第六章电液伺服系统.
- 格式:ppt
- 大小:2.30 MB
- 文档页数:67
电气工程中电液伺服系统的建模与控制电液伺服系统在电气工程中扮演着重要的角色,它是将电力和液压技术相结合的一种控制系统。
本文将探讨电液伺服系统的建模与控制方法,旨在帮助读者深入了解该系统的原理和应用。
1. 引言电液伺服系统是一种将电力与液压技术相结合的控制系统,它具有快速、精确以及大扭矩输出的特点,广泛应用于工业自动化领域。
该系统通常由液压执行机构、液压装置、电机、传感器以及控制器等组成。
2. 电液伺服系统的建模电液伺服系统的建模是理解系统行为和进行控制设计的重要基础。
一般来说,电液伺服系统的建模可以分为力平衡模型和压力平衡模型两种。
2.1 力平衡模型力平衡模型是基于力学平衡原理建立的,它通过分析液体在液压缸内的流动以及液压缸和负载之间的力平衡关系来描述系统行为。
该模型主要考虑了负载的机械特性以及阀门的开度对液体流量和压力的影响。
2.2 压力平衡模型压力平衡模型是基于流体的压力平衡原理建立的,它通过分析液体在液压缸内的流动以及阀门的开度对液体流量和压力的影响来描述系统行为。
该模型不考虑负载的机械特性,主要关注液体流动的特性以及阀门对压力的调节。
3. 电液伺服系统的控制电液伺服系统的控制主要包括位置控制、速度控制和力控制三种。
在控制设计中,通常使用比例积分微分(PID)控制器或模糊控制器来实现系统性能的改善。
3.1 位置控制位置控制是电液伺服系统中最常见的一种控制方式。
它通过控制液压缸的位置来实现对负载的准确控制。
在控制设计中,可以根据负载的特性选择适当的控制方法,如PID控制器或模糊控制器。
3.2 速度控制速度控制是电液伺服系统中实现对负载速度精确控制的一种方式。
在速度控制中,控制器通常根据传感器反馈的速度信号来调节液压缸的速度。
PID控制器常被用于速度控制中,通过调节比例、积分和微分参数来改善系统的响应性能。
3.3 力控制力控制是电液伺服系统中实现对负载施加特定力的控制方式。
在力控制中,控制器通常调节液压缸施加的力来满足特定的要求。
第二章 液压放大元件 习题1. 有一零开口全周通油的四边滑阀,其直径m d 3108-⨯=,径向间隙m r c 6105-⨯=,供油压力Pa p s 51070⨯=,采用10号航空液压油在40C ︒工作,流量系数62.0=d C ,求阀的零位系数。
s pa ⋅⨯=-2104.1μ3/870m kg =ρ 解:对于全开口的阀,d W π=由零开口四边滑阀零位系数2. 已知一正开口量m U 31005.0-⨯=的四边滑阀,在供油压力Pa p s 51070⨯=下测得零位泄漏流量min /5L q c =,求阀的三个零位系数。
解:正开口四边滑阀零位系数ρsd q p wc k 20= ssd co p p wuc k ρ=ρsd c p wuc q 2=3. 一零开口全周通油的四边滑阀,其直径m d 3108-⨯=,供油压力Pa p s 510210⨯=,最大开口量m x m 30105.0-⨯=,求最大空载稳态液动力。
解:全开口的阀d W π= 最大空载液动力:4. 有一阀控系统,阀为零开口四边滑阀,供油压力Pa p s 510210⨯=,系统稳定性要求阀的流量增益s m K q /072.220=,试设计计算滑阀的直径d 的最大开口量m x 0。
计算时取流量系数62.0=d C ,油液密度3/870m kg =ρ。
解:零开口四边滑阀的流量增益:故m d 31085.6-⨯=全周开口滑阀不产生流量饱和条件5. 已知一双喷嘴挡板阀,供油压力Pa p s 510210⨯=,零位泄漏流量s m q c /105.736-⨯=,设计计算N D 、0f x 、0D ,并求出零位系数。
计算时取8.00d =C ,64.0df =C ,3/870m kg =ρ。
