最新独立按键及矩阵键盘控制LED灯
- 格式:ppt
- 大小:608.50 KB
- 文档页数:46
主题:单片机独立按键控制LED灯实验原理目录1. 概述2. 单片机独立按键控制LED灯实验原理3. 实验步骤4. 结语1. 概述单片机在现代电子设备中起着至关重要的作用,它可以通过编程实现各种功能。
其中,控制LED灯是单片机实验中常见的任务之一。
本文将介绍单片机独立按键控制LED灯的实验原理及实验步骤,希望对初学者有所帮助。
2. 单片机独立按键控制LED灯实验原理单片机独立按键控制LED灯的实验原理主要涉及到单片机的输入输出端口及按键和LED的连接方式。
在单片机实验中,按键与单片机的输入端口相连,LED与单片机的输出端口相连。
通过按键的按下和松开来改变单片机输出端口电平,从而控制LED的亮灭。
3. 实验步骤为了完成单片机独立按键控制LED灯的实验,需要按照以下步骤进行操作:步骤一:准备材料- 单片机板- 按键- LED灯- 连线- 电源步骤二:搭建电路- 将按键与单片机的输入端口相连- 将LED与单片机的输出端口相连- 连接电源步骤三:编写程序- 使用相应的单片机开发软件编写程序- 程序中需要包括按键状态检测和LED控制的部分步骤四:烧录程序- 将编写好的程序烧录到单片机中步骤五:运行实验- 按下按键,观察LED的亮灭情况- 确保按键可以正确控制LED的亮灭4. 结语通过上述实验步骤,我们可以实现单片机独立按键控制LED灯的功能。
这个实验不仅可以帮助学习者了解单片机的输入输出端口控制,还可以培养动手能力和程序设计能力。
希望本文对单片机实验初学者有所帮助,谢谢阅读!实验步骤在进行单片机独立按键控制LED灯实验时,需要按照一定的步骤进行操作,以确保实验能够顺利进行并取得预期的效果。
下面将详细介绍实验步骤,帮助读者更好地理解和掌握这一实验过程。
1. 准备材料在进行单片机独立按键控制LED灯实验前,首先需要准备相应的材料。
这些材料包括单片机板、按键、LED灯、连线和电源。
在选择单片机板时,需要根据具体的实验需求来确定,常见的有51单片机、Arduino等,不同的单片机板具有不同的特性和使用方法,因此需要根据实验要求来选择适合的单片机板。
单个按键控制4个LED(入门级实验)实验介绍:通过单个按键控制4个LED灯的亮灭状态。
正常情况下,一个按键控制1个灯。
在本次实验中,要求使用1个按键,控制4个LED灯。
通过按键按下的次数,控制LED的亮灭状态。
按下1次,1个LED灯点亮,按下2次,2个LED 灯点亮,按下3次,3个LED灯点亮,按下4次,4个LED灯点亮,按下5次,所有LED灯都熄灭,如此循环。
如此就可以通过单个按键控制4个LED灯的亮灭。
在照明场所,控制LED灯的点亮个数,就可以控制亮度。
实验目的:在使用单片机等控制器控制周边元件的时候,经常会遇到I/O口不够用的情况。
因此在使用的时候,尽量省着用。
本次实验通过单个按键控制4个LED灯的亮灭状态,正常情况下需要4个按键,因而达到了节省单片机I/O口的目的。
通过此次实验室,学习单片机按键的编程控制方法,学习LED灯输出的控制方法。
学习最简单的输入设备(按键)控制最简单的输出设备(LED灯)的控制方法。
仿真原理图:在仿真软件Proteus中绘制仿真原理图如上图所示。
(注意事项:在进行实物制作时,发光二极管串联的电阻可以省略,因为单片机引脚灌电流的能力有限,限制了通过发光二极管电流的大小。
在仿真过程中,电阻R2~R9的大小要合适,太大LED将无法点亮。
)编程思路:当单片机上电后,所有的I/O口默认高电平,因而四个发光二极管在单片机上电后,都为熄灭状态。
此时,我们按下按键后,就可以调节各个发光二极管的亮灭状态。
当按一次按钮,将P2口的状态进行左移一位,同时将P2的最低位清零,就可以达到按一次按钮后,LED灯多亮一个。
如,当前只有P2口控制的最低位连接的LED点亮,当我们按一次按键,单片机首先将P2的状态循环左移一位,则刚才的最低位变为次低位,也就是倒数第二位点亮,同时将P2口的最低位清零,也就是倒数第一位连接的LED灯点亮,即按一次按钮后,倒数第一位和倒数第二位灯点亮。
其他状态与上述过程类似,这里不再赘述。
项目五独立按键控制LED灯1.掌握独立按键消抖原理2.掌握独立按键接口电路设计3.掌握独立按键控制LED灯的程序编写1.设计独立按键控制LED的硬件电路2.编写程序分别实现按下按键1和按键2,LED灯闪烁方式不同3.下载程序到单片机中,运行程序观察结果并进行软硬件的联合调试键盘是常见的计算机输入设备,在单片机应用中,按键可以设置电子钟的时间;简易计算器中,按键可以输入数字;按键还可以实现单片机中两个不同功能程序切换。
本项目要求两个按键分别实现LDE灯的不同闪烁方式,按键1按下时,8个LED灯从右向左依次点亮,按键2按下时,8个LED灯从左向右依次点亮。
本项目只需2个按键实现LED灯闪烁方式控制,因此按键接口电路设计成独立按键。
独立按键即每个按键直接与单片机I/O端口连接,当按键按下和弹开时,单片机I/O端口呈现不同的电平。
独立按键接口电路可以设计成当按键按下时,单片机I/O端口为高电平或者低电平,读者可以根据自己的需求自行设计。
单片机应用中的独立按键多是机械弹性开关,在按键按下和弹开时,由于按键的机械特性,有抖动产生。
消除抖动有硬件方式和软件方式,软件方式就是编程读取I/O端口电平时,产生一个5ms~10ms延时后,再次读取I/O端口电平,以确认按键是否按下或弹开。
1.独立按键与矩阵按键键盘是实现人机交互的重要计算机输入设备,其中按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
