第二章好氧生物处理原理与工艺
- 格式:doc
- 大小:119.00 KB
- 文档页数:7
好氧生物处理
好氧生物处理:利用好氧微生物及技术实现废水再生利用。
好氧生物处理是一种有效的工艺,可以将活体有机物分解为无毒无害的产物。
它是一种生物技术,可以处理少量的固体有机物、污水、
废气和废物,达到清洁的环境标准。
1.它的原理
好氧生物处理的原理是,有机物被微生物分解后,有机气体或生物产
物以更容易被处理的形式释放到环境中。
在处理过程中,活性碳和有
机质都可以作为污水处理的附加剂来提高和促进处理的有效性。
2.它的好处
好氧生物处理非常有效,可以将有机污染物的浓度降低至经许可的标准,甚至在极少的情况下消灭它们。
它还可以提高水的可用性,使其
成为良好的水质区,添加对水的营养,并保护水库附近的植被和生物。
3.它的使用方式
好氧生物处理可以以几种不同的方式进行应用,最常见的是沉淀池,
在沉淀池中,微生物可以将污染物转化为可以排放的有机和无机物质。
此外,也可以使用水处理池及其他处理技术。
废水的好氧生物处理原理概述引言废水处理是一项重要的环保工作,它的目标是将废水中的有害物质转化为无害物质,使废水能够安全地排放到环境中或进行回用。
好氧生物处理是其中一种常见的处理方法,通过利用微生物的好氧代谢能力来分解和去除废水中的有机污染物。
本文将概述废水的好氧生物处理原理,介绍其工作原理、常见的反应器类型以及关键参数的控制方法。
好氧生物处理工作原理好氧生物处理是利用好氧条件下微生物的代谢活动来降解废水中有机物的过程。
在好氧条件下,微生物如细菌和真菌通过氧化废水中的有机物质,将其转化为无机物质(如水和二氧化碳)以及微生物细胞。
该过程主要包括废水处理系统、生物反应器和微生物活化等关键环节。
废水处理系统通常包括进水口、混合器、好氧生物反应器、沉淀池和出水口等组成部分。
进水口将废水引入处理系统,并通过混合器将废水中的有机物质均匀分布到生物反应器中。
生物反应器是废水处理的核心部分,其中包含大量的微生物,这些微生物需要合适的温度、pH值和养分等条件来实现生长和代谢活动。
在反应器中,微生物利用氧气对废水中的有机物质进行氧化分解,并释放出能量和二氧化碳。
废水中的有机物质主要是废水中的化学物质、悬浮物和微生物。
废水处理系统中的沉淀池主要用于分离处理后的水和沉淀物。
沉淀池中的沉淀物可通过定期清理或其他方法进行处理。
最后,经过处理后的水可以被安全地排放或进一步处理以实现循环利用。
好氧生物反应器的类型好氧生物反应器是废水处理系统中的核心设备,它提供了一个适宜的环境,以支持微生物降解废水中的有机物质。
根据反应器的结构和操作方式,可以将好氧生物反应器分为以下几种类型:曝气池是一种常见的好氧生物反应器,其工作原理是通过向反应器中引入气体,通常是空气,来提供氧气供微生物代谢使用。
曝气池通常具有较高的气液界面,并通过机械或气体喷射装置产生气泡,并使废水充分与氧气接触。
这有助于增加溶解氧的浓度,并提供微生物代谢所需的氧气。
曝气池可以是连续操作或间歇操作的,具体取决于废水处理的需求。
好氧生物处理工艺简介水解*化-好氧生物处理技术已成功地用于中等污染浓度的有机废水的处理中,也成功地用于城市污水等低浓度有机污水的处理中。
小编下面为大家整理关于好氧生物处理工艺的文章,欢迎阅读参考!1.水解*化-好氧处理工艺的原理好氧工艺可以采用目前各种类型好氧生物系统,如Sp系统、氧化沟、曝气生物滤池、好氧接触氧化池等,水解*化池前要有预处理措施,包括粗、细格栅和沉砂池等,以防止堵塞水解*化池布水系统。
本组合工艺中沉砂池一般不用曝气沉砂池,宜选用旋流式沉砂池,以便为后续的水解*化工艺创造比较好的环境条件。
二沉池排出的剩余污泥进入水解*化池,并定期从悬浮污泥层排放剩余污泥,经浓缩与机械脱水后外运。
2.水解*化-好氧处理工艺的技术特征⑴污水经水解*化过程处理后,可生化*提高,使得后续好氧生物处理的难度减小,好的水力停留时间可以缩短。
⑵耐进水冲击负荷能力强。
⑶对于城市污水,水解*化过程可大幅度地去除废水中悬浮物或有机物,减轻后续好氧处理工艺负担。
⑷水解*化-好氧工艺所产生的剩余污泥,必要时可回流至水解*化段,一方面可以增加水解*化段的污泥浓度,另一方面可以降低整个工艺的产泥量,并提高剩余污泥的稳定*。
⑸水解*化设施在处理城市污水时,常用作初沉池,一池多用。
⑹水解*化阶段的微生物多为兼*菌,种类多,生长快,对环境条件适应*强,要求的环境条件宽松,易于管理和控制。
由于该工艺具有以上特点,所以不仅适用于易生物降解的城市污水处理,同时也适合于含有难生物降解有机物的工业废水的城市污水的处理,以及一些有机工业废水的处理。
