回归分析概要多元线性回归模型
- 格式:doc
- 大小:150.50 KB
- 文档页数:6
多元线性回归模型的估计与解释多元线性回归是一种广泛应用于统计学和机器学习领域的预测模型。
与简单线性回归模型相比,多元线性回归模型允许我们将多个自变量引入到模型中,以更准确地解释因变量的变化。
一、多元线性回归模型的基本原理多元线性回归模型的基本原理是建立一个包含多个自变量的线性方程,通过对样本数据进行参数估计,求解出各个自变量的系数,从而得到一个可以预测因变量的模型。
其数学表达形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为自变量,β0、β1、β2、...、βn为模型的系数,ε为误差项。
二、多元线性回归模型的估计方法1. 最小二乘法估计最小二乘法是最常用的多元线性回归模型估计方法。
它通过使残差平方和最小化来确定模型的系数。
残差即观测值与预测值之间的差异,最小二乘法通过找到使残差平方和最小的系数组合来拟合数据。
2. 矩阵求解方法多元线性回归模型也可以通过矩阵求解方法进行参数估计。
将自变量和因变量分别构成矩阵,利用矩阵运算,可以直接求解出模型的系数。
三、多元线性回归模型的解释多元线性回归模型可以通过系数估计来解释自变量与因变量之间的关系。
系数的符号表示了自变量对因变量的影响方向,而系数的大小则表示了自变量对因变量的影响程度。
此外,多元线性回归模型还可以通过假设检验来验证模型的显著性。
假设检验包括对模型整体的显著性检验和对各个自变量的显著性检验。
对于整体的显著性检验,一般采用F检验或R方检验。
F检验通过比较回归平方和和残差平方和的比值来判断模型是否显著。
对于各个自变量的显著性检验,一般采用t检验,通过检验系数的置信区间与预先设定的显著性水平进行比较,来判断自变量的系数是否显著不为零。
通过解释模型的系数和做假设检验,我们可以对多元线性回归模型进行全面的解释和评估。
四、多元线性回归模型的应用多元线性回归模型在实际应用中具有广泛的应用价值。
03多元线性回归模型多元线性回归模型是一种经济学和统计学中广泛使用的模型,用于描述多个自变量与因变量之间的关系。
它是在线性回归模型的基础上发展而来的。
在多元线性回归模型中,因变量是由多个自变量共同决定的。
Y = β0 + β1X1 + β2X2 + β3X3 + … + βkXk + ε其中,Y表示因变量,X1、X2、X3等表示自变量,β0、β1、β2、β3等表示回归系数,ε表示误差项。
回归系数β0、β1、β2、β3等表示自变量对因变量的影响程度。
回归系数的符号和大小反映着自变量与因变量的正相关或负相关程度以及影响的大小。
误差项ε是对影响因变量的所有其他变量的影响程度的度量,它是按照正态分布随机生成的。
在多元线性回归模型中,回归系数和误差项都是未知的,需要根据样本数据进行估计。
通常采用最小二乘法来估计回归系数和误差项。
最小二乘法是一种常用的方法,它通过最小化误差平方和来估计回归系数与误差项。
最小二乘法假设误差为正态分布,且各自变量与误差无关。
因此,通过最小二乘法求解出的回归系数可以用于预测新数据。
多元线性回归模型还需要检验回归系数的显著性。
通常采用F检验和t检验来进行检验。
F检验是用于检验整个多元线性回归模型的显著性,即检验模型中所有自变量是否与因变量有关系。
F检验的原假设是回归方程中所有回归系数都为0,备择假设是至少有一个回归系数不为0。
如果p-value小于显著性水平,就可以拒绝原假设,认为多元线性回归模型显著。
总之,多元线性回归模型利用多个自变量来解释因变量的变化,是一种实用性强的模型。
它的参数估计和显著性检验方法也相对比较成熟,可以用于多个领域的实际问题分析。
回归分析中的多元线性回归模型比较回归分析是一种非常重要的数据分析方法,在很多领域都有广泛的应用。
其中,多元线性回归模型是比较常用的一种模型,但是在实际应用中,也有其他类型的回归模型。
本文将介绍多元线性回归模型,以及与之相比较的其他回归模型。
一、多元线性回归模型多元线性回归模型是一种基于线性回归的模型,在该模型中,我们假设因变量可以由多个自变量线性组合得到。
