10机械振动作业__吉林大学大物答案
- 格式:ppt
- 大小:828.50 KB
- 文档页数:28
大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t图、v--t 图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、ϕ已知外,ω可通过关系式ω=2π确定。
振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。
解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。
解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。
(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。
吉林市 《机械振动》单元测试题(含答案)一、机械振动 选择题1.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小2.某同学用单摆测当地的重力加速度.他测出了摆线长度L 和摆动周期T ,如图(a)所示.通过改变悬线长度L ,测出对应的摆动周期T ,获得多组T 与L ,再以T 2为纵轴、L 为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会( )A .偏大B .偏小C .一样D .都有可能3.下列说法中 不正确 的是( )A .将单摆从地球赤道移到南(北)极,振动频率将变大B .将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。
已知弹簧的劲度系数为k ,则下列说法中正确的是( )A .细线剪断瞬间A 的加速度为0B .A 运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mgk5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4πt (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值6.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
机械振动答案 一、填空题 1.初位移、初速度、角频率 劲度系数、振子质量 2.4,2π 3.2:1 4.m t x )361cos(10.0ππ+= 5.2π 6.1:2 1:4 1:2 7.±A 0 8.k+0.5(k 为整数) k (k 为整数) 2k+0.5(k 为整数)9.0.173 2π10.3π )(1072m -⨯; 32π- )(1012m -⨯ 11.m t x )2cos(04.0ππ-= 二、选择题 1.B 2.D 3.C 4.B 5.B 6.D 7.C 8.D 9.B 10.D 11.B 12.C三、计算题1.解: (1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x得: 振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==,周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得20.0707, 4.44/,279/x m m s a m s ν==-=-2.解(1)质点振动振幅A =0.10m.而由振动曲线可画出t 0=0 和t 1=4s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3/2/01ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t . 3.解:设该物体的振动方程为)cos(ϕω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据A x 01cos -±=ϕ得)(3/rad πϕ±= 由于00v >,应取)(3/rad πϕ-= 可得:)3/cos(06.0ππ-=t x(1)0.5t s =时,振动相位为:/3/6t rad ϕπππ=-=据22cos ,sin ,cos xA v A a A x ϕωϕωϕω==-=-=- 得20.052,0.094/,0.512/x m v m s a m s ==-=-(2)由A 旋转矢量图可知,物体从0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,A 矢量转过的角度为5/6ϕπ∆=,该过程所需时间为:/0.833t s ϕω∆=∆=4.解:211k 2K P E E E A =+=() 1/2[2()/k]0.08()K P A E E m =+= 221(2)k 2/22K P K P P P E E E A E E E E E kx =+====因为,当时,有,又因为 222/20.0566()x A x A m ==±=±得:,即21(3)02K P x E E E mv ==+=过平衡点时,,此时动能等于总能量 1/2[2()/]0.8(/)K P v E E m m s =+=±5.解:(1))2cos(21ϕπ+=+=t A x x x按合成振动公式代入已知量,可得合振幅及初相为22224324cos(/2/4)10 6.4810A m ππ--=++-⨯=⨯4sin(/4)3sin(/2) 1.124cos(/4)3cos(/2)arctg rad ππϕππ+==+ 所以,合振动方程为))(12.12cos(1048.62SI t x+⨯=-π (2)当πϕϕk 21=-,即4/2ππϕ+=k 时,31x x +的振幅最大. 当πϕϕ)12(2+=-k ,即2/32ππϕ+=k 时,32x x +的振幅最小.6.解:)6/4sin(10322π-⨯=-t x )2/6/4cos(1032ππ--⨯=-t )3/24cos(1032π-⨯=-t作两振动的旋转矢量图,如图所示.由图得:合振动的振幅和初相分别为3/,2)35(πφ==-=cm cm A .合振动方程为))(3/4cos(1022SI t x π+⨯=-。