解:由零位泄漏量ρπs f N df c p X D C q 02⋅⋅⋅= 即160Nf D X =得: mm p C q D s df cN 438.0216=⋅⋅=ρπ 则:若:8.00=d df C C ,1610=Nf D X 则mm D D N 193.044.00== 第三章 液压动力元件 习题1. 有一阀控液压马达系统,已知:液压马达排量为rad m D m /10636-⨯=,马达容积效率为95%,额定流量为s m q n /1066.634-⨯=,额定压力Pa p n 510140⨯=,高低压腔总容积34103m V t -⨯=。
电液伺服系统动力学和控制理论的研究电液伺服系统是工业控制中应用广泛的一种控制系统,它在机电液控制中扮演着至关重要的角色,能够实现复杂的运动控制及其它高精度的控制目标。
本文将对电液伺服系统的动力学和控制理论进行深入研究,涉及到的主要内容包括电液伺服系统的组成、动力学模型以及控制算法等,旨在为研究电液伺服系统提供参考。
一、电液伺服系统的组成电液伺服系统主要由以下几个部分组成:电机、液压执行器、伺服阀、传感器、控制器等。
其中,电机作为电源驱动液压油泵,从而形成动力源;液压执行器将液压油通过化动力变为机械力,实现了要实现的运动任务和操作;伺服阀起到调节液压系统压力和流量的作用,从而对液压执行器的行动形成重要影响;传感器可以用于获取系统信息,同时控制器作为系统的核心,通过对传感器信息和逻辑算法的处理,实现对电液伺服系统的控制。
电液伺服的系统构成比较复杂,其组成部分相互作用,使得电液伺服系统具有很高的灵敏性和控制精度。
但同时,也存在许多缺陷,如系统复杂、工作噪音大、易受干扰等,这些都是需要我们在研究中进行深入探究和解决的问题。
二、电液伺服系统的动力学模型电液伺服系统的动力学模型是为掌握电液伺服系统的动态特性而建立的一种数学模型。
在动力学模型中,可以通过板显地表述系统对输入变化的时间和幅值响应,并对系统的反应性能进行研究,十分有利于对电液伺服系统的控制进行优化。
其中,电液伺服系统的动力学模型主要包括机械动力学模型和液压动力学模型。
机械动力学模型反映了电机和液压执行器的动态行为,可以用来描述运动控制;液压动力学模型反映的是液压元件的动态特性,可以用来描述伺服阀系统的动态特性。
三、电液伺服系统的控制算法电液伺服系统的控制算法主要包括位置控制、速度控制和力控制等。
其中,位置控制是最基础也是最常见的一种控制算法,可以实现对电液伺服系统的运动精度的高精度控制;速度控制的目标是确保输出信号的速度,该算法主要应用在需要快速移动、实现精准测量或定位的场合,确保控制器对速度变化的响应时间无误差;而力控制则是利用压力变化来控制运动的目标。
《电液伺服控制系统》(含实验内容)教学大纲课程编码:08241068课程名称:电液伺服控制系统英文名称:electro-hydraulic servo control system开课学期:1学时/学分:30 (其中实验学时:4 )课程类型:专业课开课专业:机械电子工程专业本科生选用教材:《液压伺服控制系统》王春行主编主要参考书:执笔人:刘昕晖一、课程性质、目的与任务本课程为机械电子工程专业本科生专业选修课。
通过对本课程的学习使学生了解液压伺服控制的基本理论、液压伺服控制元件和液压伺服控制系统等知识,了解液压伺服控制元件和系统的作用原理、特性分析及设计计算等。
二、教学基本要求1.了解电液伺服系统的基本概念2.了解液压伺服控制的基本理论、基本方法。
3.了解液压伺服控制元件和液压伺服控制系统组成和基本原理。
4.了解液压伺服控制元件和系统的特性分析及初步设计计算方法。
三、各章节内容及学时分配第一章液压伺服控制系统概述(2学时)本章介绍液压伺服控制系统的工作原理、组成、分类、优缺点和应用。
通过本章的学习,可以对液压伺服控制系统有一个大致的了解。
