染色体变异
- 格式:docx
- 大小:859.76 KB
- 文档页数:9
染色体变异知识点归纳染色体变异是指染色体在结构或数量上发生的异常变化。
这种变异可以影响个体的正常发育和遗传特征。
染色体变异是生物界中一种普遍存在的现象,对于我们深入了解生物进化、疾病发生机理以及生殖和发育的基本规律具有重要意义。
本文将就染色体变异的一些重要知识点进行归纳和阐述。
1. 染色体结构变异:染色体结构变异是指染色体的一部分或多部分基因座的改变。
常见的染色体结构变异类型包括:缺失、重复、倒位、倒位重复、平衡易位等。
这些变异可导致基因座的失活、产生缺陷蛋白或改变基因座间的相对位置,从而导致不正常的遗传现象。
2. 染色体数量变异:染色体数量变异是指个体染色体数目的改变。
最常见的染色体数量变异是多倍体和单倍体,即个体拥有比正常染色体组数目更多或更少的染色体。
多倍体现象常见于植物中,而单倍体现象则较少见。
染色体数量变异会导致基因组的不平衡,影响个体的正常发育和生殖能力。
3. 染色体突变:染色体突变是指基因型发生突变后出现的染色体变异。
染色体突变可分为净增加、净减少和无净变化三种类型。
例如,染色体净增加的突变类型包括染色体转移、重排或多倍化。
而染色体净减少的突变类型包括染色体丢失、缺失或单体化。
染色体突变是形成新基因座、增加基因座复杂性和遗传多样性的重要途径。
4. 染色体缺失综合征:染色体缺失综合征是由于染色体上某一片段的缺失导致的遗传疾病。
典型的染色体缺失综合征有爱德华氏综合征和普雷综合征等。
染色体缺失综合征的临床表现和发病机制多样,但在某些综合征中,一些特定的缺失片段与一些症状有着明确的关联,从而有助于对疾病的诊断。
5. 染色体易位:染色体易位是指染色体上两个非同源片段之间的遗传物质互相交换位置。
染色体易位可分为互易易位和倒位两种类型。
互易易位是指两条染色体上的非同源片段交换位置,倒位则是指染色体上一部分被倒置后重新结合。
染色体易位会引起基因组的重组,可能导致新基因组合的产生,对进化和品种改良具有重要意义。
第2节染色体变异1、什么叫染色体变异?生物体的体细胞或生殖细胞内染色体数目或结构的变化,称为染色体变异。
2、染色体变异分为哪两类?(1)一类是细胞内个别染色体的增加或减少。
如:21三体综合征,是第21号染色体多了一条;唐纳氏综合症,也叫XO,是性染色体少了一条。
(2)另一类是细胞内染色体数目以一套完整的非同源染色体为基数成倍的增加或成套的减少。
如:四倍体无籽西瓜,多了两个染色体组;雄蜂,少了一个染色体组。
3、什么叫一个染色体组?什么叫二倍体?在大多数生物的体细胞中,染色体都是两两成对的,也就是说,含有两套非同源染色体,其中每套非同源染色体称为一个染色体组。
体细胞中含有两个染色体组的个体叫做二倍体。
4、什么叫多倍体?产生多倍体的原因是什么?(1)体细胞中含有三个或三个以上的染色体组的个体,统称为多倍体。
(2)①二倍体减数分裂出现错误,形成含有两个染色体组的配子。
这样的配子与正常配子结合后发育的个体就是三倍体;两个含有两个染色体组的配子结合发育成的个体就是四倍体。
②二倍体在胚或幼苗时期受到某种因素影响,体细胞在进行有丝分裂时染色体只复制未分离,也会形成四倍体。
5、三倍体高度不育的原因是什么?三倍体因为原始生殖细胞中有三套非同源染色体,减数分裂时出现联会紊乱,因此不能形成可遇的配子,所以三倍体高度不育。
6、多倍体有什么优点?茎杆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。
7、人工诱导多倍体的方法有哪些?原理是什么?(1)低温诱导。
(2)秋水仙素处理——这是目前最常用、且最有效的方法。
