变电站主变压器与所用变的选择
- 格式:doc
- 大小:475.50 KB
- 文档页数:24
变电站负荷计算及变压器选择探讨摘要:本文介绍煤矿供电企业如何通过变电站负荷计算来确定站用变压器容量及站用变压器型式、阻抗选择原则,并通过新建变电站用变容量设计计算进行分析。
对如何选择站用变压器进行有益的探索。
关键词:煤矿企业变电站站用变压器选择容量探讨煤矿供电企业承担着满足充足供电和安全供电的责任,这要求变电站建设和变压器增容等项工作要考虑变电站的供电负荷选择和变压器的容量。
在变电站建设、扩建和变压器增容时,压器的台数和容量的选择,目前尚无明确具体规定,在通常是按相关规程、制度并结合经验进行。
如果选择变压器的容量过大,就会增加变压器本身和相关设备购置和安装、运行维护的投入,造成资金浪费;如果选择变压器的容量过小,就不能满足供电的需求,变压器超铭牌额定使值运行,造成设备损坏,影响变电站对外安全可靠供电;如果选择变压器容量相当,不仅可节约建设的一次性投资,而且有利于变压器的安全经济运行,减少运行、维护的费用。
因此,在实际工作工作中,要提前计算变电站变压器的容量,根据实际情况,为变电站适当选择变压器的台数、容量和型式。
一、变电站变压器负荷计算要选择主变压器和站用变压器的容量,确定变压器各出线侧的最大持续工作电流。
首先必须要计算各侧的负荷,包括站用电负荷(动力负荷和照明负荷)、10kVφ负荷、35kV负荷和110kV侧负荷。
由公式式中——某电压等级的计算负荷——同时系数(35kV取0.9、10kV取0.85、35kV各负荷与10kV各负荷之间取0.9、站用负荷取0.85)а% ——该电压等级电网的线损率,一般取5%P、cos ——各用户的负荷和功率因数站用负荷计算如下:S站=0.85×(91.5/0.85)×(1+5%)=96.075KV A≈0.096MV A;10kV负荷计算如下:S10KV=0.85[(4+3+3.5+3.2+3.4+5.6+7.8)×0.85+3/9×4]×(1+5%)=38.675WV A;35kV负荷计算如下:S35KV=0.9×[(6+6+5+3)/0.9+(2.6+3.2)/0.85]×(1+5%)=27.448MV A110kV负荷计算如下:S110KV=0.9×(20/0.9+5.8/0.85+25.5/0.85+12/0.9) ×(1+5%)+ S站=68.398+0.096=68.494MV A。
阐述110kV变电站配电设备的最佳配置1 主变压器的选择1.1 变电所主变压器台数的确定主变压器是发电厂和变电站中最主要的设备,它在电气设备的投资中所占的比例较大,同时与之相配的电气装置的投资也与之密切相关。
首先是主变台数的确定。
对于大城市郊区的变电所,在中、低压侧已构成环网的情况下,变电所安装两台主变压器为宜。
而对地区性孤立的一次变电站或大型专用变电站,在设计时应考虑装设三台主变压器的可能性。
其次是主变压器容量的选择。
选择容量的要求:站用变电站的容量须满足正常的负荷需要,而且要留有10%左右的容度,以备加接临时负荷之用。
1.2 主变压器容量的确定主变压器容量一般按变电所建成后10年之内的规划负荷选择,并适当考虑到远期10~20年的负荷发展。
对于城郊变电所,主变压器容量应于城市规划相结合。
但是,同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化、标准化:变压器额定电压规定:变压器一次绕组的额定电压等于用电设备的额定电压。
但是,当变压器的一次绕组直接与发电机的出线端相连时,其一次绕组的额定电压应与发电机额定电压相同,变压器的二次绕组的额定电压比同级电力网的额定电压高10﹪,但是10kV及以下电压等级的变压器的阻抗压降在7.5﹪以下。
若线路短,线路上压降小,其二次绕组额定电压可取1.05Ue。
因此,高压侧额定电压60×1.05%=63(kV);110(kV)中压侧额定电压:35×1.05%=36.75(kV);低压侧额定电压:10×1.05%=10.05(kV)。