1.1 液压伺服控制系统的工作原理和组成一、液压伺服控制系统的工作原理二、液压伺服控制系统举例三、液压伺服控制系统的组成1.2 液压伺服控制系统的分类一、按输入信号的变化规律分类二、按系统输出量的名称分类三、按驱动装置的控制方式和控制元件的类型分类四、按信号传递介质的形式分类五、按液压动力机构是否对称分类1.3 液压伺服控制系统的优缺点一、液压伺服控制系统的优点二、液压伺服控制系统的缺点1.4 液压伺服控制系统的发展和应用概况第二章液压放大元件(4学时)液压放大元件是液压伺服系统中的一种主要控制元件,它们的性能直接影响到液压伺服系统购工作品质,因此必须对它们的特性及设计淮则进行研究。
液压放大元件可以是液压伺服阀或伺服变量泵。
本章只讨论液压伺服阀,包括滑阀、喷嘴挡板阀和射流管阀。
电液伺服系统的原理及应用一.电液伺服系统概述电液伺服系统在自动化领域是一类重要的控制设备,被广泛应用于控制精度高、输出功率大的工业控制领域.液体作为动力传输和控制的介质,跟电力相比虽有许多不甚便利之处且价格较贵,但其具有响应速度快、功率质量比值大及抗负载刚度大等特点,因此电液伺服系统在要求控制精度高、输出功率大的控制领域占有独特的优势。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。
我国的电液伺服发展水平目前还处在一个发展阶段,虽然在常规电液伺服控制技术方面,我们有了一定的发展。
但在电液伺服高端产品及应用技术方面,我们距离国外发达国家的技术水平还有着很大差距。
电液伺服技术是集机械、液压和自动控制于一体的综合性技术,要发展国内的电液伺服技术必须要从机械、液压、自动控制和计算机等各技术领域同步推进。
二.电液伺服的组成电液控制系统是电气液压控制系统简称,它由电气控制及液压两部分组成。
在电子-液压混合驱动技术里,能量流是由电子控制,由液压回路传递,充分结合了电子控制和液压传动两者混合驱动技术的优点避免了它们各自的缺陷。
⑴电子驱动技术的特点①高精度、高效率,低能耗、低噪音②高性能动态能量控制③稳定的温度性能④能量再生及反馈电网⑤在循环空闲的时间没有能量损失⑵液压驱动技术的特点①高(力/功)密度②结构紧凑③液压马达(油缸)是大功率且经济的执行元件④在液压系统做压力控制的时候有明显的能量流失液压部分:以液体为传动介质,靠受压液体的压力能来实现运动和能量传递。
基于液压传动原理,系统能够根据机械装备的要求,对位置、速度、加速度、力等被控量按一定的精度进行控制,并且能在有外部干扰的情况下,稳定、准确的工作,实现既定的工艺目的。
(工控网)液压伺服阀是输出量与输入量成一定函数关系,并能快速响应的液压控制阀,是液压伺服系统的重要元件。
《电液伺服控制系统》(含实验内容)教学大纲课程编码:08241068课程名称:电液伺服控制系统英文名称:electro-hydraulic servo control system开课学期:1学时/学分:30 (其中实验学时:4 )课程类型:专业课开课专业:机械电子工程专业本科生选用教材:《液压伺服控制系统》王春行主编主要参考书:执笔人:刘昕晖一、课程性质、目的与任务本课程为机械电子工程专业本科生专业选修课。
通过对本课程的学习使学生了解液压伺服控制的基本理论、液压伺服控制元件和液压伺服控制系统等知识,了解液压伺服控制元件和系统的作用原理、特性分析及设计计算等。
二、教学基本要求1.了解电液伺服系统的基本概念2.了解液压伺服控制的基本理论、基本方法。
3.了解液压伺服控制元件和液压伺服控制系统组成和基本原理。
4.了解液压伺服控制元件和系统的特性分析及初步设计计算方法。
三、各章节内容及学时分配第一章液压伺服控制系统概述(2学时)本章介绍液压伺服控制系统的工作原理、组成、分类、优缺点和应用。
通过本章的学习,可以对液压伺服控制系统有一个大致的了解。
1.1 液压伺服控制系统的工作原理和组成一、液压伺服控制系统的工作原理二、液压伺服控制系统举例三、液压伺服控制系统的组成1.2 液压伺服控制系统的分类一、按输入信号的变化规律分类二、按系统输出量的名称分类三、按驱动装置的控制方式和控制元件的类型分类四、按信号传递介质的形式分类五、按液压动力机构是否对称分类1.3 液压伺服控制系统的优缺点一、液压伺服控制系统的优点二、液压伺服控制系统的缺点1.4 液压伺服控制系统的发展和应用概况第二章液压放大元件(4学时)液压放大元件是液压伺服系统中的一种主要控制元件,它们的性能直接影响到液压伺服系统购工作品质,因此必须对它们的特性及设计淮则进行研究。