按键按照接口原理可分为编码键盘和非编码键盘,编码键盘是用硬件来实现对键的识别,非编码键盘由软件来实现按键的识别。
非编码键盘按连接方式可分为独立按键和矩阵按键。
独立按键特点是每个按键占用一条I/O线,当按键数量较多时,I/O口利用率不高,但程序编制简单,适合所需按键较少的场合。
矩阵按键特点是电路连接复杂,软件编程较复杂,但I/O口利用率高,适合需要大量按键的场合。
一、任务说明本次的任务是利用51单片机设计一个4*4矩阵键盘输入系统,用16个发光二级管对应16个不同的按键。
每按下一个按键对应的发光二极管就亮。
矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1所示。
一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
图1 键盘布局利用单片机的并行口P1连接4×4矩阵键盘,并以单片机的P1.0-P1.3各管脚作输入线,以单片机的P1.4-P1.7各管脚作输出线;利用P2、P3口控制灯1-灯16,。
用Proteus绘制其电路原理图(附录一)。
此任务用到了AT89C51芯片,还用到了晶体振荡器、按钮开关、发光二级管以及一些电阻。
这次任务中采用C语言编写程序,在编译过程中设置成自动产生HEX文件,将此文件导入AT89C51中,即可实现相应的功能。
二、原理图绘制说明电路原理图的设计与绘制是整个电路设计的基础,设计一个电路原理图的工作包括:设置电路图图纸的大小,规划电路图的总体布局,在图纸上放置元器件并对元器件进行调整,进行布线和整体布局,最后保存并打印输出等几个步骤。
安装完Proteus后,运行ISIS 7 Professional,在原理图编辑窗口绘制电路图,在该界面下还有预览窗口和元件列表区,在左侧的工具箱中还有模型选择工具栏,方向工具栏及仿真按钮等工具。
其具体的使用步骤如下:1.运行该软件后,新建一个设计文件,设置图纸大小。
选择界面如图2所示。
图2 选择图纸大小界面2.接下来开始查找任务中所用到的元器件,查找界面如图3所示。
图3 元器件查找界面3.将查找的元器件放置到界面中,并进行相应的引脚连线,本次是采用标注的方式进行引脚连接,标注符号相同的表示引脚相连接,具体操作是先将引脚引出一小段导线,右击导线选择放置网络标号,标注标号界面如图4所示。
ARM 2110开发板,使用4个独立按键控制LED灯KEY1控制LED1,KEY2控制LED2,KEY3控制LED3,KEY4控制LED4#include "systemInit.h"// 定义LED#define LED_PERIPH1 SYSCTL_PERIPH_GPIOF#define LED_PORT1 GPIO_PORTF_BASE#define LED_PIN1 GPIO_PIN_1|GPIO_PIN_2#define LED_PERIPH2 SYSCTL_PERIPH_GPIOB#define LED_PORT2 GPIO_PORTB_BASE#define LED_PIN2 GPIO_PIN_0|GPIO_PIN_1// 定义KEY#define KEY_PERIPH1 SYSCTL_PERIPH_GPIOH#define KEY_PORT1 GPIO_PORTH_BASE#define KEY_PIN1 GPIO_PIN_1#define KEY_PERIPH2 SYSCTL_PERIPH_GPIOB#define KEY_PORT2 GPIO_PORTB_BASE#define KEY_PIN2 GPIO_PIN_6|GPIO_PIN_5|GPIO_PIN_4// 主函数(程序入口)int main(void){clockInit(); // 时钟初始化:晶振,6MHzSysCtlPeriEnable(LED_PERIPH1); // 使能LED所在的GPIO端口GPIOPinTypeOut(LED_PORT1, LED_PIN1); // 设置LED所在的管脚为输出SysCtlPeriEnable(LED_PERIPH2); // 使能LED所在的GPIO端口GPIOPinTypeOut(LED_PORT2, LED_PIN2); // 设置LED所在的管脚为输出SysCtlPeriEnable(KEY_PERIPH1); // 使能KEY所在的GPIO端口GPIOPinTypeIn(KEY_PORT1, KEY_PIN1); // 设置KEY所在管脚为输入SysCtlPeriEnable(KEY_PERIPH2); // 使能KEY所在的GPIO端口GPIOPinTypeIn(KEY_PORT2, KEY_PIN2); // 设置KEY所在管脚为输入for (;;){if (GPIOPinRead(KEY_PORT1, KEY_PIN1) == 0x00) // 如果按下KEY1{ GPIOPinWrite(LED_PORT2, LED_PIN2, 0xff); // 熄灭LED GPIOPinWrite(LED_PORT1, LED_PIN1, 0x05); // 点亮LED }else if (GPIOPinRead(KEY_PORT2, KEY_PIN2) == 0x30) // 如果按下KEY2{ GPIOPinWrite(LED_PORT2, LED_PIN2, 0xff); // 熄灭LED GPIOPinWrite(LED_PORT1, LED_PIN1, 0x02); // 点亮LED }else if (GPIOPinRead(KEY_PORT2, KEY_PIN2) == 0x50) // 如果按下KEY3{ GPIOPinWrite(LED_PORT1, LED_PIN1, 0xff); // 熄灭LED GPIOPinWrite(LED_PORT2, LED_PIN2, 0x0e); // 点亮LED }else if (GPIOPinRead(KEY_PORT2, KEY_PIN2) == 0x60) // 如果按下KEY4{ GPIOPinWrite(LED_PORT1, LED_PIN1, 0xff); // 熄灭LED GPIOPinWrite(LED_PORT2, LED_PIN2, 0x0d); // 点亮LED }SysCtlDelay(10 * (TheSysClock / 3000)); // 延时约10ms }}。