其数学形式如下:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε其中,Y表示因变量,X1, X2, ..., Xp表示自变量,β0, β1, β2, ..., βp表示模型的系数,ε表示误差项。
我们的目标是通过最小化误差项,来得到最优的模型系数。
二、其他回归模型除了多元线性回归模型之外,还有很多其他类型的回归模型,比如:1. 线性回归模型:该模型仅考虑单个自变量对因变量的影响,数学形式为:Y = β0 + β1X1 + ε。
2. 多项式回归模型:该模型假设因变量与自变量之间存在非线性关系,数学形式为:Y = β0 + β1X1 + β2X1^2 + β3X1^3 + ... + βpX1^p + ε。
3. 逻辑回归模型:该模型用于处理分类问题,其数学形式为:P(Y=1) = exp(β0 + β1X1 + β2X2 + ... + βpXp) / [1 + exp(β0 + β1X1 + β2X2 + ... + βpXp)]。
4. 线性混合效应模型:该模型用于处理多层次结构数据,其数学形式为:Yij = β0 + β1X1ij + β2X2ij + ... + βpXpij + bi + εij。
三、多元线性回归模型与其他回归模型的比较在实际应用中,选择合适的回归模型非常重要。
以下是多元线性回归模型与其他回归模型之间的比较:1. 多元线性回归模型可以处理多个自变量之间的关系,能够较好地解释因变量的变异。
但是,该模型假设因变量与自变量之间是线性关系,如果这种假设不成立,模型的拟合效果可能很差。
多元线性回归模型多元线性回归是一种用于分析多个自变量与一个因变量之间关系的统计方法。
在这种分析中,我们试图根据已知自变量的值来预测因变量的值。
该模型常用于市场研究、金融分析、生物统计和其他领域。
在本文中,我们将介绍多元线性回归的基础概念和实践应用。
一般来说,线性回归的目的是找到一个线性函数y=ax+b来描述一个因变量y与一个自变量x的关系。
但是,在现实生活中,我们通常需要考虑多个自变量对因变量的影响。
这时就需要采用多元线性回归模型来描述这种关系。
多元线性回归模型可以表示为:y=b0 + b1x1 + b2x2 + … + bnxn + ε其中,y是因变量,x1, x2, …, xn是自变量,b0, b1, b2, …, bn是回归系数,ε是误差项,反映了因变量和自变量之间未能被回归方程中的自变量解释的差异。
多元线性回归的重要性质是,每个自变量对因变量的影响是独立的。
也就是说,当我们同时考虑多个自变量时,每个自变量对因变量的解释将被考虑到。
多元线性回归模型的核心是确定回归系数。
回归系数表明了自变量单位变化时,因变量的变化量。
确定回归系数的一种方法是最小二乘法。
最小二乘法是一种通过最小化实际值与预测值之间的差值来确定回归系数的方法。
我们可以使用矩阵运算来计算回归系数。
设X为自变量矩阵,y为因变量向量,则回归系数向量b可以通过以下公式计算:b = (XTX)-1XTy其中,XT是X的转置,(XTX)-1是X的逆矩阵。
在计算回归系数之后,我们可以使用多元线性回归模型来预测因变量的值。
我们只需要将自变量的值代入回归方程中即可。
但是,我们需要记住,这种预测只是基于样本数据进行的,不能完全代表总体数据。
多元线性回归模型有很多实际应用。
一个常见的例子是用于市场营销中的顾客预测。
通过对顾客的年龄、性别、教育程度、收入等数据进行分析,可以预测他们的购买行为、购买频率和购买方式等,这些预测结果可以帮助企业做出更好的营销决策。
线性回归与多元回归线性回归和多元回归是统计学中常用的预测分析方法。
它们在经济学、社会学、医学、金融等领域中广泛应用。
本文将对线性回归和多元回归进行简要介绍,并比较它们的异同点及适用范围。
一、线性回归线性回归分析是一种利用自变量(或称解释变量)与因变量(或称响应变量)之间线性关系建立数学模型的方法。
其基本形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1至Xn代表自变量,β0至βn为待估计的回归系数,ε代表随机误差。
目标是通过最小化误差平方和,估计出最优的回归系数。
