2021年八年级上册人教版数学第二章知识点归纳
- 格式:doc
- 大小:30.00 KB
- 文档页数:8
人教版初中数学各章节知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版初中数学各章节知识点总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版初中数学各章节知识点总结的全部内容。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章、有理数知识概念 1。
有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 a+b=0 a 、b 互为相反数.4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数 > 0,小数-大数 < 0。
八年级上册数学第二章知识点总结一、实数的概念与分类。
1. 有理数与无理数。
- 有理数:整数和分数统称为有理数。
整数包括正整数、零、负整数;分数包括有限小数和无限循环小数。
例如,2,-3,(1)/(2),0.25(有限小数,可化为(1)/(4)),0.3̇(无限循环小数,可化为(1)/(3))都是有理数。
- 无理数:无限不循环小数叫做无理数。
常见的无理数有三类:一是开方开不尽的数,如√(2),sqrt[3]{3}等;二是含有π的数,如π,2π等;三是有规律但不循环的无限小数,如0.1010010001·s(每两个1之间依次多一个0)。
2. 实数的分类。
- 按定义分类:实数可分为有理数和无理数。
有理数又可分为整数(正整数、零、负整数)和分数(正分数、负分数);无理数就是无限不循环小数。
- 按正负性分类:实数可分为正实数(正有理数、正无理数)、零、负实数(负有理数、负无理数)。
二、平方根、算术平方根与立方根。
1. 平方根。
- 定义:如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(或二次方根)。
例如,因为(±2)^2=4,所以±2是4的平方根。
- 表示方法:正数a的平方根记为±√(a),读作“正负根号a”。
- 性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 定义:正数a的正的平方根叫做a的算术平方根,记为√(a),0的算术平方根是0。
例如,4的算术平方根是√(4) = 2。
- 性质:算术平方根√(a)具有双重非负性,即a≥slant0且√(a)≥slant0。
3. 立方根。
- 定义:如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根(或三次方根)。
例如,因为2^3=8,所以2是8的立方根。
- 表示方法:a的立方根记为sqrt[3]{a}。
- 性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
14.1.4整式的乘法知人者智,自知者明。
《老子》棋辰学校陈慧兰第2课时多项式与多项式相乘一、新课导入1.导入课题:今天我们继续研究整式的乘法,重点探讨多项式乘以多项式的运算法则.2.学习目标:(1)能说出多项式与多项式相乘的法则.(2)能灵活地运用法则进行运算.3.学习重、难点:重点:多项式与多项式的乘法法则的理解及应用.难点:多项式乘以多项式时负号的用法.二、分层学习1.自学指导:(1)自学内容:探究多项式乘以多项式的运算法则.(2)自学时间:5分钟.(3)自学方法:类比上节课单项式乘以多项式的研究方法来探讨多项式乘以多项式的运算法则.(4)探究提纲:①如图,为了扩大街心花园的绿地面积,把一块原长a米、宽m米的长方形绿地,长增加了b米,宽增加了n米.你能用两种方法求出扩大后的绿地面积?看谁能写出来?方法1:(a+b)(m+n),方法2:am+an+bm+bn.②由①你得到的等式为(a+b)(m+n)=am+an+bm+bn.③在上节课中,我们由等式p(a+b+c)=pa+pb+pc得到单项式乘以多项式的运算法则,那么由②的等式你得到什么运算法则?并用文字表述此法则.多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.④试一试(x+y)(2x+y)=2x2+3xy+y2.2.自学:学生结合探究提纲进行自学.3.助学:(1)师助生:①明了学情:通过看、问、查的方式了解学生的探究过程和结果是否正确.②差异指导:关注学困生在多项式乘以多项式中出现漏乘的问题.(2)生助生:学生之间相互交流帮助.4.强化:(1)总结交流:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.例如:(a+b)(m+n)= am+an+bm+bn.(2)计算:①(x+2)(x-3)②(3x-1)(2x+1)=x2-x-6 =6x2+x-11.自学指导:(1)自学内容:教材第101页例6.(2)自学时间:5分钟.(3)自学方法:对照运算法则,认真观察例6解题的过程,注意多项式的每一项都应该带上它前面的正负号,在计算时一定要注意定积中各项的符号.