1.3 主变压器的型式110kV降压变一般可采用油浸式和干式两种油浸式过载能力强,维修简便,屋内外均可布置,价格便宜。
干式变压防火性能好,布置简单,屋内布置在电压开关柜附近,缩短了电缆长度并提高供电可靠性,干净,但过载能力低、绝缘余度小、价格贵。
一般采用的冷却方式有:自然风冷、强迫油循环风冷、强迫油循环水冷、强迫导向油循环冷却。
变电站中主变与站用变额定电压选择问题摘要:在电力系统中的电力变压器的额定电压选择则不同。
按作用不同可分为升压变压器与降压变压器。
关键词:电力系统主变额定电压一、电力系统中额定电压的概念电力系统中额定电压通常是指电气设备按长期正常工作时有最大经济效果所规定的电压。
我国规定电力网的额定电压有:0.22、3、6、10、35、110、220、330kV等等。
送电距离越远选择的电压越高。
在设计工作中通常假设某电源在额定电压下运行,供电力负荷给n个负荷点,由于线路存在电压损失,供电线路首端与末端接受到的电压不同,线路首端电压大于末端电压。
通常采用线路首端与末端电压的算术平均值1/2(UA+UB)作为用电设备(即电力网)的额定电压。
如变电站中的断路器、隔离开关、电流互感器等额定电压通常选择电力网电压的110%Ue满足最大经济效果及安全的要求。
在电力系统中的电力变压器的额定电压选择则不同。
因为电力变压器既是用电设备又是电压调整设备。
按作用不同可分为升压变压器与降压变压器。
升压变压器的副边高压侧额定电压,要求比输电线路额定电压高10%。
带满负荷时副边绕组本身的电压损失约5%,所以输电线路首端电压比输电线路额定电压约高5%,输电线路末端电压比输电线路额定电压约低5%。
降压变压器副边低压侧额定电压,要求在满负荷时同样副边绕组本身的电压损失约5%,也即输电线路首端电压比输电线路额定电压约高5%,输电线路末端电压比输电线路额定电压约低5%。
但是,在电压等级较高时副边绕组电压比输电线路额定电压约高10%。
无论是升压变压器还是降压变压器均要求原边绕组的额定电压必须等于(或近似等于)所在电力网的实际电压。
因为变电站中的站用变(也称厂用变)的性质为降压变压器。
所以,其原边绕组额定电压也应该等于(或近似等于)所在电力网的实际电压。
二、问题的发现近几年由于电力系统的快速发展,要求设计工作的方式发生了较大的变化。
许多工程均采用标准化设计图纸,电气设备采用了批量集中招标采购的方式,工程建设过程管理采用一体化管理方式,大大加快了电力系统的建设质量与速度。
500kV变电站主变压器的选型问题王晓京华东电力设计院,上海市 200063摘要:文章讨论了500 kV大型变电站主变压器选型需注意的一些问题。
具体对500 kV单相和三相共体变压器的选择、变压器的冷却方式、空载和短路损耗、自耦和非自耦变压器的选择、调压方式、抗短路能力、阻抗参数、变压器油、变压器附件、投标价格及影响因素等方面存在的问题进行了详细的分析和比较。
关键词:变压器;损耗;阻抗;阻抗偏差;调压方式;冷却方式;设备招标0 概述500 kV超高压大型变电站中的主变压器是变电站的核心元件,主变压器的形式和参数的确定不但关系到变压器的结构和工程投资,对电网的安全可靠运行也有着重要影响。
根据近年来500 kV变电站建设的情况,变压器的形式和参数往往因设计情况不同而存在差别,因此应对此现象进行分析研究,尽快规范大型变压器设备招标的技术要求,是目前阶段的紧迫工作。
1 主变压器形式和参数的选择1.1 单相和三相共体变压器的选择500 kV大型变压器按铁心和绕组结构形式可分为单相和三相共体2种形式。
以日本东芝公司750 MVA、500/220/35kV自耦有载调压强油风冷变压器为例,2种形式变压器的外形、质量比较如表1所示。
表1 单相和三相共体变压器的外形、质量目前华东地区投运及在建工程中使用的三相共体变压器约有10台,占变压器总数的10%左右,并且还有增加的趋势。
同等容量的三相共体变压器所消耗的材料少于单相结构的变压器,价格比单相结构变压器低5%~10%,且占地面积少,因此只要运输条件许可,在工程投标中选用三相共体变压器多作为推荐方案。