实验5 独立键盘和矩阵键盘一、实验目的1、学会用C语言进行独立按键应用程序的设计。
2、学会用C语言进行矩阵按键应用程序的设计。
二、实验内容1、独立按键:对四个独立按键编写程序:当按k1时,8个LED同时100ms闪烁;当按k2时,8个LED从左到右流水灯显示;当按k3时,8个LED从右到左流水灯显示;当按k4时,8各LED同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭;2、矩阵按键:采用键盘扫描方式,顺序按下矩阵键盘后,在一个数码管上顺序显示0~F,采用静态显示即可。
3、提高部分(独立按键、定时器、数码管动态扫描):编写程序,实现下面的功能。
用数码管的两位显示一个十进制数,变化范围为00~59,开始时显示00,每按一次k1,数值加1;每按一次k2,数值减1;每按一次k3,数值归零;按下k4,利用定时器功能使数值开始自动每秒加1;再按一次k4,数值停止自动加1,保持显示原数。
三、实验步骤1、硬件连接(1)使用MicroUSB数据线,将实验开发板与微型计算机连接起来;(2)在实验开发板上,用数据线将相应接口连接起来;2、程序烧入软件的使用使用普中ISP软件将HEX文件下载至单片机芯片内。
查看结果是否正确。
四、实验结果——源代码1. #include "reg52.h"typedef unsigned char u8;typedef unsigned int u16;#define LED P2sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;const char tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; u8 code begMid[]={0x7e, 0xbd,0xdb,0xe7, 0xdb, 0xbd, 0x7e}; void Delay(u16 i){ while(i--);}void KeyDown(){u8 i;if(key2==0){Delay(1000);if(key2==0){for(i=0;i<8;i++){LED=tab[i];Delay(50000);}while(!key2);}LED=0xff;}else if(key1==0){Delay(1000);if(key1==0)for(i=0;i<3;i++){LED=0x00;Delay(10000);LED=0xff;Delay(10000);}}}}void Int0Init(){IT0=1;EX0=1;EA=1;}void Int1Init(){IT1=1;EX1=1;EA=1;} void main(){Int0Init();Int1Init();while(1){KeyDown();}}void Int0() interrupt 0{u8 i;if(key3==0){Delay(1000);if(key3==0)for(i=7;i>=0;i--){LED=tab[i];Delay(50000);}}}}void Int1() interrupt 2{u8 i;if(key4==0){Delay(1000);if(key4==0){for(i=0;i<=6;i++){LED=begMid[i];Delay(50000);}}}}2.#include "reg52.h"typedef unsigned int u16;typedef unsigned char u8;#define GPIO_DIG P0#define GPIO_KEY P1sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;u8 KeyValue;u8 code smgduan[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//??0~F?? void delay(u16 i){while(i--);}void KeyDown(void){char a=0;GPIO_KEY=0x0f;if(GPIO_KEY!=0x0f){delay(1000);if(GPIO_KEY!=0x0f){GPIO_KEY=0X0F;switch(GPIO_KEY){case(0X07): KeyValue=0;break;case(0X0b): KeyValue=1;break;case(0X0d): KeyValue=2;break;case(0X0e): KeyValue=3;break;}GPIO_KEY=0XF0;switch(GPIO_KEY){case(0X70): KeyValue=KeyValue;break;case(0Xb0): KeyValue=KeyValue+4;break;case(0Xd0): KeyValue=KeyValue+8;break;case(0Xe0): KeyValue=KeyValue+12;break;}while((a<50)&&(GPIO_KEY!