(4)自学参考提纲:①为了使相乘的顺序清晰,“每一项”与“每一项”相乘不遗漏,你有什么办法?相乘时,要按一定的顺序进行.②(x-8y)(x-y)的计算第一步为什么xy和8xy前是负号,8y2前是正号?异号为负,同号为正.③练习计算:a.(2x+1)( x+3 )=2x2+7x+3;b.(m+2n)(m-3n)=m2-mn-6n2.④怎样计算:(a-1)2=a2-2a+1.⑤计算教材第102页“练习”第1题的(4)、(5)、(6).练习(4):a2-9b2习(5):2x3-8x2-x+4练习(6):2x3-x2-4x-152.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否学会例题的计算方法、格式及符号确定的方法.②差异指导:对(a-1)2的实际意义应进行点拨引导,对学生计算中出现的错误进行引导纠正.(2)生助生:学生之间相互交流帮助.4.强化:(1)总结:计算多项式相乘时注意多项式的每项都应该带上它前面的正负号;正确理解两个“每一项”的意思;在计算时一定要首先确定积中各项的符号.(2)练习:计算①(x-3y)(x+7y)②(2x+5y)(3x-2y)=x2+4xy-21y2 =6x2+11xy-10y2三、评价1.学生的自我评价(围绕三维目标):学生交谈自己的学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学态度、方法、收效及不进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时可先利用几何图形的方式验证多项式乘法法则的正确性,形成直观感受;再把公式中的(m+n)整体看作一个单项式,利用单项式与多项式相乘法则,进一步推证多项式乘法法则,从中让学生体验转化的数学思想,课堂上引导学生解决一些具体的数学问题,帮助学生巩固对法则的理解认识.一、基础巩固(60分)1.计算:(1)(1-x)(0.6-x);(2)(2x+y)(x-y);(3)(x-y)2;(4)(-2x+3)2;(5)(x+2)(y+3)-(x+1)(y-2);(6)(x-y)(x2+ xy+ y2)解:(1)x2-1.6x+0.6(2)2x2-xy-y2(3)x2-2xy+y2(4)4x2-12x+9(5)5x+y+8(6)x3-y3二、综合应用(每题10分,共20分)2.化简求值:x2(x-1)-x(x2+ x-1),其中x=12.解:原式=x3-x2-x3-x2+x=-2x2+x当x=12时,原式=-2×122+12=0.3.计算:(-x-y)2解:原式=x2+2xy+y2三、拓展延伸(20分)4.确定(x+3)(x+p)=x3+mx+36中m和p的值. 解:m=15,p=12【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
等边三角形一.等边三角形的概念等边三角形:三条边都相等的三角形叫做等边三角形.等边三角形是一种特殊的等腰三角形.二.等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于.三.等边三角形的判定判定1:三个角都相等的三角形是等边三角形.判定2:有一个角是的等腰三角形是等边三角形.四.直角三角形性质定理在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.证明:,,延长至使,则有垂直平分,所以,因为,所以是等边三角形,所以,即.五.等边三角形与全等三角形综合等边三角形与全等三角形综合问题主要分两种类型:一是以等边三角形为载体来考察全等三角形的综合问题;二是利用全等三角形的性质和判定证明三角形是等边三角形.不管是哪种类型都要注意60°角和边的等量关系的应用,尤其是后面学习旋转之后,会出现一些比较难的等边三角形和全等三角形结合的问题.一.考点:1.等边三角形的性质与判定; 2.直角三角形性质定理;3.等边三角形与全等三角形综合.60︒60︒30︒B'CBA90A C B ∠=︒30A ∠=︒BC 'B 'CB C B =AC 'BB 'A B A B =60B ∠=︒'A B B △'2A B B B B C ==12BC AB=二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是所对的直角边等于斜边的一半.题模一:等边三角形的性质例1.1。
新人教版初中数学教材解读标题:新人教版初中数学教材解读新人教版初中数学教材在2021年秋季正式启动使用,旨在为学生提供更加优质的教育资源,全面提升学生的数学素养。
本文将对新人教版初中数学教材进行解读,探讨其特点、内容、教学方法等方面。
一、教材特点1、注重基础:新人教版初中数学教材强调学生对数学基础知识的掌握,注重培养学生的数学基本能力,如计算、推理、归纳等。
2、实践性强:教材注重数学与实际生活的联系,通过具有实践性的例题和习题,帮助学生理解数学的应用价值,提高解决实际问题的能力。
3、突出思维:教材在内容设计上注重培养学生的数学思维能力,通过具有启发性的问题,引导学生自主思考,提高学生的数学思维能力。