用低温或秋水仙素来处理萌发的种子或幼苗,若细胞正在分裂,低温或秋水仙素能够抑制纺锤体的形成,导致染色体不能移向细胞的两极,从而引起细胞内染色体数目加倍。
染色体数目加倍的细胞继续进行有丝分裂,就可能发育成多倍体植株。
8、什么叫单倍体?有什么缺点?(1)体细胞中的染色体数目与本物种配子染色体数目相同的个体,叫做单倍体。
染色体变异名词解释
染色体变异指的是基因组中染色体的结构或数量发生变化,这种变化可能会导致基因的缺失、重复、倒位、移位、交错等多种不同类型的异常。
以下是常见染色体变异的解释:
1. 染色体缺失:染色体上一部分基因缺失,可能会导致某些疾病的发生。
2. 染色体重复:染色体上某些基因出现额外的一份,可能会导致某些疾病的发生。
3. 染色体倒位:染色体上某一段基因发生倒位,即顺序颠倒,可能会影响基因的表达和功能。
4. 染色体移位:染色体上的某一段基因移动到另一个染色体上,可能会导致基因的表达和功能改变。
5. 染色体交错:两个染色体上的相同区域互相交错,可能会导致基因的错位和表达异常。
6. 染色体数目异常:染色体数目发生变化,可能会导致某些疾病的发生,如唐氏综合征等。
染色体变异的类型多种多样,每种变异都可能会对基因的表达和功能产生影响,因此对染色体变异的研究和诊断具有重要的意义。
- 1 -。
高中生物学科染色体变异知识点归纳染色体变异是指在生物体染色体的结构、数目或自发性变化的现象。
它可以是随机发生的自然变异,也可以是由于外界环境的诱导或人为因素引起的。
一、染色体结构变异1.重组:染色体间的交叉互换,导致染色体上的基因排列顺序改变。
2.缺失:在染色体的一部分缺失了。
3.重复:染色体上的一段序列重复出现。
4.倒位:染色体上的一段序列翻转了方向。
5.易位:染色体间的一段序列与另一染色体上的一段序列互换位置。
6.克隆:由于DNA重复而导致的染色体序列的扩增。
二、染色体数目变异1.异倍体:染色体数目非整倍增加或减少。
例:三倍体、黑色素斑异倍体等。
2.畸变体:染色体数目增多或减少,但仍为整倍数的变异。
例:二倍体、四倍体等。
三、染色体自发性变异1.染色体突变:染色体上的基因发生突变,导致遗传信息的改变。
2.染色体重排:染色体间的序列重组、倒位等结构变异导致的染色体改变。
3.畸变体形成:由于各种原因,染色体数目或结构发生变异,导致畸变体的产生。
4.染色体易位:染色体间的交换互换,导致染色体上的基因位置改变。
四、染色体变异与遗传病染色体变异与遗传病之间有着密切的关系。
一些染色体变异会导致遗传病的发生,例如:1.爱德华综合征:三个21号染色体(三体儿)导致的遗传病,患者智力发育异常。
2.唐氏综合征:21号染色体染色体异常导致的遗传病,患者智力发育差,面部特征异常等。
3.克汀格综合征:15号染色体缺失或重复导致的遗传病,患者智力障碍,肌肉松弛等。
五、染色体变异的应用领域1.遗传学研究:通过对染色体的观察和分析,可以了解生物体的遗传特征和变异规律。
2.亲子鉴定:根据染色体结构和数目的差异,可以判断亲子关系的真实性。
3.肿瘤研究:染色体的突变和异常在肿瘤的形成过程中起着重要的作用,研究染色体变异可以帮助了解肿瘤的发生机制和治疗方法。
总结起来,染色体变异是生物体染色体结构、数目或自发性发生变化的现象。
它包括染色体结构变异、数目变异和自发性变异等。
§7-2 染色体变异、一.染色体变异(一)染色体结构变异 1.类型、 实质、 结果: .2.与基因突变的关系:基因突变:无论变化的碱基对多少但只局限于一个基因内部变化;染色体上点突变不可镜检观察,基因的数目和位置都未变;染色体变异:片段变化或数目变化均导致染色体内部基因的数目和位置都改变;引起染色体形态、数目变化,可镜检观察。
3. 易位与交叉互换染色体易位 交叉互换染色体角度之间 之间 变异类型变异 变异 显微镜下是否观察到(二)染色体数目变异 1.染色体组:细胞内含有本物种全套遗传信息的一组非同源染色体; (1)从染色体来源看,一个染色体组中 。