3.水解*化池的结构水解*化池主要包括以下几个部分:⑴池体一般为矩形或圆形,水解*化池的经济高度一般为4~6m之间,另外,可以对水解*化池进行分格,分格后,每一单元尺寸减少,可提高配水的均匀*,同时有利于维护和检修。
⑵配水系统常用的配水方式有:一管一孔布水、一管多孔配水方式、分枝式配水方式。
⑶出水收集装置水解*化池的出水可以采用设于池水表面三角出水堰进行收集⑷排泥系统当水解*化池内污泥达到一定高度后应进行排泥,排泥的高度的设定应考虑排出低活*的污泥,保留高活*的污泥,通常污泥的排放点设在污泥区的中上部,可采用定时排泥方式,每日排泥一至二次。
异氧微生物 第二章 好氧生物处理(原理与工艺)2. 1基本概念2. 1。
1好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。
好氧生物处理过程的生化反应方程式:● 分解反应(又称氧化反应、异化代谢、分解代谢)(占1/3)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量 (有机物的组成元素)● 合成反应(也称合成代谢、同化作用)(占2/3) ● C 、H 、O 、N 、 + 能量 C 5H 7NO 2● 内源呼吸(也称细胞物质的自身氧化)(endogenous respiration )C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 +⋯+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3 分解与合成的相互关系:1) 二者不可分,而是相互依赖的;a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b .分解过程是一个产能过程,合成过程则是一个耗能过程。
2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对于后续污泥的处理有直接影响(污泥的处理费用一般占整个污水处理厂的40~50%)。
不同形式的有机物被生物降解的历程也不同: 一方面:● 结构简单、小分子、可溶性物质,直接进入细胞壁;● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。
另一方面:有机物的化学结构不同,其降解过程也会不同:2. 1。
好氧生物处理污水基本知识汇总(仅供参考)第一章好氧生物处理法的分类好氧生物处理法是指在充分供氧的条件下,利用好氧微生物是生命活动过程,将有机污染物氧化分解成较稳定的无机物的处理方法,主要包括活性污泥法和生物法。
一、活性污泥的概念黄褐色的絮体,主要有由大量繁殖的微生物群体所构成,其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力,使其易于沉淀与水分离,实现净化水质分目的。
二、活性污泥的构成活性污泥是由活性微生物、微生物残留体、附着的不能降解的有机物和无机物组成的褐色絮凝体,以好氧细菌为,也存活着真菌、原生动物和后生动物等。
活性污泥中的细菌以异养型的原核细菌为主。
细菌是以溶解性物质(COD)为食物的单细胞微生物。
细菌虽是微生物主要的组成部分,但是活性污泥中哪些种属的细菌占优势,要看污水中所含有机物的成分以及活性污泥法运行操作条件等因素。
真菌是多细胞的异养型微生物,属于专性好氧微生物。
真菌对氮的需求仅为细菌的一半。
活性污泥法中常见的真菌是微小的腐生或寄生的丝状菌,它们具有分解碳水化合物、脂肪、蛋白质及其他含氮化合物的功能。
在A/O工艺中,常说的硝化细菌为自氧菌,该菌世代时间较长且较反硝化菌(异氧菌)对环境条件更为敏感,当条件发生变化时,与其他异氧微生物竞争往往处于劣势且受到抑制。
一单硝化细菌受到抑制,氨氮去除率低,系统内缺少盐酸盐氮,进而影响反硝化过程,使得总氮效率差。
三、活性污泥系统运行的基本条件·废水中含有足够的可溶性易降解有机物·混合液含有足够的溶解氧·活性污泥在池内呈悬浮状态·维持曝气池内稳定的活性污泥浓度·池内不含有对微生物有毒有害的物质第三章活性污泥法分类及原理活性污泥最早采用的是普通污泥法(又称传统活性污泥法),随着工业生产的发展,在普通活性污泥的基础上发展了多种运行方式)。
常用的MBR、普通活性污泥法及改良工艺、氧化沟工艺、SBR(间歇式序批式改进型是cass)工艺等。
好氧工艺原理
好氧工艺是一种处理有机污水的方法,其原理是利用氧气来加速有机物的降解和氧化反应。
好氧工艺一般包括生物接触氧化法、活性污泥法和生物膜法等。
好氧工艺的原理主要有以下几个方面:
1. 氧气供给:好氧工艺中,通过向废水中供给充足的氧气,可以提供生物降解有机物所需的氧气。
氧气的供给可以通过机械通气(例如气泡曝气)或者自然通气(例如采用植物修复)等方式进行。
2. 有机物降解:好氧工艺中,有机物由微生物分解降解为二氧化碳、水和微生物生物物态的新生物污泥。
在好氧条件下,微生物能够利用有机物作为碳源进行生长和繁殖。
3. 混合及接触:好氧工艺中,通过充分的混合和接触,使废水中的有机物和氧气充分接触,提高有机物的充氧速度和降解效率。
例如在活性污泥法中,废水和污泥通过搅拌等方式进行混合和接触。
4. 调节和提高养分比例:对于某些有特殊要求的废水,如高氮、高磷废水,需要调节和提高废水中的氮、磷等养分的比例,以满足微生物的生长需求,促进有机物的降解和去除。
通过以上原理,好氧工艺能够有效地降解有机污水,使废水达到排放标准,减少对环境的污染。
好氧工艺具有处理效果好、
设备投资和运行成本低等优点,被广泛应用于市政污水处理、工业废水处理等领域。
异氧微生物第二章好氧生物处理(原理与工艺)2.1 基本概念2.1.1 好氧生物处理的基本生物过程所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。
好氧生物处理过程的生化反应方程式:● 分解反应(又称氧化反应、异化代谢、分解代谢)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量 (有机物的组成元素)● 合成反应(也称合成代谢、同化作用)C 、H 、O 、N 、S + 能量 C 5H 7NO 2 ● 内源呼吸(也称细胞物质的自身氧化)C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3分解与合成的相互关系:1) 二者不可分,而是相互依赖的;a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b .分解过程是一个产能过程,合成过程则是一个耗能过程。
2) 对有机物的去除,二者都有重要贡献;3)合成量的大小, 对于后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的微生物异氧微生物40~50%)。
不同形式的有机物被生物降解的历程也不同: 一方面:● 结构简单、小分子、可溶性物质,直接进入细胞壁;● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。
另一方面:有机物的化学结构不同,其降解过程也会不同: 如: 糖类脂类 蛋白质2.1.2 影响好氧生物处理的主要因素 1)溶解氧(DO ): 约1~2mg/l 2)水温:是重要因素之一,a . 在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;b . 细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度 15~30︒C ; >40︒C 或< 10︒C 后,会有不利影响。
异氧微生物 第二章 好氧生物处理(原理与工艺)2. 1基本概念2. 1。
1好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。
好氧生物处理过程的生化反应方程式:● 分解反应(又称氧化反应、异化代谢、分解代谢)(占1/3)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量 (有机物的组成元素)● 合成反应(也称合成代谢、同化作用)(占2/3) ● C 、H 、O 、N 、 + 能量 C 5H 7NO 2● 内源呼吸(也称细胞物质的自身氧化)(endogenous respiration )C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 +⋯+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3 分解与合成的相互关系:1) 二者不可分,而是相互依赖的;a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b .分解过程是一个产能过程,合成过程则是一个耗能过程。
2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对于后续污泥的处理有直接影响(污泥的处理费用一般占整个污水处理厂的40~50%)。