二、教材内容1、数与代数:教材从学生的认知特点出发,系统介绍了整数、分数、小数等数的基本概念和计算方法,同时介绍了代数的基本概念和运算法则。
2、几何与图形:教材通过丰富的几何图形和图形性质的内容,帮助学生建立几何感,提高学生的空间想象能力。
3、统计与概率:教材介绍了统计的基本方法和概率的基本概念,帮助学生理解数据的重要性,提高分析数据的能力。
三、教学方法1、多样化教学:教材通过丰富的例题、习题和实践活动,使教学形式多样化,提高学生的兴趣和学习效果。
2、探究式教学:教材通过具有启发性的问题,引导学生自主探究,让学生在探究过程中掌握知识,提高解决问题的能力。
3、个性化学习:教材注重学生的个性化学习需求,通过多样化的学习资源,满足不同学生的学习需求,提高学生的学习积极性。
四、总结新人教版初中数学教材在内容设计上注重基础知识的掌握和实践能力的培养,同时突出数学思维的重要性。
教材的多样化教学、探究式教学和个性化学习等特点,为教师提供了更多的教学选择和发挥空间,同时也为学生提供了更加丰富的学习资源。
教师需要根据学生的实际情况,灵活运用教材,不断提高教学质量,全面提升学生的数学素养。
人教版初中数学教材大纲人教版初中数学教材大纲一、前言人教版初中数学教材大纲是为了确保初中数学教育的质量和连贯性而制定的。
八年级上数学第二章知识点八年级上数学第二章主要涉及到的内容是基本初等代数运算、数量关系及其表示、比例及一次正比例函数等方面的知识点。
本文将对这些知识点进行详细讲解,帮助同学们更好地掌握这些知识。
一、基本初等代数运算基本初等代数运算是指加减乘除四种基本运算,其中加减法是相对较简单的部分,乘法和除法则需要更高的算数基础。
在进行乘法和除法运算时,需要掌握各种运算规律和方法,比如分配率、结合律、交换律等。
此外,在代数式的化简和计算中,使用同类项的加减法则和分配律也是非常重要的内容。
二、数量关系及其表示数量关系及其表示是代数中的重要概念,包括等式和不等式两种类型。
在初中数学中,主要学习一元一次方程和一元一次不等式的解法和应用。
解方程和不等式时,可以运用消元法、代入法、图像法等不同的解法,同时也需要掌握变式法的运用,能够将代数式变形为等价的形式。
在实际生活和数学应用中,很多问题都可以转化为方程和不等式的形式,因此这方面的知识也是非常重要的。
三、比例及一次正比例函数比例和一次正比例函数是一个重要的数学概念,也是在初中阶段学习较多的内容之一。
比例包括比例的定义、比例的性质、比例的应用等方面的知识,一次正比例函数则主要涉及到函数的概念和性质、函数图像、函数的应用等方面的内容。
在实际应用中,比例和一次正比例函数的运用相当广泛,例如金融投资、消费问题、材料计算等领域都离不开比例和一次正比例函数的计算和应用。
总之,八年级上数学第二章包含了基本初等代数运算、数量关系及其表示、比例及一次正比例函数等重要的知识点。
这些知识点对于同学们今后的学习和生活中都有较大的应用价值,因此要认真理解和掌握这些知识。
2019-2020年八年级数学上册第二章第六节实数(二)教案北师大版一、教材分析实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。
当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.[(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:(≥0,≥0)(≥0,>0)3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word,Powerpoint.四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。
专题12.12 三角形全等作辅助线模型(二)-截长补短(知识讲解)有一类几何题其命题主要证明三条线段长段的“和”或“差”及其比例关系,这一类题目一般可以采取“截长”或“补短”的方法来进行求解。
所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已经线段相等,然后证明其中的另一段与已知的另一段的大小关系。
所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段关系。
有的是采取截长补短后,使之构成某种特定的三角形进行求解。
【典型例题】1、 阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC V 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.李老师给出了如下简要分析:“要证AB BD AC +=就是要证线段的和差问题,所以有两个方法,方法一:‘截长法’如图2,在AC 上截取AE AB =,连接DE ,只要证BD =__________即可,这就将证明线段和差问题__________为证明线段相等问题,只要证出V __________≌△__________,得出B AED Ð=Ð及BD =_________,再证出Ð__________=Ð___________,进而得出ED EC =,则结论成立.