线性回归的优点在于模型简单、易于解释和计算。
然而,线性回归的局限性在于它适用于解释变量与响应变量存在线性关系的情况,并且需要满足一些假设条件,如误差项服从正态分布、误差项方差相等等。
二、多元回归多元回归是线性回归的扩展,通过引入多个自变量来建立回归模型。
其基本形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε与线性回归类似,多元回归也是通过估计回归系数来建立模型,使得预测值与实际观测值的误差最小化。
多元回归相比于线性回归的优点是能够考虑多个自变量对因变量的影响,更符合实际问题的复杂性。
例如,预测一个人的身高可以同时考虑性别、年龄、体重等多个因素。
然而,多元回归的缺点也是显而易见的,引入更多的自变量可能导致模型过于复杂,产生多重共线性等问题,同时样本的数量和质量也对多元回归的效果有重要影响。
三、线性回归与多元回归的比较1. 模型形式线性回归和多元回归的模型形式非常相似,都是以自变量和回归系数之间的线性组合来预测因变量。
多元回归可以看作是线性回归的一种特殊情况,即自变量只有一个的情况。
2. 自变量个数线性回归只能处理一个自变量的情况,而多元回归则可以同时处理多个自变量。
多元回归相比于线性回归具有更强的灵活性和准确性。
3. 模型解释线性回归的模型相对较为简单,容易解释和理解。
多元线性回归模型多元线性回归模型是一种广泛应用于统计学和机器学习领域的预测模型。
它通过使用多个自变量来建立与因变量之间的线性关系,从而进行预测和分析。
在本文中,我们将介绍多元线性回归模型的基本概念、应用场景以及建模过程。
【第一部分:多元线性回归模型的基本概念】多元线性回归模型是基于自变量与因变量之间的线性关系进行建模和预测的模型。
它假设自变量之间相互独立,并且与因变量之间存在线性关系。
多元线性回归模型的数学表达式如下:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。
回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。
【第二部分:多元线性回归模型的应用场景】多元线性回归模型可以应用于各种预测和分析场景。
以下是一些常见的应用场景:1. 经济学:多元线性回归模型可以用于预测GDP增长率、失业率等经济指标,揭示不同自变量对经济变量的影响。
2. 医学研究:多元线性回归模型可以用于预测患者的生存时间、治疗效果等医学相关指标,帮助医生做出决策。
3. 市场研究:多元线性回归模型可以用于预测产品销量、市场份额等市场相关指标,帮助企业制定营销策略。
4. 社会科学:多元线性回归模型可以用于研究教育水平对收入的影响、家庭背景对孩子成绩的影响等社会科学问题。
【第三部分:多元线性回归模型的建模过程】建立多元线性回归模型的过程包括以下几个步骤:1. 数据收集:收集自变量和因变量的数据,确保数据的准确性和完整性。
2. 数据清洗:处理缺失值、异常值和离群点,保证数据的可靠性和一致性。
3. 特征选择:根据自变量与因变量之间的相关性,选择最相关的自变量作为模型的输入特征。
4. 模型训练:使用收集到的数据,利用最小二乘法等统计方法估计回归系数。
5. 模型评估:使用误差指标(如均方误差、决定系数等)评估模型的拟合程度和预测性能。
多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。
它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。
本文旨在介绍多元线性回归模型的原理、假设条件和应用。
一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。
多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。
二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。
最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。