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为m m x 21007.7)25.040cos()10.0(-⨯=+=ππ )25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
注:简谐振动的速度超前位移2π,加速度超前速度2π《机械振动》习题参考答案 1.2 略1.6 v max =20.945cm/s a max =877.298cm/s 21.7A=0.0018m1.12 与p 和q 的关系无关,均为(A 2+B 2)/22.1以静平衡位置为原点,向上为正,运动规律为2cosx δ=-2.2以静平衡位置为原点,向上为正,运动方程为490(0)0.2(0)0x x x m x +===运动规律为:0.2cos(7)x t = m周期27T π=最大弹簧力max 19.6k F N =2.7运用能量法可得到运动方程为()()22102r R r g R r θθ⎡⎤+-+-=⎢⎥⎣⎦固有频率:n ω=2.10 取静平衡位置为原点,以转轴转动角度为坐标,逆时针为正,运用能量法可得运动微分方程:220P R I ka g θθ⎛⎫++= ⎪⎝⎭振动周期:2T π=2.13 22e b k k k a=+2.20 偏频为9.41rad/s c=5418Ns/m2.24 复频率响应的模为放大因子,品质因子为放大因子的最大值。
品质因子: 2.5Q = 带宽:12.5rad/s ω∆=2.33 运动方程sin 2v mx kx kY t L π⎛⎫+= ⎪⎝⎭振幅22kY A v k m L π=⎛⎫- ⎪⎝⎭ 最不利车速v =不利2.36 略3.1令2I I = 2t t k k =,则(1) 2II ⎡⎤=⎢⎥⎣⎦M2tt t t k k k k -⎡⎤=⎢⎥-⎣⎦K (2) 频率方程22422222240t t t t tt k I k I k I k k k I ωωωω--=-+=-- 固有频率的平方:()21,2222t k Iω=振型分别为:T1[1 1.414]=uT 2[1 1.414]=-u3.3固有频率的平方:()21,2352k mω=振型分别为:T1[1 1.62]=uT 2[10.62]=-u3.5选择杆质心c 处位移和转角做为广义座标,由能量法可得212m mL ⎡⎤=⎢⎥⎣⎦M232435416k kL kL kL ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦K 频率方程和固有频率与振型略 3.74.1122223563334k k kk k k k k kk k k+-⎡⎤⎢⎥=-+++-⎢⎥⎢⎥-+⎣⎦K4.2122223333t t tt t t tt tk k kk k k kk k+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥-⎣⎦K123000000III⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦M4.3333k k kk k kk k k--⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦K000000mmm⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦M固有频率与振型略.4.5。
第4章 机械振动基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
13机械振动解答13-1 有一弹簧振子,振幅A=2.0 X 10-2m,周期T=1.Os ,初相=3 π /4。
试写岀它的运动方程,并做岀x--t图、v--t图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相「、角频率•■是简谐运动方程X=ACoSlQt亠。
的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、「已知外,2 Tr-■ ■可通过关系式•=—确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解因.=Z ,则运动方程TX=ACOS讥=ACOS i2 t t : !■ I1W尸I T丿根据题中给出的数据得X =(2.0 10 ^m)cos[( 2":S A)t 0.75二]振子的速度和加速度分别为V =dχ∕dt - 10^m s1)sin[(2∏s')t 亠0.75二]a =d2χ∕dt2二2 10 2m S 丄)cos[(2二S 丄)t 0.75二x-t、v-t及a-t图如图13-1所示13-2 若简谐运动方程为X =(0.01m)cos(20:s」)t ',求:(1)振幅、频率、角频率、周期和- 4初相;(2) t=2s时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式X=ACOS ∙∙t ■作比较,即可求得各特征量。
运用与上题相同的处理方法,写岀位移、速度、加速度的表达式,代入t值后,即可求得结果。
解 (l )将X =(0.10m)cos[(20 7s ^)t • 0.25 二]与X=ACOS lU t w]比较后可得:振幅A= 0.10m 角频率• =20二S1,初相=0.25二,则周期T =2TJ=0∙1s ,频率=1∕T =10Hz。
