2 好氧生物处理(原理与工艺)
- 格式:doc
- 大小:1.18 MB
- 文档页数:6
The Global Institute for Urban and Regional Sustainability (GIURS)Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration (SHUES)East China Normal University (ECNU)Shanghai · 200241· China---speaker :Annie 污水好氧生物处理---活性污泥法活性污泥法概述活性污泥法的净化过程与机制活性污泥法的性能指标及有关参数活性污泥法的各种演变及应用曝气池的类型与构造一、活性污泥法概述•基本原理:该法是在人工充氧条件下,对污水和各种微生物群体进行连续混合培养,形成活性污泥。
利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。
然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分排出活性污泥系统。
•基本工艺流程:初次沉淀池曝气池回流污泥泵房二次沉淀池鼓风机房进水出水空气回流活性污泥剩余污泥•历经主要阶段:吸附阶段氧化阶段絮凝体形成与沉降阶段•活性污泥的形态,组成形态:多为黄色或褐色絮体,含水率超过99%,比表面积大。
组成:活性污泥由四部分组成•(1)Ma——活性污泥微生物;•(2)Me——活性污泥代谢产物;•(3)Mi——活性污泥吸附的难降解惰性有机物;•(4)Mii——活性污泥吸附的无机物。
微生物组成:细菌(90%-95%,甚至100%)、真菌、原生动物、后生动物菌胶团细菌丝状菌指示性动物•环境因素对活性污泥微生物的影响1.BOD负荷率(污泥负荷)2.营养物质一般平衡时用BOD5:N:P的关系来表示,一般需求为100:5:1 3.PH最适宜PH为6.5~8.5之间PH<6.5,真菌增长利于丝状菌易膨胀PH>9时,菌胶易解体活性污泥凝体遭到破坏。
好氧生物处理的调试及运行方法摘要:废水的生物处理利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程。
本文主要阐述了生活污水处理系统中好氧生物处理中活性污泥的性质原理、好氧生物处理的调试及运行中工作方法及细节事项,对现场实际工作有着一定指导意义。
关键词:好氧;生物处理;生活废水;活性污泥;培菌;驯化一、活性污泥性能原理及物理性质活性污泥工作原理是生物降解。
活性污泥外观似棉絮状,亦称絮粒或绒粒,有良好的沉降性能。
正常活性污泥呈黄褐色。
供氧曝气不足,可能有厌氧菌产生,污泥发黑发臭。
溶解氧过高或进水过淡,负荷过低色泽转淡。
良好活性污泥带泥土味。
二、培菌前的准备工作1.认真消化施工设计图纸资料及管理运行手册。
2.检查熟悉系统装备及管线阀门,指示记录仪表。
3.清理施工时遗留在池内杂物。
4.加注清水或泵抽河水作池渗漏试验,单台调试后联动试车,调好出水堰板至污水处理可正常工作。
三、培菌方法1.活性污泥培养影响因素活性污泥培养是为活性污泥的微生物提供一定的生长繁殖条件,即营养物,溶解氧,适宜温度和酸碱度。
(1)营养物:即水中碳、氮、磷之比应保持 100:5:1。
(2)溶解氧:因污泥以絮体形式存在于曝气池中,以直径500μm 活性污泥絮粒而言,周围溶解氧浓度 2mg/l 时,絮粒中心已低于 0.1mg/l,抑制了好氧菌生长,所以曝气池溶解氧浓度常需高于 3-5mg/l,常按 5-10mg/l 控制。
调试一般认为,曝气池出口处溶解氧控制在 2mg/l 较为适宜。
(3)温度:一般为 10-45度,适宜温度为 15-35度。
(4)酸碱度:一般 PH 为 6-9。
特殊时,进水最高可为 PH9-10.5,超过上述规定值时,应加酸碱调节。
2.培菌方法生活污水培菌法:在温暖季节,先使曝气池充满生活污水,闷曝(即曝气而不进污水)数十小时后,即可开始进水。
进水量由小到大逐渐调节,连续运行数天即可见活性污泥出现,并逐渐增多。
异氧微生物 第二章 好氧生物处理(原理与工艺)2. 1基本概念2. 1。
1好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。
