随机变量与其分布律-连续型随机变量与其概率密度函数-均匀分布、正态分布、指数分布等常见分布4.多个随机变量的分布-边缘分布与条件分布-两个离散型随机变量的联合分布律-两个连续型随机变量的联合概率密度函数-相互独立的随机变量的分布5.随机变量的数字特征-数学期望与其性质-方差与标准差-协方差与相关系数-矩、协方差矩阵与相关系数矩阵6.大数定律与中心极限定理-辛钦大数定律-中心极限定理-切比雪夫不等式与伯努利不等式7.统计推断基础-参数估计:点估计、区间估计-置信区间与置信水平-假设检验:原假设与备择假设、显著性水平、拒绝域-类型Ⅰ错误和类型Ⅱ错误-样本容量与统计检验的效应大小8.单样本与双样本推断-单个总体均值的推断:正态总体与非正态总体-单个总体比例的推断-两个总体均值的推断:独立样本与配对样本-两个总体比例的推断9.方差分析与回归分析-单因素方差分析-两因素方差分析-简单线性回归分析:最小二乘法-多元线性回归分析:拟合优度、剩余平方和、变量选择10.非参数统计方法-指标:秩和检验、秩和相关检验、符号检验- 分布:符号检验、秩和检验、秩和相关检验、Kolmogorov-Smirnov检验这些是统计学各个章节的期末复习知识点的一个概述。
每个章节都拥有更加详细和复杂的内容,需要学生在复习中深入理解并进行练习。
1、解释描述统计和推断统计(练习卷答案)(1)描述统计是研究数据收集、处理、汇总、图表描述、概括与分析等统计方法,内容有收集数据、整理数据、展示数据、描述性分析。
(2)推断统计是研究如何利用样本数据来推断总体特征的统计学方法、包含参数估计、假设检验。
2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据特点:分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据是只能归于某一有序类别的非数字型数据。
顺序数据虽然也是类别,但这些类别是有序的。
数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。
现实中所处理的大多数是数值型数据。
按照统计数据的收集方法,可以将其分为观测数据和实验数据。
特点:观测数据是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制条件下得到的,有关社会经济现象的统计数据几乎都是观测数据。
实验数据则是在实验中控制实验对象而收集到的数据。
自然科学领域的大多数数据都为实验数据。
按照被描述的现象与时间关系,可以将其分为截面数据和时间序列数据。
特点:截面数据是在相同或近似相同的时间点上收集的数据,这类数据通常是在不同空间上获得的,用来描述现象在某一时刻的变化情况。
时间序列数据是在不同时间收集到的数据,这列数据是按时间顺序收集得到的,用于所描述现象随时间变化的情况。
3、解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据是只能归于某一有序类别的非数字型数据。
顺序数据虽然也是类别,但这些类别是有序的。
数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值。
现实中所处理的大多数是数值型数据。
4、变量可分为哪几类?分类变量(是说明事物类别的一个名称,其取值是分类数据)顺序变量(是说明事物有序类别的一个名称,其取值是顺序数据)数值型变量(是说明事物数字特征的一个名称,其取值是数值型数据)可分为离散型变量(只能取可数值的变量,它只能取有限个值而且其取值都以整位数断开,可以一一列举)、连续型变量(可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举)第二章:数据的搜集1、比较概率抽样和非概率抽样的特点。
数学小学数学数据统计数学是一门重要的学科,在学生的学习过程中起着至关重要的作用。
数据统计作为数学中的一个重要分支,通过对数据的整理、分析和解释,帮助我们更好地理解和利用数据。
本文将介绍小学数学数据统计的基本概念、方法和应用。
一、数据统计的基本概念数据统计是指通过对数据进行收集、整理和分析,以获得有关事物的数量、特征和规律的统计学方法。
在小学数学中,数据统计通常着重于对数量和特征的描述,以及对规律的探索和解释。
二、数据的收集与整理数据统计的第一步是数据的收集与整理。
收集数据可以通过问卷调查、实地观察、实验记录等方式进行,可以利用现代科技手段辅助,例如使用电子表格软件进行数据记录和整理。
在数据收集完成后,需要对数据进行整理和归类。
常用的整理方式包括制作表格、绘制图表等,以清晰地呈现数据的分布和变化趋势。
三、数据的分析与解释数据分析是数据统计的核心步骤之一,它包括对数据进行计算、比较和推断。
常用的数据分析方法有求平均数、中位数、众数等集中趋势指标,以及标准差、极差等离散程度指标。
通过数据的分析,我们可以找出数据的规律和特点。
例如,当我们对某组数据求得平均数后,可以通过与其他数据进行比较,了解这组数据相对于其他数据的位置和趋势。
四、数据统计的应用数据统计不仅仅是一种数学工具和方法,也是我们在日常生活和学习中使用的重要手段。
数据统计的应用广泛而多样,例如在商业领域中,可以利用数据统计来分析市场需求、预测销售趋势等;在科学研究中,可以通过数据统计来验证假设、推断结论等。
在小学数学学习中,数据统计的应用也十分重要。
通过实际的数据统计问题,可以培养学生的观察力、分析力和解决问题的能力。
例如,在一个班级中,可以通过统计学生的身高、年龄等数据,进行图表绘制和比较分析,让学生了解人群的特征和变化规律。
五、数据统计的意义与启示数据统计不仅仅是一门学科,更是我们认识世界和解决问题的有力工具。
通过数据统计,我们可以更全面地了解事物的本质和特征,帮助我们做出更准确的判断和决策。