第五章重金属元素在土壤中的化学行为
- 格式:ppt
- 大小:16.62 MB
- 文档页数:88
铝在土壤中的化学行为铝是一种常见的金属元素,它在土壤中的化学行为具有一定的特点和影响。
本文将从铝的形态、作用机制和影响因素等方面探讨铝在土壤中的化学行为。
1. 铝的形态铝在土壤中以不同形态存在,主要有可交换态铝、水溶态铝和固相态铝。
可交换态铝是指与土壤颗粒表面结合较弱的铝离子,容易与土壤溶液中其他离子发生交换反应。
水溶态铝是指溶解在土壤水溶液中的铝离子,其浓度决定了土壤中铝的毒性。
固相态铝是指与土壤颗粒结合较稳定的铝化合物,如铝氧化物和铝矽酸盐等。
2. 铝的作用机制铝在土壤中的化学行为主要通过以下几种机制影响土壤的性质和植物的生长:(1) 水解作用:铝离子在土壤溶液中发生水解反应,生成氢氧化铝及其多聚体,使土壤溶液的pH值降低。
(2) 离子交换作用:可交换态铝与土壤颗粒表面的其他离子发生交换反应,导致土壤负荷增加。
(3) 毒害作用:水溶态铝可以直接毒害植物根系,抑制植物的生长和养分吸收。
(4) 土壤结构破坏:铝与土壤颗粒结合形成固相态铝化合物,使土壤颗粒结构疏松,导致土壤质地变差。
3. 铝的影响因素铝在土壤中的化学行为受到多个因素的影响,主要包括土壤pH值、有机质含量、土壤类型和水分状况等。
(1) 土壤pH值:土壤pH值是影响铝形态和毒性的重要因素。
酸性土壤中铝的含量较高,容易形成水溶态铝。
(2) 有机质含量:有机质能够与铝形成螯合物,减少水溶态铝的浓度,降低铝的毒性。
(3) 土壤类型:不同土壤类型中的铝含量和形态有所不同,影响了铝的活性和毒性。
(4) 水分状况:水分状况对土壤中铝形态的转化和迁移有一定的影响,过湿或过干条件下铝的毒性可能增强。
铝在土壤中的化学行为是一个复杂的过程,涉及铝的形态转化、作用机制和影响因素等方面。
了解铝在土壤中的化学行为对于合理利用土壤资源、保护环境和提高农作物产量具有重要意义。
重金属在土壤中的环境行为及影响因素作者:罗乐来源:《经营管理者·下旬刊》2017年第10期摘要:重金属的开采、提炼等活动是环境重金属污染最主要的来源,一旦进入外环境并将长期存在且危害是长远的。
本文阐述了重金属在土壤中的环境行为,并分析了影响因素,对于土壤重金属形态的研究和环境风险的评估有重要的意义。
关键词:重金属土壤环境行为一、引言通常地,大多数的重金属元素是周期表中的副族元素,ρ>4.5g/cm3,如Au、Ag、Cu、Pb、Zn、Ni、Co、Cr、Hg、Cd等,对人体伤害极大。
但针对环境领域所指的重金属而言,则是在环境中表现为具有显著生物毒性的重金属。
在自然环境中,具有可变价态的重金属元素往往又能与其他元素结合,表现出极为复杂的环境行为及环境效应。
当含有浓度很小重金属的废水进入水环境时,也有可能造成严重的水体重金属污染,如日本发生的水俣病和骨痛病等公害问题,均是由重金属污染所导致的。
此外,含有重金属的废水、废渣进入土壤环境,也会造成难易修复的土壤环境重金属污染,影响植物生长发育,最终通过食物链的富集作用进入人体,威胁人来健康。
因此,应严防重金属污染。
二、重金属在土壤中的环境行为重金属在土壤中的环境行为大致分为机械迁移、物理化学迁移及生物迁移,其主要表现有元素的溶解和悬浮运动、被植物根系吸收、伴随土壤中微生物的代谢。
1.机械迁移。
土壤中的重金属或络合离子能随地下水或地表水的运动迁移至水环境当中。
但土壤是一个多相的疏松多孔胶体体系,重金属往往会矿物颗粒包裹,或者被吸附在土壤胶体的表面上,伴随着土壤中的水流动而被机械搬运,尤其是在多雨潮湿地区的山坡土壤中,重金属的机械迁移更加明显;但在干旱少雨的土壤环境中,更多的是以尘土形式随风被机械搬运。
在自然环境中,富集作用是机械迁移的一种主要的形式,富集系数是用来表示重金属在土壤中的富集或亏损的程度。
2.物理化学迁移。
物理化学迁移是指重金属元素以简单的粒子、配合离子或可溶性分子在水环境中通过各种物理化学作用达到迁移转化的目的,其结果决定了重金属在环境中的形态、富集程度和潜在危害等级。
1概述本文主要介绍了土壤中重金属的形态。
重金属是指原子序数大于20的元素,在自然界丰富存在,最常见的有铅、镉、铬、锌、铁、锡等,任何环境都可能出现其中某种类型的重金属元素。
重金属(大多为有毒元素)有4种形态:溶解态、游离态、无机化合物态和有机物态。