(2)从形态、大小和功能看,一个染色体组中所含的染色体 。
(3)从所含的基因看,一个染色体组中含有控制本物种生物性状的 ,但不能重复。
2. 单倍体、二倍体、多倍体的判断(1)如果生物体由 发育而成,其体细胞中含有几个染色体组,该生物就称为几倍体。
(2)若生物体是由 直接发育而成,则无论体细胞中含有几个染色体组,都称为单倍体。
★单倍体的体细胞中并非只有一个染色体组,单倍体并非都不育;3. 染色体组数量的判断(1).据染色体形态判断细胞内形态相同的染色体有几条,则含有几个染色体组。
如下图所示的细胞中,形态相同的染色体a 中有3条、b 中有2条、c 中各不相同,则可判定它们分别含 个、 个、 个染色体组。
(2).据基因型判断控制同一性状的基因出现几次,就含几个染色体组——每个染色体组内不含等位基因或相同基因,如图所示:d ~g 中依次含 、 、 、 个染色体组。
4.无子西瓜培育过程中果实各部分染色体分析果实类型目第一年 所结果实 第二年 所结果实 果实位置四倍体植株上 三倍体植株上 果皮染色体组数种皮染色体组数种子中染色体组数5.辨析染色体变异方式图a为(个别染色体增加);图c为(染色体组成倍增加);图b和图f皆为染色体结构变异中的;图d和图e皆为染色体结构变异中的;练习1.如图①②③④分别表示不同的变异类型,其中图③中的基因2由基因1变异而来。
染色体变异的名词解释人类的染色体是基因组的组成部分,它们携带着遗传信息,决定了我们的生理特征和疾病易感性。
然而,在某些情况下,染色体可能发生变异,这会导致基因组的异常,并且可能会引起一系列的健康问题。
本文将对染色体变异这一概念进行深入的探究和解释。
1. 什么是染色体变异?染色体变异指的是细胞中染色体的结构或数量发生异常变化的现象。
正常情况下,人类细胞中的染色体呈现出一定的形态和排列。
然而,在染色体变异中,染色体可能会发生缺失、重复、倒位、转位等结构异常,或者整个染色体的数量可能会增加或减少。
这些异常的变异可以影响到基因的功能,从而对个体的生理发育和健康产生不同程度的影响。
2. 染色体数目异常染色体数目异常是染色体变异中最常见的一种情况。
正常情况下,人类细胞中的染色体数目为46条,其中包括23对染色体。
然而,染色体数目异常可能导致个体细胞中染色体数目的增加或减少。
一种常见的染色体数目异常是唐氏综合征,这是由于第21对染色体的三个而不是两个副本而引起的。
染色体数目异常通常与身体发育异常以及智力发育迟缓等问题相关。
3. 染色体结构异常染色体结构异常是指染色体内部的一部分区域经历缺失、重复、倒位或转位等变化。
这些变异可能导致基因的重复或丧失,从而影响基因的正常表达和功能。
例如,儿童白血病中常见的染色体重排就是染色体结构异常的一种形式。
此外,染色体结构异常还与一些遗传性疾病的发生有关,如克隆氏综合征和猫眼综合征等。
4. 染色体变异的影响染色体变异对于个体的健康和生活质量产生了重要影响。
染色体数目异常可能导致身体发育问题、智力发育迟缓以及生殖系统异常等。
同样,染色体结构异常可能引起多种疾病,如先天性畸形、智力缺陷、遗传性癌症和不孕症等。
另外,染色体变异还可能对个体的生殖能力和后代的健康产生影响。
5. 染色体变异的诊断和治疗随着基因组学的发展,染色体变异的诊断和治疗也取得了显著进展。
目前,通过进行染色体核型分析、荧光原位杂交、基因测序等技术,可以检测和诊断染色体变异。
染色体变异知识点总结
染色体变异是指在染色体结构或者染色体序列上发生的变化,可以分为两类:一类是染色体结构变异,另一类是染色体序列变异。
一、染色体结构变异:
1、染色体增多:指的是染色体总数超过正常值。