具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。
三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。
主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。
在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。
四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。
在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。
多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。
五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。
然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。
多元回归分析多元回归分析是一种常用的统计方法,用于研究多个自变量对一个因变量的影响。
该方法可以帮助研究人员理解不同自变量对因变量的相对重要性,并建立预测模型。
本文将介绍多元回归分析的基本原理和应用,并通过一个实例来说明其实际应用价值。
多元回归分析的基本原理是基于线性回归模型。
线性回归模型的基本形式是:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1至Xn表示自变量,β0至βn表示回归系数,ε表示误差项。
多元回归分析通过求解最小二乘法来估计回归系数,以找到最佳拟合线。
回归系数的估计结果可以反映不同自变量对因变量的影响。
多元回归分析的应用十分广泛,特别是在社会科学、经济学以及市场营销等领域。
例如,研究人员可以使用多元回归分析来探索广告投资对销售额的影响,或者研究不同因素对消费者购买行为的影响。
为了更好地理解多元回归分析的应用,我们以市场营销领域的一个案例为例。
假设某公司希望了解其产品销售额与广告投资、价格和竞争公司销售额之间的关系。
研究人员首先收集了一段时间内的数据,包括广告投资、产品价格和竞争公司销售额的信息。
在进行多元回归分析之前,研究人员需要对数据进行预处理,包括数据清洗、变量选择和变量转换等。
然后,他们可以根据以上模型构建一个方程,以评估广告投资、价格和竞争公司销售额对销售额的影响。
通过对数据进行多元回归分析,研究人员可以得到各自变量的回归系数。
这些系数可以告诉他们不同自变量对销售额的相对重要性。
例如,如果广告投资的回归系数较大,则说明广告投资对销售额的影响较大;反之,如果竞争公司销售额的回归系数较大,则说明竞争对销售额的影响较大。
通过多元回归分析的结果,研究人员可以得出一些结论,并提出相应的建议。
例如,如果广告投资对销售额的影响较大,公司可以考虑增加广告投资以提高销售额。
如果价格对销售额的影响较大,公司可以考虑调整产品价格以更好地满足消费者需求。
多元线性回归模型的分析Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,X1,X2,...,Xn表示自变量,β0,β1,...,βn表示参数,ε表示误差项。
通过最小二乘法对模型进行估计,可以得到参数的估计值:β̂0,β̂1,...,β̂n在进行多元线性回归模型分析时,需要进行以下步骤:1.收集数据:收集与研究主题相关的自变量和因变量的数据。
2.假设检验:对自变量进行假设检验,确定哪些自变量对因变量的影响是显著的。
3.多重共线性检验:在包含多个自变量的情况下,需要检验自变量之间是否存在多重共线性。
多重共线性会导致参数估计不准确,因此需要对其进行处理,可以通过剔除一些自变量或者进行主成分分析等方法来解决。
4.模型拟合度检验:使用相关系数、R方和调整R方等指标来检验回归模型的拟合度。
拟合度高的模型意味着因变量和自变量之间的线性关系较好。
5.模型解释和分析:通过模型参数的估计值,分析自变量对因变量的影响程度和方向。