=0xf0)){delay(1000);a++;}}}}void main(){LSA=0;LSB=0;LSC=0;while(1){KeyDown();GPIO_DIG=smgduan[KeyValue];}}3.#include <reg52.h>typedef unsigned int u16;typedef unsigned char u8;#define KEYPORT P3sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;u16 t;u8 sec;u8 DisplayData[2];u8 code smgduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void Time1Init(){TMOD |= 0x10;TH1=0Xd8;TL1=0Xf0;EA=1;ET1=1;}void delay(u16 i){while(i--); }void DigDisplay(){u8 i;for(i=0;i<2;i++){switch(i){case 0:LSA=0;LSB=0;LSC=0;break;case 1:LSA=1;LSB=0;LSC=0;break;}P0=DisplayData[i];delay(100);P0=0x00;}}void datapros(){DisplayData[0]=smgduan[sec%10];DisplayData[1]=smgduan[sec/10];}void main(){Time1Init();while(1){if(key4==0){delay(1000);if(key4==0){TR1=!TR1;while(key4==0);}}if(key3==0){delay(1000);if(key3==0){sec=0;while(key3==0);}}if(key2==0){delay(1000);if(key2==0){sec--;while(key2==0);}}if(key1==0){delay(1000);if(key1==0){sec++;while(key1==0);}}}}void Time1() interrupt 2{TH1=0Xd8;TL1=0Xf0;t++;if(t==100){t=0;sec++;if(sec>=60){sec=0;}}datapros();DigDisplay();}五、实验体会——结果分析1、独立按键:位定义四个按键key1、key2、key3、key4,宏定义LED为P2口,tab数组保存流水灯D0-D7依次点亮的数值,begMid数组保存流水灯同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭的赋值方式。
基于单片机的键盘和LED数码管工作原理单片机是一种集成电路芯片,它包含了中央处理器、存储器和各种输入输出接口等核心功能。
而键盘和LED数码管则是单片机中常用的输入和输出设备之一键盘通常由多个按键组成,每个按键对应一个电路开关。
当按键按下时,电路闭合,形成通路,使电流流过。
按键抬起时,电路断开,通路被切断。
在单片机的键盘应用中,常用的键盘有矩阵键盘和独立按键两种。
矩阵键盘是将多个按键排列成矩阵的形式,通过行和列两个方向上的电极连接到单片机的输入输出引脚上。
当一些按键按下时,对应的行和列的电极会形成电路,单片机通过扫描行和列的方式,来检测按键的状态。
具体的工作原理如下:1.单片机通过输出行电平信号,将每行的引脚设置为输出模式,并将行的电平拉低;2.单片机通过输入列电平信号,将每列的引脚设置为输入模式,并开启输入状态;3.单片机依次扫描每行,检测是否有按键按下;4.如果有按键按下,则表示该行对应的列电平会被单片机检测到;5.单片机根据行和列的组合,确定按下的按键。
独立按键则是将每个按键对应的引脚直接连接到单片机的输入引脚上,按键按下时,直接检测到引脚的电平信号。
LED数码管是一种显示设备,它由多个LED组成,可以用于显示数字、字母和符号等信息。
在单片机的LED数码管应用中,常见的数码管有共阳和共阴两种类型,在工作时,需要通过单片机的输出引脚来控制数码管的亮灭。
共阳数码管的工作原理如下:1.单片机通过输出引脚产生一个高电平信号,与数码管的相应位相连接;2.当输出引脚电平为高时,该位的LED被通电,发出光亮;3.当输出引脚电平为低时,该位的LED断电,熄灭。
共阴数码管的工作原理与共阳相反:1.单片机通过输出引脚产生一个低电平信号,与数码管的相应位相连接;2.当输出引脚电平为低时,该位的LED被通电,发出光亮;3.当输出引脚电平为高时,该位的LED断电,熄灭。
通常,为了达到流水灯效果或同时显示多位数字,需要使用多个输出引脚来控制多个LED数码管。
51单片机学习之5-独立按键和矩阵键盘
第14集
键盘的原理
键盘分编码键盘(例如电脑键盘)和非编码键盘(自己用程序去识别)。
非编码键盘分:独立式非编码键盘(独立按键)、行列式非编码键盘(4*4阵列键盘)
独立键盘的电路图。
因为51单片机的IO口不是双向口而是准双向口,要让IO口具备输入功能,必须将IO口置1,置1之后当按键按下时IO口的电平会被拉低,即被置0。
当检测到IO口为0时即可判断该按键已经按下。
按键按下时会有一个抖动的