2、染色体减少:指的是染色体总数低于正常值。
3、染色体变形:指的是染色体外部形态上的变化,可以是长度变化、外观变化、变异等。
4、染色体重组:指的是两个染色体之间的重组,可以分为交换型重组和旋转型重组。
5、染色体停滞:指的是染色体发生变化而没有完全经过正常的染色体传递过程,而是在染色体内部发生变化。
二、染色体序列变异:
1、基因突变:指的是染色体内DNA序列发生的变化,可以分为点突变、插入突变和缺失突变等。
2、基因重排:指的是染色体内基因顺序发生变化,可以分为重复性重排和非重复性重排。
3、染色体移群:指的是染色体上的基因在不同染色体之间的移动,可以分为转座子和移位等。
4、染色体组合变异:指的是多个染色体之间发生的组合变异,可以分为遗传货币和染色体重组等。
总之,染色体变异是指染色体结构或者染色体序列发生变化的一
种现象,可以分为染色体结构变异和染色体序列变异,并且可以进一步分为更多的类型。
染色体变异可以引起非常多的生物学种群变化,并且也是基因组变化的最基本的原因之一。
染色体变异的概念及理解染色体变异指的是染色体结构或染色体中基因序列的改变。
这种改变可以是体细胞或生殖细胞中发生的。
染色体变异是生物进化和遗传多样性产生的重要因素之一。
染色体变异可以分为两种类型:染色体结构变异和基因序列变异。
染色体结构变异是指染色体的形态或结构发生改变,主要有染色体缺失、重复、倒位和颠倒等。
基因序列变异是指某一特定基因的DNA序列发生改变,包括基因突变和基因重组等。
染色体结构变异是通过染色体片段丢失、重复、倒位、颠倒等方式引起的。
染色体片段的丢失会导致染色体缺失,使得染色体上的某些基因无法正常发挥功能。
染色体片段的重复会导致基因副本增加,可能导致基因的过度表达。
染色体片段的倒位和颠倒会导致基因序列的顺序发生变化,影响基因的正常表达。
基因序列变异包括基因突变和基因重组。
基因突变是指DNA序列中的碱基发生改变,包括点突变、插入突变和删除突变等。
点突变是最常见的基因突变类型,包括碱基替换、碱基插入和碱基删除等。
插入突变是指某些外来DNA片段插入到基因序列中,导致基因序列发生改变。
删除突变是指某些DNA片段从基因序列中删除,导致基因序列发生改变。
基因重组是指基因序列中的片段在染色体上重新组合,形成新的基因序列。
染色体变异对生物体的影响是多样的。
某些染色体变异可能导致生物体的发育障碍或畸形。
举例来说,染色体缺失可能导致染色体上的某些基因无法正常发挥作用,导致生物体发育不完整或功能障碍。
染色体重复可能导致基因增加,导致相关特征的过度表达。
染色体倒位和颠倒可能导致基因顺序发生变化,使得基因无法正常表达。
然而,染色体变异也可以对生物体产生积极的影响。
染色体变异可以增加物种的遗传多样性,使得物种对环境变化具有更好的适应能力。
经过染色体变异的个体可能具有新的遗传特征,这些特征可能对环境中的特定压力有利,从而提升个体的生存能力。
这样的染色体变异可能会在物种的进化过程中起到积极的作用。
总的来说,染色体变异是指染色体结构或染色体中基因序列的改变。
染色体变异概念染色体是指体内存在的细胞核中的遗传物质,它既是遗传信息传递的介质,也是染色体变异的潜在源。
染色体变异可以定义为染色体结构的改变,包括数量的变化和正常数量染色体的结构变化。
因此,染色体变异可以发生在基因水平或基因组水平。
染色体变异是在基因组的组成中发生的,通常是指染色体的数量和结构的改变。
变异可以在物种和基因组级别多次发生,在染色体结构发生变异时,会导致遗传状态和表型发生变化,从而影响受体生物的表现特征。
染色体变异可以有三种形式:单倍型、多倍型和结构变异。
单倍型变异指的是染色体的数量发生变化,也称为数量变异。