好氧生物处理过程的生化反应方程式:● 分解反应(又称氧化反应、异化代谢、分解代谢)(占1/3)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量 (有机物的组成元素)● 合成反应(也称合成代谢、同化作用)(占2/3) ● C 、H 、O 、N 、 + 能量 C 5H 7NO 2● 内源呼吸(也称细胞物质的自身氧化)(endogenous respiration )C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 +⋯+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3 分解与合成的相互关系:1) 二者不可分,而是相互依赖的;a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b .分解过程是一个产能过程,合成过程则是一个耗能过程。
2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对于后续污泥的处理有直接影响(污泥的处理费用一般占整个污水处理厂的40~50%)。
不同形式的有机物被生物降解的历程也不同: 一方面:● 结构简单、小分子、可溶性物质,直接进入细胞壁;● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。
另一方面:有机物的化学结构不同,其降解过程也会不同:2. 1。
好氧池cod去除原理-回复【好氧池COD去除原理】:深入解析与应用探讨在现代废水处理工艺中,好氧生物处理技术是核心环节之一,其中的好氧池在化学需氧量(COD)的去除上扮演了至关重要的角色。
本文将详细阐述好氧池去除COD的原理、过程以及影响因素。
一、好氧池的基本概念与功能好氧池是一种模拟自然水体生态系统中微生物进行有氧呼吸环境的人工构筑物,主要用于生活污水和工业废水中有机物质的生物降解。
其核心原理是利用活性污泥中的微生物群落,在充足的溶解氧条件下,对废水中的有机污染物进行氧化分解,从而实现COD的有效去除。
二、好氧池去除COD的原理1. 微生物降解过程好氧池内含有大量的好氧微生物,包括细菌、真菌、原生动物等,这些微生物能通过自身的酶系统,将废水中的复杂有机物转化为较为简单的化合物,并最终转化为二氧化碳、水及微生物细胞生物质。
这一过程中,微生物摄取有机物作为能源和碳源进行生长繁殖,同时消耗氧气,即实现了COD的生物降解。
2. COD的计量方式与转化COD代表的是在一定条件下,用强氧化剂氧化水体中有机物及无机还原性物质所需的氧量,单位通常为mg/L。
在好氧池中,微生物的生物氧化作用可以看作是一个“微缩版”的化学氧化过程,通过逐步分解有机物,使得原本计算在COD内的有机物被转化为无害的产物,从而降低了水体中的COD值。
三、好氧池去除COD的过程1. 污水进入好氧池后,首先与活性污泥充分混合接触,有机物被微生物吸附并摄取。
2. 在好氧条件下,微生物通过胞内酶的作用,将有机物分解为小分子有机酸、醇类等中间产物,然后进一步转化为CO2和H2O。
3. 同时,微生物在此过程中获取能量并进行自身生长繁殖,形成更多的微生物群体,保持活性污泥的良好活性。
4. 为了保证足够的溶解氧供给,需要通过曝气设备向池内持续供氧,以满足微生物的需氧需求。
四、影响好氧池COD去除效率的因素1. 溶解氧浓度:足够的溶解氧是维持好氧微生物正常代谢活动的关键,若溶解氧不足,会导致微生物活性降低,COD去除效果大打折扣。
A2-O工艺处理污水的效果分析A2/O工艺处理污水的效果分析一、引言城市化进程不断加快,伴随而来的是污水处理问题的日益突出。
传统的污水处理方法面临着处理能力限制和处理效果不佳等问题。
为此,研究人员不断探索新的工艺方法,寻求更高效、更经济、更环保的污水处理技术。
A2/O工艺便是在这样的背景下而应运而生的一种新型污水处理工艺。
二、A2/O工艺概述A2/O工艺是一种混合工艺,将A工艺中的好氧生物处理和A/O工艺中的厌氧-好氧生物处理相结合,通过厌氧空间和好氧空间的相互补充,实现高效的有机物去除效果。
其处理流程包括预处理、好氧生物处理、厌氧生物处理和二沉池等环节。
三、A2/O工艺的工作原理1. 好氧生物处理好氧生物处理是A2/O工艺的第一个环节,主要利用好氧菌群将污水中的有机物分解为CO2和H2O。
好氧生物处理采用上升流式接触氧化法,即将污水从底部进水,在氧气的作用下,有机物通过生物降解过程被氧化分解。
2. 厌氧生物处理在好氧生物处理后,剩余的有机物通过沉积至厌氧生物处理区域,通过厌氧菌的作用进一步去除。
厌氧生物处理是A2/O工艺的关键环节,通过控制厌氧区域的厌氧度、溶解氧浓度和有机负荷等参数,实现高效有机物去除效果。
3. 二沉池A2/O工艺最后一个环节是二沉池,主要用于污水中悬浮物和菌群的沉降。
在污水进入二沉池后,通过对污水中添加絮凝剂,使悬浮物形成较大颗粒,使其易于沉降。
然后,经过二沉后的上清液通过出水口排出,完成整个处理过程。
四、A2/O工艺的应用情况A2/O工艺已经在国内外广泛应用于城市污水处理厂和工业废水处理厂。
在国内,许多大中城市的污水处理厂都采用A2/O工艺进行处理。