过程(弹片会抖动),由于单片机检测IO口速度非常快,超过弹片抖动的频率,所以当单片机检测到IO口为0时需延时一小段时间再检测IO是否为0,如果仍为0就确认该按钮被按下。
因为IO口里面有上拉电阻,所以当松开按钮时,IO口又被拉高。
例程:
#include
#defineuintunsignedint
#defineucharunsignedchar
sbitKey=P3;//按键
sbitLed=P1;//Led灯
voiddelay(uintz);
/********主函数********/
voidmain()。
//51单片机独立按键控制八路LED灯亮灭程序代码//#include <reg51.h> //调用头文件unsigned int count,count1; //定义两个int类型的变量sbit key=P3^5; //定义按键接入串口sbit key1=P3^4; //定义按键接入串口//以下是一个延时函数,便于后面程序按键的消抖,除了这个用途外,延时函数还有很多用途......//void delay(unsigned int ms){while(ms--);}//以下是一个声明的按键检测函数,在这个函数中通过count及count1两个变量的值来确定按键按下LED的亮灭,我这用了两个按键,不同按键控制LED从不同方向一次点亮,函数中采用了if语句与switch语句相结合,这是关键所在。
//void keysan(){if(key==0){delay(10);if(key==0){count++;switch(count){case 0:P1=0xff;break;case 1:P1=0xfe;break;case 2:P1=0xfd;break;case 3:P1=0xfb;break;case 4:P1=0xf7;break;case 5:P1=0xef;break;case 6:P1=0xdf;break;case 7:P1=0xbf;break;case 8:P1=0x7f;break;case 9:P1=0xff;break;}if(count>=9){count=0;}while(!key);}}delay(10);if(key1==0){delay(10);if(key1==0){count1++;switch(count1){case 0:P1=0xff;break; case 1:P1=0x7f;break; case 2:P1=0xbf;break; case 3:P1=0xdf;break; case 4:P1=0xef;break; case 5:P1=0xf7;break; case 6:P1=0xfb;break; case 7:P1=0xfd;break; case 8:P1=0xfe;break; case 9:P1=0xff;break; }if(count1>=9){count1=0;}while(!key1);}}}void main(){while(1){keysan();}}。
一、任务说明本次的任务是利用51单片机设计一个4*4矩阵键盘输入系统,用16个发光二级管对应16个不同的按键。
每按下一个按键对应的发光二极管就亮。
矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1所示。
一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
键盘布局1 图利用单片机的并行口P1连接4×4矩阵键盘,并以单片机的P1.0-P1.3各管脚作输入线,以单片机的P1.4-P1.7各管脚作输出线;利用P2、P3口控制灯1-灯16,。
用Proteus绘制其电路原理图(附录一)。
此任务用到了AT89C51芯片,还用到了晶体振荡器、按钮开关、发光二级管以及一些电阻。
这次任务中采用C语言编写程序,在编译过程中设置成自动产生HEX文件,将此文件导入AT89C51中,即可实现相应的功能。
二、原理图绘制说明电路原理图的设计与绘制是整个电路设计的基础,设计一个电路原理图的工作包括:设置电路图图纸的大小,规划电路图的总体布局,在图纸上放置元器件并对元器件进行调整,进行布线和整体布局,最后保存并打印输出等几个步骤。
安装完Proteus后,运行ISIS 7 Professional,在原理图编辑窗口绘制电路图,在该界面下还有预览窗口和元件列表区,在左侧的工具箱中还有模型选择工具栏,方向工具栏及仿真按钮等工具。
其具体的使用步骤如下:所示。
2运行该软件后,新建一个设计文件,设置图纸大小。
选择界面如图 1.图2 选择图纸大小界面2.接下来开始查找任务中所用到的元器件,查找界面如图3所示。
元器件查找界面图33.将查找的元器件放置到界面中,并进行相应的引脚连线,本次是采用标注的方式进行引脚连接,标注符号相同的表示引脚相连接,具体操作是先将引脚引出一小段导线,所示。