此种证法的基础是‘已知AD 平分BAC Ð,将ABD △沿直线AD 对折,使点B 落在AC 边上的点E 处’成为可能.方法二:“补短法”如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可.此时先证Ð__________C =Ð,再证出V _________≌△_________,则结论成立.”“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【答案】方法一:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:F ;AFD ;ACD【分析】方法一:在AC 上截取AE AB =,由SAS 可证ABD AED D @D 可得B AED Ð=Ð,BD=DE ,根据等角对等边得到CE=DE ,即可求证;方法二:延长AB 至点F ,使BF BD =,由AAS 可证AFD ACD D @D ,可得AC=AF ,即可证明:方法一:在AC 上截取AE AB =,连接DE ,如图2∵AD 平分BAC Ð,∴BAD DAC Ð=Ð,在ABD D 和AED D 中AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,∴ABD AED D @D ,∴B AED Ð=Ð,BD=DE ,∵2B C Ð=Ð,∴2AED CÐ=Ð而2AED C EDC C Ð=Ð+Ð=Ð,∴EDC C Ð=Ð,∴DE=CE ,∴AB+BD=AE+CE=AC ,故答案为:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:如图3,延长AB 至点F ,使BF BD =,∴F BDFÐ=Ð∴2ABD F BDF FÐ=Ð+Ð=Ð∴2ABD CÐ=Ð∴F CÐ=Ð在AFD D 和ACD D 中FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,∴AFD ACD D @D ,∴AC=AF ,∴AC=AB+BF=AB+BD ,故答案为:F ;AFD ;ACD .【点拨】本题考查了全等三角形的判定和性质,属于截长补短类辅助线,核心思想为数学中的转化思想,此类题的关键是要找到最长边和最短边,然后确定截取辅助线的方式.举一反三:【变式】 数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC D 中,90BAC Ð=°,AB AC =,AD AE =,求证ABE ACD Ð=Ð;在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ^交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB Ð与HFC Ð有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD Ð=Ð;(2)猜想AFB Ð与HFC Ð的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明.【答案】(1)见解析;(2)HFC BFA Ð=Ð,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD @V V 可得结论;(2)设ABE ACD x Ð=Ð=,推出=45BFA x а+,=45HFC x а+,即可证明HFC BFA Ð=Ð;(3)过点C 作CM AC ^交AF 延长线于点M ,延长FP 交AC 于点N ,证明△ABE ≌△CAM ,得出BE AM =和M BEA Ð=Ð,从而证明△NFC ≌△MFC ,得到FM FN =和M FNC Ð=Ð,可得PN=PE ,从而得出BP=AF+PF.(1)证明:∵在△ABE 和△ACD 中,==AB AC A A AE AD ìïÐ=Ðíïî,ABE ACD \D @D (SAS ),ABE ACD \Ð=Ð;(2)设ABE ACD x Ð=Ð=,AF BE ^ ,90BAF x \Ð=°-,()=9045=45BFA x x \а-°-°+,ACD x Ð= ,45HCF x \Ð=°-,FP CD ^ ,()9045=45HFC x x \Ð=°-°-°+,HFC BFA \Ð=Ð;(3)过点C 作CM AC ^交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC Ð+Ð=° ,90BAF ABG Ð+Ð=°,FAC ABG \Ð=Ð,在△ABE 和△CAM 中,===BAE ACM AB AC ABE CAM ÐÐìïíïÐÐî,ABE CAM \D @D (ASA ),BE AM \=,M BEA Ð=Ð,BFA MFC NFC Ð=Ð=Ð ,FC FC =,45ACB BCM Ð=Ð=°,NFC MFC \D @D (ASA ),FM FN \=,M FNC Ð=Ð,FNC BEA \Ð=Ð,PN PE \=,∴BP BE PE AM PE AF FM PE =-=-=+-AF FN PN AF PF =+-=+.