单倍型变异可以是增加或减少染色体数目,这种变异可以在物种水平发生,主要是由于细胞分裂过程或性状转录导致的错配,这种变异可能会影响生物的表型特征,增加它们之间的竞争性和适应性,促进其增殖和繁衍。
多倍型变异指染色体在细胞内的染色体数量发生变化,这种变异是由于有自噬现象、染色体粘附过程或染色体重组导致的。
多倍型变异会改变染色体的结构,导致遗传信息的变异和表型改变,最终影响生物的发育过程。
结构变异指的是染色体的基因组结构发生变化,这种变异的主要原因是由于基因重组、染色体重组或基因组间的重新组合而产生的,结构变异会导致染色体的组成不同,可以影响生物表型特征,也可以影响它们的基因组结构。
染色体变异是生物进化的重要过程,变异可以在物种和基因水平都发生,通过改变染色体结构可以改变表型特征,从而促进物种进化,变异是生物进化最重要的原因之一,它也是人类和物种的变化的重要推动力。
总的来说,染色体变异的概念涉及到染色体结构发生变化的原因及其影响,在物种繁衍和进化的过程中,染色体变异是生命进化的重要因素,它们是人类和物种变化的推动力之一,未来可能会为我们提供更多基因调控技术,来改善物种的变化。
第三单元生物的变异、育种与进化第二讲染色体变异知识点一染色体结构变异知识点二染色体数目变异2.连线染色体结构变异的类型考点一︱染色体结构变异[必备知能]1.染色体结构变异与基因突变、基因重组的辨析(1)染色体结构变异与基因突变的判断:(2)“缺失”问题:(3)变异水平问题:2.发生于非同源染色体之间发生于同源染色体的非姐妹染色单体间[归纳串记][必明考向]考向一考查染色体变异的类型与结果1.下列关于染色体变异的叙述,正确的是()A.染色体增加某一片段可提高基因表达水平,是有利变异B.染色体缺失有利于隐性基因表达,可提高个体的生存能力C.染色体易位不改变基因数量,对个体性状不会产生影响D.通过诱导多倍体的方法可克服远缘杂交不育,培育出作物新类型解析:选D染色体增加某一片段引起的变异不一定是有利的。
若显性基因随染色体的缺失而丢失,可有利于隐性基因表达,但隐性基因的表达不一定能提高个体的生存能力。
染色体易位不改变基因数量,但会对个体性状产生影响,且大多数染色体结构变异对生物体是不利的。
不同物种可以通过杂交获得不育的子一代,然后经秋水仙素诱导得到可育的多倍体,从而培育出生物新品种。
2.关于植物染色体变异的叙述,正确的是()A.染色体组整倍性变化必然导致基因种类的增加B.染色体组非整倍性变化必然导致新基因的产生C.染色体片段的缺失和重复必然导致基因种类的变化D.染色体片段的倒位和易位必然导致基因排列顺序的变化解析:选D染色体组整倍性变化导致基因数量变化,不能导致基因种类增加;基因突变导致新基因的产生,染色体变异不能导致新基因产生;染色体片段的重复和缺失导致基因数量增加和减少;染色体片段的倒位和易位必然导致基因排列顺序的变化。
考向二生物可遗传变异类型的判断3.某男子表现型正常,但其一条14号和一条21号染色体相互连接形成一条异常染色体,如图甲。
减数分裂时异常染色体的联会如图乙,配对的三条染色体中,任意配对的两条染色体分离时,另一条染色体随机移向细胞任一极。
下列叙述正确的是()A.图甲所示的变异属于基因重组B.观察异常染色体应选择处于分裂间期的细胞C.如不考虑其他染色体,理论上该男子产生的精子类型有8种D.该男子与正常女子婚配能生育染色体组成正常的后代解析:选D图甲所示的变异属于染色体变异;观察异常染色体应选择处于分裂中期的细胞,因为此时染色体的形态固定、数目清晰;若不考虑其他染色体,根据“配对的三条染色体中,任意配对的两条染色体分离时,另一条染色体随机移向细胞任一极”可知,理论上该男子产生的精子类型有“只含有14号染色体”、“只含有21号染色体”、“含有14号染色体和21号染色体”、“含有异常染色体和14号染色体”、“含有异常染色体和21号染色体”、“只含有异常染色体”,共计6种;当异常染色体与14号染色体分离时,21号染色体有可能与14号染色体一起移向一极,含有14号染色体和21号染色体的精子与正常卵子结合,可以发育为染色体组成正常的后代。