变压器系统在500 kV大型变电站内具有重要地位,在大负荷运行季节,1台大型变压器因故障退出运行,往往会对地区经济和人们的生活造成难以估量的影响,因此尽可能减少设备的维修停电时间,是设备选型中十分重要的因素。
因变压器结构的特殊性,变压器故障往往难以就地快速解决,一般只能更换设备。
1 变电所主变压器的选择
根据工厂的负荷性质和电源情况,工厂变电所的主变压器可有下列两种方案: 1.1 装设一台主变压器 型式采用S9,而容量根据式S N.T ≥S ’30,一般取
S 30=(0.85~0.9)S ’30(1)=(629.9~667)kV A ,
因此选一台S9-800/10型低损耗配电变压器。
至于工厂二级负荷的备用电源,由与邻近单位相联的高压联络线来承担。
1.2 装设两台主变压器 型号亦采用S9,二每台容量按式SN*T ≈(0.6-0.7)S30和S N.T ≥S30(Ⅰ+Ⅱ),即S N.T ≈(0.6-0.7)×741.1kVA=(444.7-518.8)kVA ≥S30(Ⅰ+Ⅱ)
因此选两台S9-630/10型低损耗配电变压器。
工厂二级负荷的备用电源亦由与邻近单位相联的高压联络线来承担。
主变压器的联结组别均采用Dyn11
2变电所主结线方案的选择 按上面考虑的两种主变压器的方案可设计下列两种主结线方案:
2.1装设一台主变压器的主结线方案 如图1所示 2.2装设两台主变压器的主结线方案 如图2所示
图1装设一台主变压器的主接线方案
图2装设两台主变压器的主接线方案。
变电站电气主接线设计及主变压器的选择变电站是电力系统中的重要组成部分,其电气主接线设计及主变压器的选择对于电力系统的安全稳定运行具有重要意义。
在制定变电站电气主接线设计及主变压器选择方案时,需要考虑电网运行的需求、设备的技术参数、安全可靠性和经济性等因素,因此需要进行全面的分析和研究。
我们来介绍一下变电站电气主接线的设计。
变电站的电气主接线设计是指通过何种方式连接并布置变电所内的高压电缆、电力电缆、配电线路等设备,以及如何布置主接线柜、主配电室等设备以便更加安全可靠地运行。
电气主接线设计应满足以下几个基本要求:1. 安全可靠:电气主接线的设计必须符合国家标准和规范,确保电网的安全稳定运行,可以有效地防止故障事故的发生。
2. 经济合理:电气主接线的设计需要考虑成本因素,尽可能降低投资成本,提高设备的使用效率和寿命,减少运维成本。
3. 灵活可扩展:电气主接线的设计应考虑变电站未来的发展和扩建需求,可以方便地进行设备的添加和调整,以满足不同的电网运行需求。
在进行变电站电气主接线设计时,需要根据变电站的具体情况,对电缆的走向、敷设方式、规格尺寸、敷设数量等进行细致的规划和设计。
还需要选取适合的主接线柜、主配电室等设备,进行合理的布置和连接,保证电气主接线的稳定运行。
接下来,让我们来谈一谈主变压器的选择。
主变压器是变电站中的重要设备,其选择对电力系统的安全可靠运行至关重要。
主变压器的选择应考虑以下几个因素:1. 负载容量:根据变电站的负载情况和未来的发展需求,选择合适的主变压器容量,保证其可以满足变电站的用电需求。
2. 绝缘等级:主变压器需要满足相应的绝缘等级要求,以保证设备的安全可靠运行。
3. 稳定性:主变压器需要具有良好的稳定性和抗干扰能力,能够在电网波动较大时保持稳定输出。
4. 能效比:选择能效比较高的主变压器,可以降低变电站的能耗成本,提高电网的运行效率。
在进行主变压器的选择时,需要结合变电站的具体情况和需要,进行全面的考虑和分析,确保选择到适合的主变压器,以保证变电站的安全稳定运行。
变电站电气主接线设计及主变压器的选择变电站电气主接线设计是变电站工程设计中的重要环节,它直接关系到变电站的运行可靠性和安全性。
主接线设计主要包括主变压器、高压开关设备、低压开关设备以及与变电站其他设备的连接。
1. 主变压器选择主变压器是变电站电气系统中的核心设备,它的选择直接关系到变电站的供电质量和效率。