独立键盘/****************************************************************************** * 按键控制程序* 连接方法:JP10(P2)与JP1 (LED灯)连接,* JP11(P0)与JP5(按键接口)连接* * 开始点亮P1LED* 按P01 LED向右移一位* * 按P00 LED向左移一位* 连续按动按钮LED会不停的左移或右移******************************************************************************** /#include <reg51.h>#include <intrins.h>unsigned char scan_key();void proc_key(unsigned char key_v);void delayms(unsigned char ms);sbit K1 = P0^0; //对应按钮K1sbit K2 = P0^1; //对应按钮K2main(){unsigned char key_s,key_v;key_v = 0x03;P2 = 0xfe;while(1){key_s = scan_key();if(key_s != key_v){delayms(10);key_s = scan_key();if(key_s != key_v){key_v = key_s;proc_key(key_v);}}}}unsigned char scan_key(){unsigned char key_s;key_s = 0x00;key_s |= K2;key_s <<= 1;key_s |= K1;return key_s;}void proc_key(unsigned char key_v){if((key_v & 0x01) == 0){P2 = _crol_(P2,1);}else if((key_v & 0x02) == 0){P2 = _cror_(P2, 1);}}void delayms(unsigned char ms) // 延时子程序{unsigned char i;while(ms--){for(i = 0; i < 120; i++);}}矩阵键盘******************************************************************************* *描述: * * 矩阵键盘数码管显示键值** 排线连接方法:JP8(P1)与JP4(矩阵键盘接口)连接P0与JP3(静态数码管)连接* * 矩阵键盘定义:** P1.1-P1.4为列线,P1.4-P1.7为行线* * 喇叭接P1.5口矩阵键盘P1口,* * 注意:请将JP165短路冒断开* ******************************************************************************* #include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intuchar dis_buf; //显示缓存uchar temp;uchar key; //键顺序吗void delay0(uchar x); //x*0.14MS#define delayNOP(); {_nop_();_nop_();_nop_();_nop_();};// 此表为LED 的字模unsigned char code LED7Code[] = {~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F,~0x77,~0x7C,~0x39,~0x5 E,~0x79,~0x71};/*************************************************************//* *//* 延时子程序*//* *//*************************************************************/void delay(uchar x){ uchar j;while((x--)!=0){ for(j=0;j<125;j++){;}}}/*************************************************************//* /* 键扫描子程序(4*3 的矩阵) P1.4 P1.5 P1.6 P1.7为行*//* P1.1 P1.2 P1.3为列*/*************************************************************/void keyscan(void){ temp = 0;P1=0xF0; //高四位输入行为高电平列为低电平delay(1);temp=P1; //读P1口temp=temp&0xF0; //屏蔽低四位temp=~((temp>>4)|0xF0);if(temp==1) // p1.4 被拉低key=0;else if(temp==2) // p1.5 被拉低key=1;else if(temp==4) // p1.6 被拉低key=2;else if(temp==8) // p1.7 被拉低key=3;elsekey=16;P1=0x0F; //低四位输入列为高电平行为低电平delay(1);temp=P1; //读P1口temp=temp&0x0F;temp=~(temp|0xF0);if(temp==2) // p1.1 被拉低key=key+0;else if(temp==4) // p1.2 被拉低key=key+4;else if(temp==8) // p1.3 被拉低key=key+8;elsekey=16;dis_buf = key; //键值入显示缓存dis_buf = dis_buf & 0x0f;}/*************************************************************//* *//*判断键是否按下*//* *//*************************************************************/void