溶解态是指重金属溶于水中的形态,它们可以在溶液中易于移动,容易进入生物体,并可能造成轻微的有毒作用,而且对生物致病性也很强。
而游离态是指重金属被释放到气体当中,在空气中可以流动,也会影响生物体的生长和发育。
无机化合物态是重金属与其他元素化合,形成了无机复合物,它们比溶解态和游离态要稳定,不易进入生物体,也不易对生物产生有毒影响。
有机物态是将重金属与有机物结合在一起,它们比溶解态的毒性要弱,但有时会因其它物质的作用而发挥毒性作用。
2实验目的本实验的目的是分析土壤中重金属的形态,以便更好地控制重金属的污染。
此外,本实验也旨在更好地了解重金属的形态具有怎样的毒性,以准确分析重金属对生物的有毒作用。
3实验方法本实验以土壤为样品,使用X射线荧光表征法(XRF)和石墨炉原子吸收光谱法(GFAS)测定其中重金属各形态分布及比例,以及各重金属单位磷酸盐形态汞浓度,以百分比表示。
由于XRF测试只能测量有机物形态的重金属,GFAS测试只能测量无机物形态的重金属,因此XRF和GFAS结合使用,以及结合样品的化学分析结果,更准确地测定土壤中重金属的分布及比例。
4实验结果经上述实验测试,研究人员得出结论,土壤中各重金属的比例如下:铅:溶解态48.8%;无机化合物态28.2%;有机物态14.5%;游离态8.5%。
镉:溶解态41.2%;无机化合物态27.5%;有机物态48.3%;游离态3.0%。
铬:溶解态20.2%;无机化合物态30.7%;有机物态37.7%;游离态11.4%。
锌:溶解态15.3%;无机化合物态31.6%;有机物态41.2%;游离态12.0%。
铁:溶解态26.7%;无机化合物态39.3%;有机物态27.2%;游离态7.0%。
土壤中重金属的氧化
首先,自然氧化是指重金属在土壤中与氧气发生化学反应的过程。
土壤中的氧气和水分会与重金属发生氧化反应,形成氧化物或
氢氧化物。
这些氧化物或氢氧化物通常以固体形式存在于土壤中,
对土壤质地和化学性质产生影响。
其次,人为氧化是指人类活动导致土壤中重金属发生氧化的过程。
工业排放、农药施用、废弃物填埋等活动都可能导致土壤中重
金属的氧化。
例如,工业废气中的氧化物和气溶胶经过降水沉降到
土壤中,与土壤中的重金属发生氧化反应。
此外,长期施用含有重
金属的化肥和农药也会导致土壤中重金属的氧化。
重金属的氧化对土壤环境和生态系统具有重要影响。
一方面,
氧化后的重金属通常具有较高的毒性和生物有效性,对土壤微生物、植物生长和生态系统稳定性产生不利影响。
另一方面,氧化后的重
金属也更容易迁移和积累,可能对地下水和周围水体造成污染。
为了减少土壤中重金属的氧化,可以采取一系列措施。
例如,
加强工业废气治理,减少重金属排放;合理使用化肥和农药,避免
重金属的过量积累;开展土壤修复和植被恢复工作,减少土壤中重
金属的生物有效性。
此外,也可以通过监测和评估土壤中重金属的氧化情况,及时采取措施进行治理和修复。
综上所述,重金属的氧化是一个复杂的过程,需要综合考虑自然和人为因素,以及其对土壤环境和生态系统的影响,才能有效进行管理和控制。
土壤重金属元素的形态是指土壤环境中金属元素以某种离子、分子或其他结合方式存在的物理化学形式。
这些形态的重金属具有不同的生理活性和毒性,对环境和生物的影响也不同。
以下是一些常见的土壤重金属形态:
1. 水溶态:重金属以离子形式存在于土壤溶液中,这种形态下的重金属具有较高的活性和毒性,易被植物根系吸收并进入食物链。
2. 交换态:重金属离子吸附在土壤颗粒表面,与土壤中的其他阳离子进行交换,这种形态下的重金属也具有较高的活性和毒性。
3. 碳酸盐结合态:重金属与碳酸盐结合形成沉淀,这种形态下的重金属活性较低,但在某些条件下可能重新释放到土壤中。
4. 铁锰氧化物结合态:重金属与铁锰氧化物结合形成复合物,这种形态下的重金属活性较低,但在土壤氧化还原条件改变时可能重新释放。
5. 有机物结合态:重金属与有机物质结合形成复合物,这种形态下的重金属活性取决于有机物的种类和性质。
6. 残渣态:重金属以不溶性残渣形式存在于土壤中,这种形态下的重金属活性最低,对环境和生物的影响也最小。
需要注意的是,重金属的形态并不是固定不变的,它们可能随着土壤环境条件的变化而发生转化。
例如,在氧化还
原条件改变时,铁锰氧化物结合态和有机物结合态的重金属可能重新释放到土壤中;在土壤pH值变化时,碳酸盐结合态的重金属也可能发生转化。
因此,在评估土壤重金属污染时,需要综合考虑重金属的形态及其在土壤中的转化情况。