【点拨】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度.2、 阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积.解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积.【答案】(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK V V ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH V V ≌,故可求解.【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S S S S S S =+=+==V V V V V 四边形,故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,\∠FNK=∠FGH=90°,\FGH FNK V V ≌,\FH=FK ,又 FM=FM ,HM=KM=MN+GH=MN+NK ,\FMK FMH V V ≌,\MK=FN=2cm ,\12=242FGH HFM MFN FMK FGHMN S S S S S MK FN =++=´×=V V V V 五边形.【点拨】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.举一反三:【变式】在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.【答案】(1)证明见解析;(2)①AB=AC+CD;②AC+AB=CD,证明见解析.【分析】(1)首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE=45°,求出BE=DE=CD,进而得出答案;(2)①首先得出△AED≌△ACD(SAS),即可得出∠B=∠BDE,求出BE=DE=CD,进而得出答案;②首先得出△AED≌△ACD(SAS),即可得出∠B=∠EDC,求出BE=DE=CD,进而得出答案.(1)证明:∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED=90°,∵∠ACB=2∠B,∠C=90°,∴∠B=45°,∴∠BDE=45°,∴BE=ED=CD,∴AB=AE+BE=AC+CD;①AB=AC+CD.理由如下:在AB上截取AE=AC,连接DE,∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠B+∠BDE=∠AED,∴∠B=∠BDE,∴BE=ED=CD,∴AB=AE+BE=AC+CD;②AC+AB=CD.理由如下:在射线BA上截取AE=AC,连接DE,∵AD为∠EAC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠ACD=∠AED,∵∠ACB=2∠B,∴设∠B=x,则∠ACB=2x,∴∠EAC=3x,∴∠EAD=∠CAD=1.5x,∵∠ADC+∠CAD=∠ACB=2x,∴∠ADC=0.5x,∴∠EDC=x,∴∠B=∠EDC,∴BE=ED=CD,∴AB+AE=BE=AC+AB=CD.【点拨】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出△AED≌△ACD是解题关键.3、(初步探索)截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;(灵活运用)(2)如图2,△ABC为等边三角形,直线a∥AB,D为BC边上一点,∠ADE交直线a 于点E,且∠ADE=60°.求证:CD+CE=CA;(延伸拓展)(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.【答案】(1)DA=DC+DB,证明见详解;(2)见详解;(3)∠EAF=11802DAB°-Ð,证明见详解.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,再证△ADE是等边三角形得DA=DE=DC+CE=DC+DB;(2)首先在AC上截取CM=CD,由△ABC为等边三角形,易得△CDM是等边三角形,继而可证得△ADM≌△EDC,即可得AM=EC,则可证得CD+CE=CA;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,进而推导得到2∠FAE+∠DAB=360°,即可得出结论.