不同形式的有机物被生物降解的历程也不同: 一方面:● 结构简单、小分子、可溶性物质,直接进入细胞壁;● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。
另一方面:有机物的化学结构不同,其降解过程也会不同:2. 1。
2影响好氧生物处理的主要因素 1)溶解氧(DO ): 约1~2mg/l 2)水温:是重要因素之一,a . 在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;b . 细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度 15~30︒C ; >40︒C 或< 10︒C 后,会有不利影响。
3)营养物质:细胞组成中,C 、H 、O 、N 约占90~97% 其余3~10%为无机元素,主要的是P 。
生活污水一般不需再投加营养物质;而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N 和P 。
其它无机营养元素:K 、Mg 、Ca 、S 、Na 等; 微量元素: Fe 、Cu 、Mn 、Mo 、Si 、硼等; 4)pH 值:一般好氧微生物的最适宜pH 在6.5~8.5之间;微生物 异氧微生物pH< 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。
5)有毒物质(抑制物质)主要有:重金属蛋白质的沉淀剂(变性;与-SH结合而失活)氰化物H2S卤族元素及其化合物酚、醇、醛使蛋白质变性或脱水染料等;6污水中的有机物本来是微生物的食物,但太多时,也会不利于微生物。
7)氧化还原电位:好氧细菌:+300 ~ 400 mV,至少要求大于+100 mV。
厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则<-100 mV,甚至<-300 mV。
2.1。
3废水可生化性和可生化程度的判别生物降解性能是指在微生物的作用下,使某一物质改变原来的化学和物理性质,在结构上引起的变化程度。
可分为三类:1)初级生物降解——指有机物原来的化学结构发生了部分变化,改变了分子的完整性;2)环境可接受的生物降解——指有机物失去了对环境有害的特性;3)完全降解——在好氧条件下,有机物被完全无机化;在厌氧条件下,有机物被完全转化为CH4、CO2等。
有机物生物降解性能的分类:1)易生物降解——易于被微生物作为碳源和能源物质而被利用;如单糖等;2)可生物降解——能够逐步被微生物所利用;如淀粉、脂肪、蛋白质、核酸等;3)难生物降解——降解速率很慢或根本不降解。
如烃类、硝基化合物、有机农药及有机燃料等;注意:1)“难、易”是相对的;2)同一种化合物在不同种属微生物的作用下,其降解情况也会有不同。
有机物生物降解的一般规律;1) 对于烃类化合物,一般是链烃比环烃易于生物分解,直链烃比支链烃易于分解,不饱和烃比饱和廷易于分解;2)有机物分子主链上的碳原子被其它原子(如氧、硫、氮)取代时,该分子的可生化性就降低,其中尤以氧取代的分子为甚。
生物分解从难到易的顺序为氧>硫>氮>碳。
3) 主链的碳原子连有一个支链时,其生化性就有所降低;连有两个支链时,可生化性降低较多;当连有两个烷基或芳基时,可生化性也降低较多;4) 苯环上连有羟基或氨基(生成苯酚或苯胺)时,可生化性有所提高;而当为卤代物(特别是间位取代)时,可生化性就降低了。
5) 醇类的可生化性次序为:一元醇>二元醇>三元醇。
6) 聚合或复合的高分子化合物往往难于生物转化(如木质素、塑料等)。
影响有机物生物降解性能的因素:1)与化学物质的种类性质有关的因素(化学组成、理化性质、浓度、与它种基质的共存);2)与微生物的种类、性质有关的因素(微生物的来源、数量、种属间的关系);3)与有机物、微生物所处的环境有关的因素(pH值、DO、温度、营养物等)。
2.2悬浮生长的好氧生物处理工艺2.2。
1活性污泥法(Activated Sludge Process)一.活性污泥法的基本原理曝气池:反应主体二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内一定的污泥浓度。
回流系统: 1)保证曝气池内维持足够的污泥浓度;2)通过改变回流比,改变曝气池的运行工况。
剩余污泥: 1)是去除有机物的途径之一;2)维持系统的稳定运行。
供氧系统:提供足够的溶解氧活性污泥系统有效运行的基本条件是:1)废水中含有足够的可容性易降解有机物;2)混合液含有足够的溶解氧;3)活性污泥在池内呈悬浮状态;4)活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥;5)没有对微生物有毒有害的物质流入。