4.下图①、②、③、④分别表示不同的变异类型,其中图③中的基因2由基因1变异而来。
有关说法正确的是()A.图①②都表示易位,发生在减数分裂的四分体时期B.图③中的变异属于染色体结构变异中的缺失C.图④中的变异属于染色体结构变异中的缺失或重复D.图中4种变异能够遗传的是①③解析:选C图①表示交叉互换,发生在减数分裂的四分体时期,图②表示易位;图③中的变异属于基因突变中的碱基对的缺失;图④中,若染色体3正常,则染色体4发生染色体结构变异中的缺失,若染色体4正常,则染色体3发生染色体结构变异中的重复;图中4种变异原因都是遗传物质的改变,都能够遗传。
“三看”法判断生物变异的类型(1)DNA分子内的变异:(2)DNA分子间的变异:考点二︱染色体数目变异与生物育种[必备知能]1.单倍体、二倍体和多倍体的比较果实、种子较大,营养2.多倍体的产生原理[易误提醒]关于单倍体与多倍体的三个易误点(1)单倍体的体细胞中并非只有一个染色体组。
因为大部分的生物是二倍体,所以有时认为单倍体的体细胞中只含有一个染色体组,但是多倍体的配子发育成的个体体细胞中含有不止一个染色体组。
(2)单倍体育种与多倍体育种的操作对象不同。
两种育种方式都出现了染色体加倍情况:单倍体育种操作对象是单倍体幼苗,通过植物组织培养,得到的植株是纯合子;多倍体育种的操作对象是正常萌发的种子或幼苗。
(3)单倍体并非都不育。
二倍体的配子发育成的单倍体,表现为高度不育;多倍体的配子如含有偶数个染色体组,则发育成的单倍体含有同源染色体及等位基因,可育并能产生后代。
[必明考向]考向一考查染色体组的判断1.下图是细胞中所含染色体,相关叙述不.正确的是()A.甲代表的生物可能是二倍体,其每个染色体组含一条染色体B.乙代表的生物可能是二倍体,其每个染色体组含三条染色体C.丙代表的生物可能是二倍体,其每个染色体组含三条染色体D.丁代表的生物可能是单倍体,其一个染色体组含四条染色体解析:选B甲图代表的生物若是由受精卵发育形成的则为二倍体,若是由未受精的配子发育形成的则为单倍体。
根据染色体组的定义可知,乙图细胞中应含有三个染色体组,每个染色体组含有两条染色体,代表生物若是由受精卵发育形成的则为三倍体,若是由未受精的配子发育形成的则为单倍体。
同理可知丙图细胞中应含有两个染色体组,每个染色体组含三条染色体,代表生物可能是二倍体,也可能是单倍体。
丁图细胞中四条染色体大小形态各不相同,应属于一个染色体组,该细胞若是体细胞,则代表生物为单倍体,该细胞若是生殖细胞,则代表生物为二倍体。
2.右图表示某植物正常体细胞中染色体的组成,下列各项中可以表示该植物基因型的是()A.ABCd B.AaaaC.AaBbCcDd D.AaaBbb解析:选B图中相同的染色体有4个,该植物体细胞中含有4个染色体组,则同源染色体上相同位置上的等位基因或相同基因应有4个。
判断染色体组数的三种方法(1)根据染色体的形态判断:细胞内同一形态的染色体共有几条,则该细胞中含有几个染色体组。
如图甲中与1号(或2号)相同的染色体共有4条,此细胞有4个染色体组。
(2)根据基因型判断:控制同一性状的基因(读音相同的大、小写字母)出现几次,则含有几个染色体组。
如图乙中基因型为AaaaBbbb,任一种基因有4个,则该细胞中含有4个染色体组。
(3)根据染色体的数目和染色体的形态数来推算:染色体组的数目=染色体数/染色体形态数。
如雌果蝇体细胞中有8条染色体,分为4种形态,则染色体组的数目为2个。