解答:DA=DC+DB,理由如下:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE ,∴△ABD ≌△ACE (SAS ),∴AD=AE ,∠BAD=∠CAE ,∵∠BAC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE 是等边三角形,∴DA=DE=DC+CE=DC+DB ,即DA=DC+DB ;(2)证明:在AC 上截取CM=CD ,∵△ABC 是等边三角形,∴∠ACB=60°,∴△CDM 是等边三角形,∴MD=CD=CM ,∠CMD=∠CDM=60°,∴∠AMD=120°,∵∠ADE=60°,∴∠ADE=∠MDC ,∴∠ADM=∠EDC ,∵直线a ∥AB ,∴∠ACE=∠BAC=60°,∴∠DCE=120°=∠AMD ,在△ADM 和△EDC 中,ADM EDC MD CDAMD ECD Ð=Ðìï=íïÐ=Ðî∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=CM+AM=CD+CE;即CD+CE=CA.(3)∠EAF=11802DAB°-Ð;证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=11802DAB°-Ð.【点拨】本题属于三角形综合题,主要考查了全等三角形的判定和性质,以及等边三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.举一反三:【变式1】 如图,AB CD ∥,BE 平分ABC Ð,CE 平分BCD Ð,点E 在AD 上,求证:BC AB CD =+.【分析】在BC 上取点F ,使BF=BA ,连接EF ,由角平分线的性质可以得出∠1=∠2,从而可以得出△ABE ≌△FBE ,可以得出∠A=∠5,进而可以得出△CDE ≌△CFE ,就可以得出CD=CF ,即可得出结论.证明:在BC 上取点F ,使BF=BA ,连接EF ,∵BE 、CE 分别是∠ABC 和∠BCD 的平分线,∴∠1=∠2,∠3=∠4,在△ABE 和△FBE 中,12AB FB BE BE =ìïÐ=Ðíï=î,∴△ABE ≌△FBE(SAS),∴∠A=∠5,∵AB ∥CD ,∴∠A+∠D=180°,∴∠5+∠D=180,∵∠5+∠6=180°,∴∠6=∠D ,在△CDE 和△CFE 中,634D CE CE Ð=ÐìïÐ=Ðíï=î,∴△CDE ≌△CFE(AAS),∴CF=CD .∵BC=BF+CF ,∴BC=AB+CD.【点拨】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,解答时运用截取法正确作辅助线是关键.【变式2】如图,在△ABC 中,60BAC Ð=°,40ACB Ð=°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线.求证:(1)BQ CQ =;(2)BQ AQ AB BP +=+.【答案】(1)见解析;(2)见解析【分析】(1)由三角形的内角和就可以得出∠ABC =80°,再由角平分线的性质就可以得出∠QBC =40°,就有∠QBC =∠C 而得出结论;(2)延长AB 至M ,使得BM =BP ,连结MP ,根据条件就可以得出∠M =∠C ,进而证明△AMP ≌△ACP 就可以得出结论.(1)证明:∵BQ 是ABC Ð的角平分线,∴12QBC ABC Ð=Ð.∵180ABC ACB BAC Ð+Ð+Ð=°,且60BAC Ð=°,40ACB Ð=°,∴80ABC Ð=°,∴180402QBC Ð=´°=°,∴QBC C Ð=Ð,∴BQ CQ =;(2)证明:延长AB 至M ,使得BM BP =,连结MP .∴M BPM Ð=Ð,∵△ABC 中60BAC Ð=°,40C Ð=°,∴80ABC Ð=°,∵BQ 平分ABC Ð,∴40QBC C Ð=°=Ð,∴BQ CQ =,∵ABC M BPM Ð=Ð+Ð,∴40M BPM C Ð=Ð=°=Ð,∵AP 平分BAC Ð,∴MAP CAP Ð=Ð,在△AMP 和△ACP 中,∵M C MAP CAP AP AP Ð=ÐìïÐ=Ðíï=î,∴△AMP ≌△ACP ,∴AM AC =,∵AM AB BM AB BP =+=+,AC AQ QC AQ BQ =+=+,∴AB BP AQ BQ+=+【点拨】本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
教案2021-2022学年度 秋季 八年级上学期 人教版数学11.2.2三角形的外角基础知识 一、选择题 1.(2013•襄阳)如图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A .60°B .70°C .80°D .90°答案:C 2.(2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( ) A .15° B .25° C .30° D .10°答案:A3.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( ) A.有两个锐角、一个钝角 B.有两个钝角、一个锐角 C.至少有两个钝角 D.三个都可能是锐角 答案:C4. (2012 江苏省南通市) 如图,△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于 ( )A .360°B .250°C .180°D .140°ACB 1 2人教版数学答案:B5.