主要考虑的因素包括变压器的额定容量、最大负荷、短路容量、散热方式、绕组连接方式等。
(1) 额定容量主变压器的额定容量应该根据变电站的负荷需求来确定,一般情况下,变电站的主变压器容量应该略大于最大负荷需求,以确保供电能力充足。
还要考虑变电站未来负荷增长的潜力,选择适当的额定容量。
(2) 最大负荷最大负荷是指变电站在正常运行情况下的最大负荷,一般情况下,主变压器应该能够满足变电站的最大负荷需求,以确保变电站正常稳定运行。
主变压器的短路容量直接关系到变电站的短路电流承受能力,因此在选择主变压器时,需要考虑变电站的短路容量要求,以确保主变压器能够承受变电站的短路电流。
(4) 散热方式主变压器的散热方式包括油冷式和干式,根据变电站的实际情况选择适合的散热方式。
一般来说,大容量主变压器采用油冷式,小容量主变压器采用干式。
(5) 绕组连接方式主变压器的绕组连接方式包括Y型接线和△型接线,根据变电站的负荷要求和运行方式选择适合的绕组连接方式。
2. 高压开关设备高压开关设备主要包括断路器、隔离开关、接地开关等,其选择应根据变电站的负荷特点、运行方式和安全要求进行。
(1) 断路器断路器是变电站中最重要的高压开关设备,其选择应根据变电站的负荷要求、短路容量和操作要求进行。
断路器的额定电流和短路容量应该满足变电站的要求,还要考虑断路器的操作可靠性和维护便捷性。
(2) 隔离开关隔离开关用于将高压设备与地开关分离,进行检修和维护,其选择应考虑其额定电流、分断能力和可靠性等因素。
低压断路器用于控制变电站的低压负荷,其选择应根据变电站的负荷要求、分断能力和可靠性等因素进行。
变电站电气主接线设计及主变压器的选择
随着电网的发展,变电站成为电力系统中不可或缺的部分,其作用是将高压电能通过变压器变换为低压电能,输送到用户终端。
变电站电气主接线设计及主变压器的选择是建立变电站时需要考虑的关键问题。
首先,在变电站电气主接线设计中,需要根据变电站的规模和负荷需求来确定变电站主要的接线方式。
变电站的主接线一般采用单母结构或双母结构,也有复合结构。
针对不同的负荷需求,采用合适的电缆或导线,确保主接线能够承载变电站的负荷。
此外,还需要确定变电站主接线的铜铝比例以及接线的规格和型号,以确保变电站的电气性能和安全稳定运行。
其次,在主变压器的选择上,需要根据变电站的规模及所需容量来确定主变压器的容量和型号。
主变压器的容量一般根据变电站的负荷需求确定,大小也决定了变电站供电的范围和质量。
主变压器选用时还需考虑其能量损耗及绕组的布局。
根据主变压器的特性确定其安装方式,包括立式和横式安装以及安装位置。
最后,需要进一步考虑变电站的地理位置和环境条件,选用符合当地要求及规范的主变压器和电气主接线方案。
在变电站建设及运行过程中,还需要对主变压器进行维护和保护,避免故障发生。
综上所述,变电站电气主接线设计及主变压器的选择是建立变电站时需要考虑的重要因素。
通过全面考虑变电站的规模、负荷需求、地理位置和环境条件等因素,选择合适的主变压器和接线方案,能够确保变电站具有较高的可靠性和安全性,为电网的稳定运行提供重要支撑。
发电厂和变电所主变压器的选择在发电厂和变电所中,用来向电力系统或用户输送功率的变压器,称为主变压器。
只供本厂(所)用电的变压器称为厂(所)用变压器或称自用变压器。
一、主变压器容量、台数的确定原则(一)发电厂主变压器容量、台数的确定主变压器容量、台数直接影响主接线的的形式和配电装置的结构。
它的确定应综合各种因素进行分析,做出合理的选择。
1.具有发电机电压母线接线的主变压器容量、台数的确定(1)当发电机电压母线上负荷最小时,能将发电机电压母线上的剩余有功和无功容量送入系统。
(2)当接在发电机电压母线上最大一台发电机组停用时,主变压器应能从系统中倒送功率,以保证发电机电压母线上最大负荷的需要。
(3)根据系统经济运行的要求而限制本厂输出功率时,能供给发电机电压的最大负荷。
(4)发电机电压母线与系统连接的变压器一般为两台。