可以通过参数的显著性检验和参数估计的符号来判断自变量对因变量的影响。
6.预测和验证:使用已建立的多元线性回归模型进行预测,并验证模型的准确性和可靠性。
然而,多元线性回归模型也存在一些局限性。
首先,模型假设自变量和因变量之间存在线性关系,并且具有不变的方差和无自相关性。
如果数据不满足这些假设,模型的分析结果可能不准确。
其次,模型中的自变量需要是独立的,不存在多重共线性。
如果存在多重共线性,模型的参数估计可能不稳定。
另外,模型的拟合度可能不够高,无法完全解释因变量的变异。
因此,在进行多元线性回归模型的分析时,需要注意数据的选择和处理,以及对模型结果的解释和验证。
此外,还可以结合其他统计方法和模型进行综合分析,以获取更准确和全面的结论。
多元线性回归模型(1)模型准备多元线性回归模型是指含有多个解释变量的线性回归模型,用于解释被解释的变量与其他多个变量解释变量之间的线性关系。
其数学模型为:上式表示一种 p 元线性回归模型,可以看出里面共有 p 个解释变量。
表示被解释变量y 的变化可以由两部分组成:第一部分,是由 p 个解释变量 x 的变化引起的 y 的线性变化部分。
第二部分,是要解释由随机变量引起 y 变化的部分,可以用 \varepsilon 部分代替,可以叫随机误差,公式中的参数都是方程的未知量,可以表示为偏回归常数和回归常数,则多元线性回归模型的回归方程为:(2)模型建立首先在中国A股票市场中,根据各指标与估值标准 y 的关联度来选取变量,选取指标为:年度归母净利润 x_{1} 、年度营业收入 x_{2} 、年度单只股票交易量 x_{4} 、年度单只股票交易量金额 x_{6} 。
有如下表达式为:其中 y 是因变量, x_{1},x_{2},x_{4},x_{6} 是自变量,α为误差项,b_{1},b_{2},b_{4},b_{6} 为各项系数。
(3)中国A股票市场模型求解运用SPSS软件,运用多元线性回归方程可以得出如下:下表模型有4个自变量,模型调整后的拟合度为0.976,说明模型的拟合度非常好。
下表为方差分析表,告诉我们F 的值值为1.794,显著性概率p 为0.004小于0.005,因此自变量系数统计较为显著。
下表给出模型常数项和自变量系数,并对系数统计显著性进行检验,常数项的值为2.618,显著性为0.002,统计比较显著,其它指标的显著性都小于0.005,故该模型比较准确。
故得出中国A股市场中的估值水平与这四个指标的线性关系为:(4)美国NASDAQ市场模型求解下表模型有4个自变量,模型调整后的拟合度为0.862,说明模型的拟合度非常好。
下表为方差分析表,告诉我们 F 值为15.081,显著性概率 p 为0.005等于0.005,因此自变量系数统计较为显著。
多元线性回归模型分析多元线性回归模型是一种用于分析多个自变量对于一个目标变量的影响的统计模型。
在多元线性回归模型中,通过使用多个自变量来预测目标变量的值,可以帮助我们理解不同自变量之间的关系,以及它们与目标变量之间的影响。
在多元线性回归模型中,假设有一个目标变量Y和k个自变量X1,X2,...,Xk。
我们的目标是通过找到一个线性函数来描述目标变量Y与自变量之间的关系。
这个线性函数可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,β0,β1,β2,...,βk是回归系数,代表自变量对于目标变量的影响程度。
ε是误差项,表示模型不能完全解释的未观测因素。
1.数据收集:收集自变量和目标变量的数据。
这些数据可以是实验数据或观测数据。
2.数据预处理:对数据进行清洗和处理,包括处理缺失值、异常值和离群值等。
3.变量选择:通过相关性分析、方差膨胀因子(VIF)等方法选择最相关的自变量。
4.拟合模型:使用最小二乘法或其他方法,拟合出最佳的回归系数。
5. 模型评估:通过各种统计指标如R-squared、调整R-squared等评估模型的拟合程度。
6.模型解释与推断:通过解释回归系数,了解各自变量对于目标变量的影响程度,并进行统计推断。
在多元线性回归模型中,我们可以利用回归系数的显著性检验来判断自变量是否对目标变量产生重要影响。