该工艺在处理能力、处理效果和运行成本等方面都得到了良好的验证。
五、A2/O工艺的效果分析1. 有机物去除效果A2/O工艺采用好氧-厌氧联合处理方式,既能在好氧环节中去除有机物,又能在厌氧环节中进一步去除残余有机物。
此外,好氧生物处理和厌氧生物处理中分别采用上升流和下降流方式,增加了接触面积和微生物的利用效率。
异氧微生物第二章好氧生物处理(原理与工艺)2.1 基本概念2.1.1 好氧生物处理的基本生物过程所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。
好氧生物处理过程的生化反应方程式:● 分解反应(又称氧化反应、异化代谢、分解代谢)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量 (有机物的组成元素)● 合成反应(也称合成代谢、同化作用)C 、H 、O 、N 、S + 能量 C 5H 7NO 2 ● 内源呼吸(也称细胞物质的自身氧化)C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 + SO 42- +⋯+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3分解与合成的相互关系:1) 二者不可分,而是相互依赖的;a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b .分解过程是一个产能过程,合成过程则是一个耗能过程。
2) 对有机物的去除,二者都有重要贡献;3)合成量的大小, 对于后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的微生物异氧微生物40~50%)。
不同形式的有机物被生物降解的历程也不同: 一方面:● 结构简单、小分子、可溶性物质,直接进入细胞壁;● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。
另一方面:有机物的化学结构不同,其降解过程也会不同: 如: 糖类脂类 蛋白质2.1.2 影响好氧生物处理的主要因素 1)溶解氧(DO ): 约1~2mg/l 2)水温:是重要因素之一,a . 在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;b . 细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度 15~30︒C ; >40︒C 或< 10︒C 后,会有不利影响。
3)营养物质:细胞组成中,C 、H 、O 、N 约占90~97% 其余3~10%为无机元素,主要的是P 。
生活污水一般不需再投加营养物质;而某些工业废水则需要, 一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N 和P 。
其它无机营养元素:K 、Mg 、Ca 、S 、Na 等; 微量元素: Fe 、Cu 、Mn 、Mo 、Si 、硼等; 4)pH 值:一般好氧微生物的最适宜pH 在6.5~8.5之间; pH < 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH 值。
5)有毒物质(抑制物质)主要有: 重金属 蛋白质的沉淀剂(变性;与-SH 结合而失活) 氰化物 H 2S 卤族元素及其化合物酚、醇、醛 使蛋白质变性或脱水 染料等;活性污泥系统中有毒物质的最高允许浓度:TCA 循环6)有机负荷率:污水中的有机物本来是微生物的食物,但太多时,也会不利于微生物。
7)氧化还原电位:好氧细菌:+300 ~ 400 mV,至少要求大于+100 mV。
厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则<-100 mV,甚至<-300 mV。
2.1.3废水可生化性和可生化程度的判别生物降解性能是指在微生物的作用下,使某一物质改变原来的化学和物理性质,在结构上引起的变化程度。
可分为三类:1)初级生物降解——指有机物原来的化学结构发生了部分变化,改变了分子的完整性;2)环境可接受的生物降解——指有机物失去了对环境有害的特性;3)完全降解——在好氧条件下,有机物被完全无机化;在厌氧条件下,有机物被完全转化为CH4、CO2等。
有机物生物降解性能的分类:1)易生物降解——易于被微生物作为碳源和能源物质而被利用;2)可生物降解——能够逐步被微生物所利用;3)难生物降解——降解速率很慢或根本不降解。
注意:1)“难、易”是相对的;2)同一种化合物在不同种属微生物的作用下,其降解情况也会有不同。