考向二染色体变异在育种中的应用3.单倍体经一次秋水仙素处理,可得到()①一定是二倍体②一定是多倍体③二倍体或多倍体④一定是杂合体⑤含两个染色体组的个体可能是纯合体A.①④B.②⑤C.③⑤D.③④解析:选C单倍体中不一定只含有一个染色体组,故秋水仙素处理后可得到二倍体或多倍体,可能是纯合体,也可能是杂合体。
4.某育种工作者在一次重复孟德尔的杂交实验时,偶然发现了一个罕见现象:选取的高茎(DD)豌豆植株与矮茎(dd)豌豆植株杂交,得到的F1全为高茎;其中有一棵F1植株自交得到的F2出现了高茎∶矮茎=35∶1的性状分离比,请分析回答以下相关问题:(1)对题干中“分离现象”的解释:①由于环境骤变如降温的影响,该F1植株可能发生了________变异,幼苗发育成为基因型是________的植株。
②该F1植株产生的含显性基因的配子的比例为________。
③该F1自交,产生的F2基因型有________种,其比例为________________。
(2)对上述解释的验证:为验证以上的解释,理论上需要通过________实验来测定F1的基因型,即选择表现型为________的豌豆对其进行异花授粉。
预期子代表现型及其比例为________________。
解析:(1)①正常情况下,Dd自交后代会出现高茎∶矮茎=3∶1的性状分离比,但实际出现了高茎∶矮茎=35∶1的性状分离比,是因为低温导致F1植株的染色体发生了变异,染色体数目加倍,基因型变为DDdd。
②四倍体DDdd产生的配子基因型及比例为DD∶Dd∶dd=1∶4∶1,其中含显性基因的配子所占比例为5/6。
③四倍体DDdd产生三种配子:1/6DD、4/6Dd、1/6dd,雌雄配子间的组合如下:21/6×1/6∶1/6×4/6×2∶(1/6×1/6×2+4/6×4/6)∶4/6×1/6×2∶1/6×1/6=1∶8∶18∶8∶1。
(2)进行测交实验时,是子一代豌豆(DDdd)和矮茎豌豆(dd)杂交,矮茎豌豆只产生d一种配子,故测交后代均为三倍体,基因型为DDd∶Ddd∶ddd=1∶4∶1,表现型及其比例为高茎∶矮茎=5∶1。
答案:(1)①染色体(数目)DDdd②5/6③51∶8∶18∶8∶1(2)测交矮茎高茎∶矮茎=5∶1“二看法”判断单倍体、二倍体与多倍体低温诱导植物染色体数目的变化……………………………………………………………………………[典例]四倍体大蒜的产量比二倍体大蒜高许多,为探究诱导大蒜染色体数目加倍的最佳低温,特设计如下实验。
(1)实验主要材料:大蒜、培养皿、恒温箱、卡诺氏液、体积分数为95%的酒精溶液、显微镜、改良苯酚品红染液等。
(2)实验步骤:①取五个培养皿,编号并分别加入纱布和适量的水。
②将培养皿分别放入-4 ℃、0 ℃、4_℃、8_℃、12_℃的恒温箱中1 h。
③取大蒜随机均分为五组,分别放入五个培养皿中诱导培养36_h。
④分别取根尖0.5~1cm,放入卡诺氏液中固定0.5~1 h,然后用体积分数为95%的酒精溶液冲洗2次。
⑤制作装片:解离→漂洗→染色→制片。
⑥低倍镜检测,统计每组视野中的染色体数目加倍率,并记录结果。
(3)实验结果:染色体数目加倍率最高的一组为最佳低温。
(4)下列有关“低温诱导植物染色体数目的变化”实验的叙述,正确的是(B)A.低温会抑制染色体着丝点的分裂B.改良苯酚品红染液的作用是使染色体着色C.固定和解离后的漂洗液都是体积分数为95%的酒精D.在高倍显微镜下可以观察到细胞从二倍体变为四倍体的过程考查低温诱导染色体加倍的原理和步骤考查实验中各种试剂的作用(1)卡诺氏液:固定细胞形态。
(2)体积分数为95%的酒精:冲洗附着在根尖表面的卡诺氏液。
(3)解离液(体积分数为15%的盐酸溶液和体积分数为95%的酒精以1∶1混合):使组织中的细胞相互分离开来。
(4)清水:洗去解离液,防止解离过度影响染色。
(5)改良苯酚品红染液:使染色体着色,便于观察染色体的形态、数目、行为。