如果回归系数显著不为零,则表明该自变量对目标变量具有显著的影响。
此外,还可以利用F检验来判断整体回归模型的拟合程度,以及各自变量的联合影响是否显著。
同时,多元线性回归模型还可以应用于预测和预测目的。
通过使用已知的自变量值,可以利用回归模型来预测目标变量的值,并计算其置信区间。
然而,多元线性回归模型也有一些限制。
首先,模型的准确性依赖于所选择的自变量和数据的质量。
如果自变量不足或者数据存在误差,那么模型的预测结果可能不准确。
此外,多元线性回归模型还假设自变量之间是线性相关的,并且误差项是独立且具有常量方差的。
多元线性回归模型在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。
而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。
例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。
这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。
多元回归分析预测法是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。
当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
多元回归分析可以达到以下目的。
(1)了解因变量和自变量之间的关系是否存在,以及这种关系的强度。
也就是以自变量所解释的因变量的变异部分是否显著,且因变量变异中有多大部分可以由自变量来解释。
(2)估计回归方程,求在自变量已知的情况下因变量的理论值或预测值,以达到预测目的。
(3)评价特定自变量对因变量的贡献,也就是在控制其他自变量不变的情况下,该处变量的变化所导致的因变量变化情况。
(4)比较各处变量在拟合的回归方程中相对作用大小,寻找最重要的和比较重要的自变量。
假定被解释变量Y与多个解释变量x1,x2,…,x k之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型,即:式中,Y为被解释变量;x j(j=1,2,…,k)为k个解释变量,β(j j=1,2,…,k)为k个未知参数,β0是常数项,β1,β2,…,βk是回归系数,β1是x2,x3,…,x k固定时,x1每增加一个单位对Y的效应,即x1对Y的偏回归系数,同理,β2是x2对Y的偏回归系数;μ为随机误差项。
被解释变量Y的期望值与解释变量x1,x2,…,x k的线性方程为:式(4.19)称为多元总体线性回归方程,简称总体回归方程。
对于n组观测值,其方程组形式为:多元线性回归模型包含多个解释变量,多个解释变量同时对被解释变量发生作用,若要考察其中一个解释变量对被解释变量的影响就必须假设其他解释变量保持不变来进行分析。
第二章 回归分析概要第五节 多元线性回归分析一 模型的建立与假定条件在一元线性回归模型中,我们只讨论了包含一个解释变量的一元线性回归模型,也就是假定被解释变量只受一个因素的影响。
但是在现实生活中,一个被解释变量往往受到多个因素的影响。
例如,商品的消费需求,不但受商品本身的价格影响,还受到消费者的偏好、收入水平、替代品价格、互补品价格、对商品价格的预测以及消费者的数量等诸多因素的影响。
在分析这些问题的时候,仅利用一元线性回归模型已经不能够反映各变量间的真实关系,因此,需要借助多元线性回归模型来进行量化分析。
1. 多元线性回归模型的基本概念如果一个被解释变量(因变量)t y 有k 个解释变量(自变量)tj x ,k j ,...,3,2,1=, 同时,t y 不仅是tk x 的线性函数,而且是参数0β和k i i ,...3,2,1=,β(通常未知)的线性函数,随即误差项为t u ,那么多元线性回归模型可以表示为:这里tk k t t t x x x y E ββββ++++=...)(22110为总体多元线性回归方程,简称总体回归方程。
其中,k 表示解释变量个数,0β称为截距项,k βββ...21是总体回归系数。