(2) t= 2s时的位移、速度、加速度分别为X =(0.10m)cos(40 二0.25 二)=7.07 10i mV =dx∕dt - -(2~'m S^)Sin(40,亠0.25二)a =d2x∕dt2 = J40 二2m s?)cos(40 ;亠0.25二)13-3设地球是一个半径为R的均匀球体,密度P 5.5 X 103kg? m3。
习题7-1. 原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;ω=== 振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。
所以如果使弹簧的初状态为原长,那么:A=0.1,当t=0时,x=-A ,那么就可以知道物体的初相位为π。
所以:0.1cos x π=+) 即)x =-7-2. 有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过rad 06.0-=θ处,并以角速度rad/s 2.0=•θ向平衡位置运动。
设小球的运动可看作简谐振动,试求:(g 取9.8)(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。
解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。
(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s π=== (2)根据初始条件:A θϕ=0cos可解得:32.2088.0-==ϕ,A所以得到振动方程:0.088cos 3.13 2.32t θ=-()7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。
解:(1)由题知 2A=10cm ,所以A=5cm ;1961058.92=⨯=∆=-x g m K 又ω=14196==m k ,即 (2)物体在初始位置下方cm 0.8处,对应着是x=3cm 的位置,所以:03cos 5x A ϕ== 那么此时的04sin 5v A ϕω=-=± 那么速度的大小为40.565v A ω== 7-4. 一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
第10章机械振动答案第十章 机械振动一. 选择题:【 C 】1、(基础训练3)一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图13-16所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A)gl π2. (B)gl 22π. (C)gl 322π. (D)gl 3π.提示:均匀的细棒一段悬挂,构成一个复摆,可根据复摆的振动方程求解办法,求出复摆的振动周期。
【 C 】2(基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 (A) T /12. (B) T /8. (C) T /6. (D) T /4.提示:从从二分之一最大位移处到最大位移处这段路程在旋转矢量图上,矢量转过的角位移为π31,对应的时间为T/6.[ B ] 3(基础训练8) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. 提示:使用谐振动的矢量图示法,合振动的初始状态为2A-,初相位为π【 B 】 4、(自测提高5)一简谐振动曲线如图所示.则振动周期是(A) 2.62 s . (B) 2.40 s . (C)2.20 s . (D) 2.00 s .提示:使用谐振动的矢量图示法,初始状态旋转矢量位于第四象限,初始相位为3π-,到第一次回x tOA/2 -Ax 1x图13-23x (cm) t (s)O4 2 1T ,以余弦函数表达振动时,初相为零.在0≤t≤T 41范围内,系统在t =_T/8_时刻动能和势能相等.提示:动能和势能相等,为总能量的一半,此时物体偏离平衡位置的位移应为最大位移的22,相位为4π,因为初始相位为零,t=T/83、(基础训练16) 两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x (SI) , )5cos(10222t x -π⨯=- (SI)它们的合振动的振辐为210102-⨯(SI),初相为3121-+tg π=108.40提示:用旋转矢量图示法求解4、 (自测提高 8) 在静止的升降机中,长度为l的单摆的振动周期为T 0.当升降机以加速度g a 21=竖直下降时,摆的振动周期2T .提示:当升降机以加速度加速下降时,对于单摆,等效加速度为g-a=0.5g;单摆的周期变为:022T ag lT =-=π5、(自测提高 11) 一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图13-26所示.设摆动很小,则单摆的左右两方振幅之比A 1/A 2的近似值为_0.837_.提示:当单摆在最低位置时,对左右两边有:222211)(21)(21A m A m ωω=,对于单摆lg =ω,2211A l g A l g =837.0:2121==l l A A6 (自测提高 14)、两个互相垂直的不同频率谐振动合成后的图形如图13-27所示.由图可知x 方向和y 方向两振动的频率之比νx :νy =___4:3___.提示:在同样的时间间隔内,X 方向的振动为2T x ,而y 方向的振动为1.5T y ,周期之比为3:4,频率之比相反为4:3图13-26l0.45 m小钉图13-27x y三 计算题1. (基础训练23)有两个同方向的简谐振动,它们的方程(SI 单位)如下:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=ππ4110cos 06.04310cos 05.021t x t x ,(1) 求它们合成振动的振幅和初位相。