对装设两台或以上主变压器的发电厂,当其中容量最大的一台因故退出运行时,其它主变压器在允许正常过负荷范围内,应能输送母线剩余功率的70%以上。
2.单元接线的主变压器容量的确定单元接线时变压器容量应按发电机的额定容量扣除本机组的厂用负荷后,留有10%的裕度来确定。
采用扩大单元时,应尽可能采用分裂绕组变压器,其容量亦应等于按上述(1)或(2)算出的两台发电机容量之和。
(二)变电所主变压器容量、台数的确定1. 主变压器容量的确定变压器容量和它所在电网功能相适应,一般情况下单位容量(MV A)费用、系统短路容量、运输条件等都是影响选择变压器容量时的因素。
具体选择时,可遵循以下原则。
(1)主变压器容量一般按变电所建成后5~10年的规划负荷选择,并适当考虑到远期10~20年的负荷发展。
对于城郊变电所,主变压器容量应与城市规划相结合。
(2)根据负荷的性质和电网的结构来确定主变压器的容量。
对重要变电所,应考虑当一台主变压器停运时,其余变压器容量在计及过负荷能力允许时间内,应满足Ⅰ类及Ⅱ负荷的供电;对一般性变电所,当一台主变压器停运时,其余变压器容量应能保证全部负荷的70~80%。
目录1 绪论 (2)2 变电站主变压器及所用变的选择 (4)2.1 主变压器的选择 (4)2.1.1 主变压器台数的选择 (4)2.1.2 主变压器容量的选择 (5)2.1.3主变相数及接线组别的选择 (5)2.1.4结论 (6)3 电气主接线的设计 (6)3.1主接线的设计原则和要求 (6)3.2本所主接线的设计 (7)3.2.1 设计步骤 (7)3.2.2 初步方案设计 (7)3.2.3.本变电所主接线方案的确定 (8)3.2.4选择结果 (9)4 短路电流的计算 (10)4.1短路电流 (10)4.1.1短路电流计算的目的 (10)4.1.2短路电流计算的一般规定 (10)5 母线的选择与校验 (15)5.1母线的选择 (15)5.2母线热稳定校验 (16)5.3母线动稳定性 (16)6 断路器的选择与校验 (17)6.1初选断路器型号 (17)6.2确定短路计算点及相应短路电流 (18)6.3校验开断能力 (18)6.4校验动稳定 (18)6.5校验热稳定 (18)7 隔离开关的选择 (19)8 绝缘子的选择与校验 (19)结束语 (20)参考文献 (21)附录 (21)1绪论变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
现在,我国电力工业已经进入了大机组、大电厂、大电网、超高压、自动化、信息化发展的新时期。
随着我国经济的蓬勃发展,电网的规模越来越大,电压越来越高,电网调度、安全可靠供电要求以及经济运行和管理水平都形成了一种新的格局。
利用微机实施监控取代常规的控制保护方式,实现变电所的综合自动化,进而施行无人值班,已成为各级电力部门的共识。
在我国城乡电网改造与建设中不仅中低压变电所采用了自动化技术实现无人值班,而且在110kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了电站建设的总造价,这已经成为不争的事实,也是目前变电所建设的主要模式。
可见,变电所综合自动化技术取得了长足的进展,同时已成为我国电力工业推行技术进步的重点之一。
如何合理的设计一个变电所,使之在技术上、管理上适应电力市场化体制和竞争需要,促使电网互联范围的不断扩大,是这次设计的主要目的。
此次设计的关键的问题是合理确定电气一次主接线方案。
电气一次主接线方案的确定,对电气主接线的基本要求包括可靠性、灵活性和经济性三个方面,即对变电所一次主接线要求供电可靠、调度灵活、操作方便、检修安全、扩建方便、投资省、年运行费小、占地面积小等。
因此,我们在设计中选出2-3个方案,经过计算比较选出最合适的既可靠又经济的方案。
负荷计算、短路电流计算也非常重要,用于选择主变的容量和台数、导线型号和截面,使各设备能够安全可靠的担负起变换和分配电能的作用,降低能耗标准,提高能源利用率。
短路电流计算,必须确定几个短路点,近似的进行计算来验证该主接线及主变的可靠性。