k i i ,...3,2,1=,β表示在其他自变量保持不变的情况下,自变量tj X 变动一个单位所引起的因变量Y 平均变动的数量,因而也称之为偏回归系数。
当给定一个样本n t x x x y tk t t t ,...2,1),,...,,(21=时,上述模型可以表示为: 此时,t y 与tj x 已知,i β与t u 未知。
其相应的矩阵表达式为:可以简化为:u X Y +=β--总体回归模型的简化形式。
2. 假定条件与一元线性回归模型的基本假定相似,为保证得到最优估计量,多元线性回归模型应满足以下假定条件:假定1 随机误差项t u 满足均值为零,其方差2σ相同且为有限值。
假定2 随机误差项之间相互独立,无自相关。
第二章 回归分析概要
第五节 多元线性回归分析
一 模型的建立与假定条件
在一元线性回归模型中,我们只讨论了包含一个解释变量的一元线性回归模型,也就是假定被解释变量只受一个因素的影响。
但是在现实生活中,一个被解释变量往往受到多个因素的影响。
例如,商品的消费需求,不但受商品本身的价格影响,还受到消费者的偏好、收入水平、替代品价格、互补品价格、对商品价格的预测以及消费者的数量等诸多因素的影响。
在分析这些问题的时候,仅利用一元线性回归模型已经不能够反映各变量间的真实关系,因此,需要借助多元线性回归模型来进行量化分析。
1. 多元线性回归模型的基本概念
如果一个被解释变量(因变量)t y 有k 个解释变量(自变量)tj x ,k j ,...,3,2,1=, 同时,t y 不仅是tk x 的线性函数,而且是参数0β和k i i ,...3,2,1=,β(通常未知)的线性函数,随即误差项为t u ,那么多元线性
回归模型可以表示为:
这里tk k t t t x x x y E ββββ++++=...)(22110为总体多元线性回归方程,简称总
体回归方程。
其中,k 表示解释变量个数,0β称为截距项,k βββ...21是总体回归系数。
k i i ,...3,2,1=,β表示在其他自变量保持不变的情况下,自变量tj X 变动一个单位所引起的因变量Y 平均变动的数量,因而也称之为偏回归系数。
当给定一个样本n t x x x y tk t t t ,...2,1),,...,,(21=时,上述模型可以表示为: 此时,t y 与tj x 已知,i β与t u 未知。
其相应的矩阵表达式为:
可以简化为:
u X Y +=β--总体回归模型的简化形式。
2. 假定条件
与一元线性回归模型的基本假定相似,为保证得到最优估计量,多元线性回归模型应满足以下假定条件:
假定1 随机误差项t u 满足均值为零,其方差2σ相同且为有限值。
假定2 随机误差项之间相互独立,无自相关。
假定3 解释变量tj x ,k j ,...,3,2,1=之间线性无关,即解释变量的样本观测值矩阵式满秩矩阵,否则称解释变量之间存在多重共线性(与课本假定7合并)。
假定4 解释变量tj x ,k j ,...,3,2,1=是确定性变量,与误差项彼此之间相互独立。
假定5 解释变量是非随机变量,且当Q X X T T →'∞→-1时,,Q 是一个有限值的非奇异矩阵。
假定6 随机误差项服从正态分布。
假定7 回归模型是正确设计的。
二、最小二乘法
根据最小二乘法的原则,总体回归模型可以推导为样本回归模型,即:
其中,)ˆ...ˆˆ(ˆ10k
ββββ=是β的估计值列向量,)ˆ(ˆβX Y u -=称为残差列向量。
因为,βˆˆX Y u
-=,所以,u ˆ也是Y 的线性组合。
关于多元线性回归模型中样本容量的问题:
(1)最小样本容量
在多元线性回归模型中,样本容量必须不少于模型中解释变量的数目(包括常数项),这就是最小样本容量,即:1+≥k n 。
(2)满足基本要求的样本容量
一般经验认为,当30≥n 或者至少)1(3+≥k n 时,才能说满足模型估计的基本要求。
三、多元可决系数与调整后的多元可决系数
类似于一元线性回归模型的情形,我们对估计的回归方程关于样本观测值的拟合优度进行检验,而检验的统计量是可决系数。
因是多元回归,样本可决系数2R 就称为多元可决系数。
对于多元线性回归模型的情形,一元线性回归模型的总离差平方和的分解公式依然成立,即:
TSS= ESS +RSS
其中,TSS 的自由度为n-1,n 表示样本容量,
ESS 的自由度为k ,k 表示自变量的个数,
RSS 的自由度为n-k-1。
我们在模型应用中发现,如果在模型中增加一个解释变量,2R 往往会增大。
这是因为残差平方和往往随着解释变量个数的增加而减少,至少不会增加。
这就给人一个错觉:要使模型拟合得好,只要增加解释变量就可以了。
但是,现实情况往往是,由增加解释变量个数引起的2R 的增大与拟合好坏无关,因此,在多元线性回归模型之间比较拟合优度,2R 就不是一个合适的指标,必须加以调整。
在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是将残差平方和与总离差平方和分别处以各自的自由度,以剔除变量个数对拟合优度的影响。
定义调整的多元可决系数 如下:
当模型中增加一个自变量,如果RSS/(n-k-1)变小,因而使2R 增大,便可认为这个自变量对因变量有显著影响,应该放入模型中,否则,应予抛弃。
在样本容量一定的情况下,2R 具有如下性质:
(1) 若;,122R R k ≤≥则
(2) 2R 可能出现负值。
如1.0,2,102===R k T 时,157.02-=R 。
显然,负的拟合优度没有任何意义,在此情况下,取02=R 在实际中,2R 或2R 越大,模型拟合得就越好,但拟合优度不是评价模型优劣的唯一标准。
因此,我们不能仅根据2R 或2R 的大小来选择模型。
补充知识:赤池信息准则和施瓦茨信息准则
为了比较所含解释变量个数不同的多元线性回归模型的拟合优度,常用的标准还有赤池信息准则(Akaike Information Criterion ,AIC )和施瓦茨信息准则(Schwarz Criterion ,SC ),其定义分别为:
这两个准则均要求仅当所增加的解释变量能够减少AIC 值或SC 值时才能在原模型中增加该解释变量。
显然,与调整的可决系数相仿,如果增加的解释变量没有解释能力,则对残差平方和e ,e 的减小没有多大帮助,但增加了待估参数的个数,这时可能到时AIC 或SC 的值增加。
四、统计检验
1. F 检验
为了从总体上检验模型中被解释变量与解释变量之间的线性关系是否显著成立,检验的原假设为:0...:210====k H βββ(k 表示方程中回归系数的个数,也可以称为自变量的个数)若成立,则模型中被解释变量与解释变量之间不存在显著的线性关系。
备择解释为:j H β:1不全为零。
若原假设成立,则检验统计量:
这是自由度为1,--k n k 的F 分布,对于预先给定的显著水平a ,可以从F 分布表中查出相应的自由度。
设检验水平为a ,则检验规则是:
若)1,(--≤k n k F F a ,接受原假设;
若)1,(--〉k n k F F a ,则接受备选假设。
F 与2R 的关系:
由公式,可以看出,F 与2R 成正比,2R 越大,F 值也越大。
即总体的F 检验越显著(F 值越大),2R 的值也越大,回归方程拟合得就越好,所以,F 检验可以看作是对拟合优度的检验。
2.回归系数的显著性检验—t 检验
对于多元线性回归模型,总体回归方程线性关系的显著性,并不意味着每个解释变量对被解释变量的影响都是显著的。
因此,有必要通过检验把那些对被解释变量影响不显著的解释变量从模型中剔除,只保留对被解释变量影响显著的解释变量,以建立更为简单合理的多元线性回归模型。
如果一个解释变量tj x 对被解释变量的影响不显著,则对应于该解释变
量的回归系数j β的值等于0。
因此,我们只要检验一个解释变量tj x 的回归系数j β的值是否为0就可以了。
检验原假设:k j H j ,...,2,1,0:0==β;
备择假设:0:1≠j H β 判别标准,若接受原假设),1(2--≤k n t t a ;若接受备择假设),1(2
--〉k n t t a 。
希望以上资料对你有所帮助,附励志名言3条::
1、世事忙忙如水流,休将名利挂心头。
粗茶淡饭随缘过,富贵荣华莫强求。
2、“我欲”是贫穷的标志。
事能常足,心常惬,人到无求品自高。
3、人生至恶是善谈人过;人生至愚恶闻己过。