二.活性污泥的性质及性能指标1.物理性能:——“菌胶团”——“生物絮凝体”颜色:褐色、(土)黄色、铁红色气味:泥土味(城市污水)比重:略大于1 (1.002~1.006)粒径:0.02~0.2 mm比表面积:20~100cm2/ml2.生化性能:a.活性污泥的含水率:99.2~99.8%b.固体物质的组成:1)活细胞(M a):2)微生物内源代谢的残留物(M e):3)吸附的原废水中难于生物降解的有机物(M i):4)无机物质(M ii):3.活性污泥中的微生物:A.细菌:是活性污泥净化功能最活跃的成分主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等特征: 1)多属好氧和兼性异养型的原核细菌;2)在有氧条件下,具有较强的分解有机物的功能;3)具有较高的增殖速率,其世代时间为20~30分钟;4)其中的动胶杆菌具有将大量细菌结成为“菌胶团”的功能。
B.其它微生物------原生动物----在活性污泥中大约为103个/ml4.活性污泥的性能指标:(1)混合液悬浮固体浓度(MLSS)(Mixed Liquor Suspended Solids)MLSS = M a + M e + M i + M ii单位:mg/l g/m3(2)混合液挥发性悬浮固体浓度(MLVSS)(Mixed V olatile Liquor Suspended Solids)MLVSS = M a + M e + M i在条件一定时,MLVSS/MLSS是较稳定的,对城市污水,一般是0.75—0.85(3)污泥沉降比(SV)(Sludge V olume)——是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示;——能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀;——正常数值20~30%(4)污泥体积指数(SVI ) (Sludge V olume Index )——曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。
——能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象;——城市污水的SVI 一般为 50~150 ml/g ;——注意:1)对于工业废水,SVI 不在上述范围内,有时也属正常;2) 对于高浓度活性污泥系统,即使污泥沉降性能较差,由于MLSS 较高,其SVI也不会很高。
5.关于活性污泥法运行控制中常用的一些参数: 流量 COD BOD 微生物浓度 A Q Ci Bi Xi B 、C Q + Qr Ce Be X D Q – Qw Ce Be Xe E Qw Ce Be Xr F Qr Ce Be Xr 1)曝气池的有机容积负荷:VC Q L ivCOD ⋅=)(3d m kgCOD ⋅;V B Q L ivBOD ⋅=5)(35d m kgBOD ⋅2) 曝气池的有机污泥负荷:V MLSS C Q L i sCOD ⋅⋅= d kgMLSS kgCOD ⋅; V MLSS B Q L isBOD ⋅⋅=5 d kgMLSS kgBOD ⋅53)曝气池的水力停留时间(Hydraulic Retention Time )Q V HRT = (h )4)曝气池的污泥停留时间(Sludge Retention Time )SRT =V • X /Qw •Xr (h 或 d ) 5) 回流比与污泥浓度的关系 回流比:R=Q r /Q根据物料平衡的原理有:在稳定工作状态下,单位 时间进入二沉池的污泥量将等于离开二沉池的污泥量 即 (Q+Q r ) X = Q r X r +Q w X r + (Q-Q w ) X e (Q+Q r ) X = (Q r +Q w ) X r + (Q-Q w ) X e由于 Q r >>Q w 且 X e = 0 则简化为: X(1+R)=X r R所以: R=X/(X r -X) (X r =r.106/SVI )式中r 是考虑污泥在二沉池中停留时间、池深、污泥厚度等因素的有关系数,一般取值1.2左右。
MLSS (g/l )SVI =SV (ml/l )或 SVI =SV (%)⨯10(ml/l ) MLSS (g/l )三.活性污泥的增长规律1、 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。