同时进行防雷保护和接地装置计算,选择继电保护计量装置配置,以确保人员及设备安全。
2.变电站主变压器及所用变的选择2.1 主变压器的选择在各种电压等级的变电站中,变压器是主要电气设备之一,其担负着变换电压,进行电力传输的重要任务。
确定合理的变压器容量是变电所安全可靠供电和网络经济运行的保证。
因此,在确保安全可靠供电的基础上,确定变压器的经济容量,提高网络的经济运行素质将具有明显的经济意义。
变压器台数和容量的选择直接影响主接线的形式和配电装置的结构。
它的确定除依据传递容量基本原始资料外,还应依据电力系统5-10年的发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。
选择主变压器型式时,应考虑以下问题:相数、绕组数与结构、绕组接线组别(在电厂和变电站中一般都选用YN,d11常规接线)、调压方式、冷却方式。
2.1.1 主变压器台数的选择因为负荷容量为250MW,所以变压器的容量应为:250/0.8(1+15%)=360MVA,查有关资料应选用:SFP-120000/110型的变压器四台满足本变电所的容量。
其中三台为主变,另一台作为备用。
2.1.2 主变压器容量的选择(1) 主变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等综合考虑确定。
(2) 主变压器容量一般按变电所、建成后5~10年的规划负荷选择,并适当考虑到远期的负荷发展。
对于城网变电所,主变压器容量应与城市规划相结合。
(3) 在有一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。
如变电所可由中、低压侧电力网取得跔容量的备用电源时,可装设一台主变压器。
(4) 装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于70%的全部负荷,并应保证用户的一、二级负荷。
(5)当一台事故停用时,另一台变压器事故过负荷能力查表得出过负荷倍数为1.3,允许时间为2小时。
2.1.3主变相数及接线组别的选择(1)主变相数的选择根据选择主变相数所应考虑的原则:在运输条件不受限制时,330kV及以下的变电所均应选三相变压器。
此次设计110/10KV变电所选择的是三相双绕组变压器。
(2)主变绕组数的确定。
此变电所为110/10KV两个电压等级的变电所,因此主变压器应选双绕组变压器。
(3)主变接线组别的确定。
本次设计电压等级为110kV、10kV降压变电所,由于本地区电网考虑供电的可靠性,35kV及以下电网采用不接地或采用小电流接地方式,所以主变采用Y /d11连接组别。
2.1.4结论根据该变电所的原始资料、选择主变压器的原则,从对用户供电可靠、保证电能质量等方面考虑,本次设计选用三台主变压器,型号为SFP-120000/110型。
选定的主变型号、参数见表2-1:表2-1主变压器参数表3电气主接线的设计3.1主接线的设计原则和要求变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。
变电站的主接线是电力系统接线组成中一个重要组成部分。
主接线的确定,对电力系统的安全、稳定、灵活、经济运行及变电站电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会产生直接的影响。
电气主接线的设计是发电厂或变电所电气设计的主体,它与电力系统、电厂动能参数、待建变电所基本原始资料以及电厂运行可靠性、经济性要求有密切的关系,并对电气设备选择和布置、继电保护和控制方式有较大的影响。
因此,主接线设计必须结合电力系统和发电厂或变电所的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理选择方案。