已知△ABC,(1)如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°+21∠A; (2)如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A; (3)如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-21∠A . 上述说法正确的个数是( )A .0个B .1个C .2个D .3个 答案:C6.(2012•漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( ) A .45° B .60° C .75° D .90°答案:C7.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( ) A .61° B .60° C .37° D .39°答案:C8.如图,在Rt △ADB 中,∠D=90°,C 为AD 上一点,则x 可能是( ) A .10° B .20° C .30° D .40°9.如图,∠A=34°,∠B=45°,∠C=36°,则∠DFE的度数为()A.120° B.115° C.110° D.105°答案:B10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180° B.360° C.540° D.720°答案:B11.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1-∠2 B.2∠A=∠1-∠2C.3∠A=2∠1-∠2 D.3∠A=2(∠1-∠2)答案:B12.如图,则∠A+∠B+∠C+∠D+∠E=()A.90 B.180 C.200 D.360答案:B13.如图,BD、CD分别平分∠ABC和∠ACE,∠A=40°,则∠D的度数是()A.20°B.30°C.40°D.60°答案:A14.如图,等边三角形ABC,P为BC上一点,且∠1=∠2,则∠3为()A.50°B.60°C.75°D.无法确定答案:B二、填空题教案2.如图,已知ΔABC中,∠ABC和外角∠ACE的平分线相交于点D,若∠D=400,则∠BAC的度数为 .人教版数学2020-2021八年级上册教案1.如图,BP 、CP 是任意△ABC 中∠B、∠C 的角平分线,可知∠BPC=90°+21∠A,把图中的△ABC 变成图中的四边形ABCD ,BP ,CP 仍然是∠B,∠C 的平分线,猜想∠BPC 与∠A、∠D 的数量关系是 .答案:∠BPC=21(∠BAD+∠ADC).6.已知:如图,在直角坐标系中,点A ,B 分别是x 轴,y 轴上的任意两点,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的角平分线交于点C ,则∠ACB= .答案:45°三、解答题4.下面是有关三角形内外角平分线的探究,阅读后按要求作答:探究1:如图(1),在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现:∠BOC=90°+21∠A(不要求证明).人教版数学2020-2021八年级上册练习题 试卷探究2:如图(2)中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的数量关系?请说明理由.探究3:如图(3)中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的数量关系?(只写结论,不需证明).结论: .解:(1)探究2结论:∠BOC=21∠A, 理由如下:∵BO 和CO 分别是∠ABC 和∠ACD 的角平分线, ∴∠1=21∠ABC,∠2=21∠ACD, 又∵∠ACD 是△ABC 的一外角, ∴∠ACD=∠A+∠ABC, ∴∠2=21(∠A+∠ABC)=21∠A+∠1, ∵∠2是△BOC 的一外角, ∴∠BOC=∠2-∠1=21∠A+∠1-∠1=21∠A; (2)探究3结论∠BOC=90°-21∠A.人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外八年级上册12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角 线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形一、知识框架:二、知识概念: 1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念: 1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定: ①有两条边相等的三角形是等腰三角形. ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边). ⑵等边三角形的判定: ①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法: ⑴做已知直线的垂线: ⑵做已知线段的垂直平分线: ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短. 