液压放大元件可以是液压伺服阀或伺服变量泵。
本章只讨论液压伺服阀,包括滑阀、喷嘴挡板阀和射流管阀。
电液伺服系统工作原理电液伺服系统是一种将电力与液压技术相结合的控制系统,广泛应用于机械工程领域。
它通过电动机驱动液压泵,将电能转化为液压能,并通过液压元件将液压能传递给执行器,从而实现对机械装置的精确控制。
电液伺服系统的工作原理主要包括信号传输、控制信号处理、执行信号传递和反馈信号处理四个方面。
信号传输是电液伺服系统的基础。
控制信号通常通过电缆或无线方式传输到控制器。
控制器是系统的核心部件,它接收并处理控制信号,根据预设的控制算法生成相应的输出信号。
控制信号处理是电液伺服系统的关键环节。
控制器接收到控制信号后,根据预设的控制算法对信号进行处理,并生成相应的输出信号。
这些输出信号通常是电流信号或压力信号,用于驱动液压泵或控制阀。
第三,执行信号传递是电液伺服系统的重要环节。
输出信号经过电缆或管路传递到执行器,执行器根据信号的大小和方向来调节液压元件的工作状态。
执行器通常由液压马达、液压缸或液压伺服阀等组成,它们能够将液压能转化为机械能,从而实现对机械装置的运动控制。
反馈信号处理是电液伺服系统的闭环控制环节。
执行器在工作过程中会产生反馈信号,这些信号通常是位置、速度或力量等参数的测量值。
控制器接收到反馈信号后,与预设的控制信号进行比较,根据误差大小调整输出信号,从而实现对系统的闭环控制。
总的来说,电液伺服系统的工作原理是通过电能转换为液压能,再将液压能转化为机械能,实现对机械装置的精确控制。
它具有控制精度高、反应速度快、负载能力强等优点,广泛应用于各种需要精确控制的工程领域,如机床、航空航天、冶金等。
随着科技的进步和应用需求的不断提高,电液伺服系统在未来将会得到更广泛的应用和发展。
电液伺服系统的建模与控制电液伺服系统是一种利用电液转换器将电气信号转化为液压驱动力控制机械系统的方法。
它在机械系统精密控制中具有非常重要的地位。
本文将介绍电液伺服系统的建模和控制方法。
1. 电液伺服系统的模型建立电液伺服系统的建模是在液压部分和电气部分的模型之上进行的。
液压部分的模型通常包括油液系统和液压执行元件,如液压缸、液压马达等。
电气部分则包括电气控制器、电机和传感器。
1.1 液压系统的模型液压系统的模型可以包括两级建模,即液体动力学和液压执行元件建模。
液体动力学建模通常根据爬升法或容积法,对压力、流量、速度等参数进行建模分析。
其中,爬升法可用于建立高精度弱非线性的流体动力学模型,容积法适用于建立低精度强非线性的流体动力学模型。
液压执行元件建模是通过分析液压执行元件的工作原理,对其液压特性进行数学建模。
例如,液压缸的模型可以根据柱塞面积、活塞活动范围、缸筒面积等参数构建。
1.2 电气系统的模型电气系统的模型涵盖了电气控制器、电机和传感器等部分。
电气控制器以闭环控制方式实现伺服控制。
在此基础上,我们通常将电动机哈密顿模型建立为一阶两端静差模型。
同时也可以采用Pade逼近方法将电机模型转换为有理分式模型,从而更加准确的描述电机动态。
传感器的模型建立依据其工作原理,例如,位置传感器的模型可以建立为位移与输出电压的函数关系。
在系统建模中,通常采用理想模型、一阶惯性模型等来建立传感器的模型。
2. 电液伺服系统的控制方法在电液伺服系统中,我们通常采用PID控制算法进行伺服控制。
PID控制是一种基于传统控制方法的强建模控制方法,对于线性和线性近似系统有较好的控制效果。
控制系统的目标是通过反馈控制实现输出结果的精确控制。
在反馈信号的加入后,控制信号将通过电液转换器驱动液压执行元件实现力、运动的控制。
在此基础上,我们可以采用自适应控制方法、模糊控制方法、神经网络控制方法等先进控制技术对电液伺服系统进行改进和优化,以适应不同的控制要求。