keydown(void){P1=0xF0;if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{keyscan(); //调用按键扫描程序}}/*************************************************************//* *//* 主程序*//* *//*************************************************************/main(){P0=0xFF; //置P0口P1=0xFF; //置P1口delay(10); //延时while(1){keydown(); //调用按键判断检测程序P0 = LED7Code[dis_buf%16]&0x7f; //LED7 0x7f为小数点共阴和共阳此处也是不一样; %16表示输出16进制}}/************************************************************/标题: 试验数码管上如何显示数字(共阳极) * 连接方法:P0 与JP3 用8PIN排线连接*请学员认真消化本例程,用单片机脚直接控制数码管* #include <reg51.h>#include <intrins.h>#define NOP() _nop_() /* 定义空指令*/void delay(unsigned int i); //函数声名// 此表为LED 的字模unsigned char code LED7Code[] = {~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F,~0x77,~0x7C,~0x39,~0x5 E,~0x79,~0x71};main(){unsigned int LedNumVal=1 ,C ; //定义变量while(1){if (++C>= 300){ LedNumVal++ ; //每隔300个扫描周期加一次C =0; //每隔300个扫描清零}// 将字模送到P0口显示P0 = LED7Code[LedNumVal%10]&0x7f; //LED7 0x7f为小数点共阴和共阳此处也是不一样;delay(150); //调用延时程序}}/****************************************************************** ** 延时程序** ******************************************************************/void delay(unsigned int i){char j;for(i; i > 0; i--)for(j = 200; j > 0; j--);}*******************************************************************************标题: 试验数码管上显示数字( 单片机直接实现位选共阴极) * * 连接方法:P0与J12 用8PIN排线连接P1与JP16 用排线连接***************************************************************************** 请学员认真消化本例程,用573锁存器控制和单片机脚直接位选控制(非译码器控制)数码管******************************************************************************** #include <reg51.h>#include <intrins.h>void delay(unsigned int i); //函数声名char DelayCNT;//定义变量//此表为LED 的字模, 共阴数码管0-9 -unsigned char code Disp_Tab[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; //段码控制//此表为8个数码管位选控制, 共阴数码管1-8个-unsigned char code dispbit[8]={0xfe,0xfd,0xfb,0xf7,0xef,0xdF,0xbF,0x7F}; //位选控制查表的方法控制/************主函数**********************/main(){unsigned int i,LedNumVal=1 ; //变量定义unsigned int LedOut[10]; //变量定义DelayCNT=0;while(1){if(++DelayCNT>=20) //控制数字变化速度{DelayCNT=0; //20个扫描周期清零一次++LedNumVal; //每隔20个扫描周期加一次}LedOut[0]=Disp_Tab[LedNumVal%10000/1000];LedOut[1]=Disp_Tab[LedNumVal%1000/100]|0x80;LedOut[2]=Disp_Tab[LedNumVal%100/10];LedOut[3]=Disp_Tab[LedNumVal%10];LedOut[4]=Disp_Tab[LedNumVal%10000/1000]; //千位LedOut[5]=Disp_Tab[LedNumVal%1000/100]|0x80; //百位带小数点LedOut[6]=Disp_Tab[LedNumVal%100/10]; //十位LedOut[7]=Disp_Tab[LedNumVal%10]; //个位for( i=0; i<9; i++){P0 = LedOut[i];P1 = dispbit[i]; //使用查表法进行位选/* switch(i) //使用switch 语句控制位选{case 0:P1 = 0x7F; break;case 1:P1 = 0xbF; break;case 2:P1 = 0xdF; break;case 3:P1 = 0xeF; break;case 4:P1 = 0xf7; break;case 5:P1 = 0xfb; break;case 6:P1 = 0xfd; break;case 7:P1 = 0xfe; break;} */delay(150); //扫描间隔时间太长会数码管会有闪烁感}}}void delay(unsigned int i){char j;for(i; i > 0; i--)for(j = 200; j > 0; j--);}。
东北石油大学实习总结报告实习类型生产实习实习单位东北石油大学实习基地实习起止时间 2018 年 7 月 7 日至 2018 年 7 月 16 日指导教师刘东明、孙鉴所在院(系) 电子科学学院班 级 电子科学与技术 15—2学生姓名学号15090124022018 年 7 月 16 日东北石油大学电子科学与技术专业生产实习目录第 1 章 按键控制流水灯设计.................................................................................... 1 1。
1 实习目的 ...................................................................错误!未定义书签。
1.2 实习要求 ......................................................................错误!未定义书签。
第 2 章 电路工作原理................................................................................................ 2 2.1 STC89C52 单片机工作原理 ....................................................................... 2 2.2 LED 工作原理.............................................................................................. 3 2。
3 按键工作原理 ........................................................................................... 3 2.4 整体电路图 .................................................................................................. 5 2.5 本章小结 ..................................................................................................... 6第 3 章 C 程序设计.................................................................................................... 7 3.1 程序设计流程图 ......................................................................................... 7 3.2 实验结果 ...................................................................................................... 8 3.3 本章小结 ..................................................................................................... 9总结及体会................................................................................................................ 10 参考文献.................................................................................................................... 11 附录............................................................................................................................ 12I东北石油大学电子科学与技术专业生产实习第1章 按键控制流水灯设计1.1 实习目的本次实习以 STC89C52 单片机为控制核心。