鉴定和评价废水中有机污染物的好氧生物降解性的方法:影响有机物生物降解性能的因素:1) 与化学物质的种类性质有关的因素(化学组成、理化性质、浓度、与它种基质的共存); 2) 与微生物的种类、性质有关的因素(微生物的来源、数量、种属间的关系); 3) 与有机物、微生物所处的环境有关的因素(pH 值、DO 、温度、营养物等)。
2.2 悬浮生长的好氧生物处理工艺 2.2.1.1 活性污泥法 (Activated Sludge Process ) 一. 活性污泥法的基本原理曝气池:反应主体二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内一定的污泥浓度。
回流系统: 1)保证曝气池内维持足够的污泥浓度;2)通过改变回流比,改变曝气池的运行工况。
剩余污泥: 1)是去除有机物的途径之一; 2)维持系统的稳定运行。
供氧系统:提供足够的溶解氧活性污泥系统有效运行的基本条件是:1)废水中含有足够的可容性易降解有机物;2)混合液含有足够的溶解氧;3)活性污泥在池内呈悬浮状态;4)活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥;5)没有对微生物有毒有害的物质流入。
二.活性污泥的性质及性能指标1.物理性能:——“菌胶团”——“生物絮凝体”颜色:褐色、(土)黄色、铁红色气味:泥土味(城市污水)比重:略大于1 (1.002~1.006)粒径:0.02~0.2 mm比表面积:20~100cm2/ml2.生化性能:a.活性污泥的含水率:99.2~99.8%b.固体物质的组成:1)活细胞(M a):2)微生物内源代谢的残留物(M e):3)吸附的原废水中难于生物降解的有机物(M i):4)无机物质(M ii):3.活性污泥中的微生物:A.细菌:是活性污泥净化功能最活跃的成分主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等特征: 1)多属好氧和兼性异养型的原核细菌;2)在有氧条件下,具有较强的分解有机物的功能;3)具有较高的增殖速率,其世代时间为20~30分钟;4)其中的动胶杆菌具有将大量细菌结成为“菌胶团”的功能。
B.其它微生物------原生动物----在活性污泥中大约为103个/ml4.活性污泥的性能指标: (1) 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ) MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 (2)混合液挥发性悬浮固体浓度(MLVSS )(Mixed V olatile Liquor Suspended Solids ) MLVSS = M a + M e + M i在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75—0.85 (3)污泥沉降比(SV ) (Sludge V olume )——是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; ——能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; ——正常数值 20~30%(4)污泥体积指数(SVI ) (Sludge V olume Index )单位是 ml/g 。
——能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象;——城市污水的SVI 一般为 50~150 ml/g ;——注意:1)对于工业废水,SVI 不在上述范围内,有时也属正常;2) 对于高浓度活性污泥系统,即使污泥沉降性能较差,由于MLSS 较高,其SVI 也不会很高。
5.关于活性污泥法运行控制中常用的一些参数:流量 COD BOD 微生物浓度 A Q Ci Bi Xi B 、C Q + Qr Ce Be X D Q – Qw Ce Be Xe E Qw Ce Be Xr F Qr Ce Be Xr 1) 曝气池的有机容积负荷:VC Q L ivCOD ⋅=)(3d m k g C O D⋅; VB Q L ivBOD ⋅=5 )(35d m k g B O D ⋅2) 曝气池的有机污泥负荷:V MLSS C Q L i sCOD ⋅⋅= d k g M L S S k g C O D⋅; VMLSS B Q L isBOD ⋅⋅=5 d k g M L SS k g B O D ⋅5 3)曝气池的水力停留时间(Hydraulic Retention Time ) Q V H R T = (h )4)曝气池的污泥停留时间(Sludge Retention Time )SRT =V ∙ X /Qw ∙Xr (h 或 d )或 SVI =SV (%)⨯10(ml/l )。