3.2本所主接线的设计3.2.1 设计步骤(1)拟定可行的主接线方案:根据设计任务书的要求,在分析原始资料的基础上,拟订出若干可行方案,内容包括主变压器形式、台数和容量、以及各级电压配电装置的接线方式等,并依据对主接线的要求,从技术上论证各方案的优、缺点,保留几个技术上相当的较好方案。
(2)对几个方案进行全面的技术,经济比较,确定最优的主接线方案。
(3)绘制最优方案电气主接线图。
3.2.2 初步方案设计在设计电气主接线时,要使其满足供电可靠性、运行的灵活性和经济性等项基本要求。
(1)可靠性:供电可靠性是电力生产和分配的首要要求。
电气主接线也必须满足这个要求。
衡量主接线运行可靠性的标志是:①断路器检修时,能否不影响供电。
②线路、断路器或母线故障时,以及母线检修时,停运出线回路数的多少和停电范围的大小和时间的长短,以及能否保证对重要用户的供电。
③变电所全部停电的可能性(应尽量避免)。
(2)灵活性:①调度灵活,操作简便。
②检修安全。
③扩建方便。
(3)经济性:①投资省,主接线应简单清晰,以节约一次设备投资为主。
②占地面积小。
③电能损耗少。
3.2.3 本变电所主接线方案的确定方案1:采用单母线接线优点:接线简单清晰、设备少操作方便、便于扩建和采用成套配电装置。
缺点:不够灵活可靠,任一元件(母线及母线隔离开关等)故障或检修,均需使整个配电装置停电。
单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障段的供电。
适用范围:一般适用于一台发电机或一台变压器的110-220KV配电装置的出线回路数不超过两回。
方案2:采用单母线分段接线优点:1)用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电。
2)当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
缺点:1)当一段母线或母线隔离开关故或检修时,该段母线的回路都要在检修期间内停电。
2)当出线为双回路时,常使架空线路出线交叉跨越。
3)扩建时需向两个方向均衡扩建。
适用范围:一般认为单母线分段接线应用在6~10kV,出线在6回及以上时,每段所接容量不宜超过25MW;用于35~66kV时,出线回路不宜超过8回;用于110~220kV时,出线回路不宜超过4回。
3.2.4选择结果根据本次设计的具体情况及终端变电所在可靠性、灵活性的基础上力求经性原则,参照上述方案,选择如下:10kV侧:采用单母线分段接线4 短路电流的计算4.1短路电流所谓短路,就是供电系统中一相或多相载流导体接地或相互接触并产生超出规定的最大电流。
造成短路的主要原因是电气设备的绝缘损坏、误操作、雷击、过电压击穿等。
4.1.1短路电流计算的目的(1)在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。
(2)在选择电器设备时,为了保证设备在正常运行和故障下都能安全、可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算。
(3)在设计户外高压配电装置时,需按短路条件校验软导线的相间和相对地的安全距离。
(4)在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。
接地装置需根据短路电流进行设计。
4.1.2短路电流计算的一般规定(1)、计算的基本情况1)电力系统中所有电源均在额定负荷下运行。
2)所有同步电机都有自动调整励磁装置。
3)短路发生在短路电流为最大的瞬间。
4)所有电源的电动势相位相同。
5)应考虑对短路电流值有影响的所有元件,但不考虑短路点的电弧电阻。
(2)、接线方式计算短路电流,确定变电所的接线方式,应是可能发生最大短路电流的正常接线方式(最大运行方式)。
(3)、计算容量应该按工程所规定的容量计算,并考虑电力系统的远景发展规划,一般取工程建成后的5~10年。
(4)、短路种类一般按照三相短路计算。
(5)、短路计算点在正常接线方式时,通过设备的短路电流为最大的地点,称为短路计算点。