第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加. ⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式: ⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷= ⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式. 5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解. 6.因式分解方法: ⑴提公因式法:找出最大公因式. ⑵公式法: ①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法 第十五章 分式 一、知识框架 :2020-2021 习教案 二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算: ⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c ±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()n n n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
八年级数学上册第二章实数3 立方根教材分析与重难点突破(第2课时)素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第二章实数3 立方根教材分析与重难点突破(第2课时)素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第二章实数3 立方根教材分析与重难点突破(第2课时)素材(新版)北师大版的全部内容。
立方根教材分析与重难点突破第2课时1.教材分析本节课的主要内容是使用计算器求立方根和立方根的求值规律.教科书首先指出很多有理数的立方根是无限不循环小数这一结论,我们可以用有理数近似值表示它们.由于估算一个数的立方根的近似值的方法和估算一个数的算术平方根的近似值的方法相同,教科书在正文中没有给出估算的例子,只在本节练习第3题和习题6.2第8题中安排了比较大小的问题,教学时,学生会解答这类问题即可,不必深究;然后教科书结合例题,学习利用计算器求一个数的立方根的方法,指出不同的计算器操作过程或按键顺序可能是不相同的;最后设置了一个“探究”栏目,在这个栏目中,要求学生利用计算器探究并归纳出被开方数的小数点向右或向左移动时立方根的小数点的变化规律,利用所发现的这个规律求一个数立方根的近似值.本节课的教学重点是用计算器求立方根,本节课的难点是立方根的值的变化规律.2.重难点突破(1)估算或用计算器求立方根突破建议使用计算器求一个数的立方根,只需要直接按顺序按键即可.需要注意的是:①一些计算器设有键,用它可以直接求出一个数的立方根,不要将键错按成键;②有些计算器需要用第二功能键求一个数的立方根;③不同型号的计算器按键顺序有可能不同,应注意先阅读说明书,再按说明书进行操作计算;④若被开方数为负数时,防止漏按负号键.“-”号的输入可以按(-),也可以按 - ,不同型号的计算器可能不同;⑤用计算器求立方根,计算器里显示的数值中,许多都是近似值,要根据题目要求进行取舍.例1.把7的平方根和立方根按从小到大的顺序排列: .解析:本题考查数的大小比较.根据平方根和立方根的特征可得,7的平方根是,7的立方根是,因为,,,所以答案为.例2.用计算器求下列各式的值:(1);(2);(3)(精确到0.001).解析:本题考查用计算器求立方根,需要注意的是:注意按键顺序,防止漏按负号键和键,要根据题目要求对显示的近似值进行取舍.(1);(2);(3)(精确到0.001).(2)求立方根的应用突破建议求立方根的应用,主要有解特殊的一元三次方程以及实际应用等.利用开立方可解的一元三次方程的形式一般比较特殊,如只含有三次项和常数项等.一般地,解此类方程时先进行移项,然后将的系数化为1,再根据立方根的性质求解,有时需要把含有未知数的多项式作为一个整体直接开立方求解.例3.求下列各式中的值:(1);(2);(3).解析:本题考查求立方根的应用.(1)因为,所以;(2)由得,所以;(3)因为,所以,故.(3)立方根的值的变化规律突破建议当被开方数的小数点向右或向左移动3位时,它的立方根的小数点就相应地向右或向左移动1位.我们也可以这样来理解:被开方数扩大1000倍,其立方根扩大10倍;被开方数缩小1000倍,其立方根缩小10倍.在实际应用中,我们应结合算术平方根的求值规律加以记忆和巩固.例4.请同学们运用所学的方法,完成下表:0.000001.001110001000000(1)观察上表并说明当已知数的小数点向右(或向左)移动时,它的立方根的小数点的移动规律是怎样的?写出你发现的规律;(2)运用你所发现的规律,解答下列各小题.已知,求:①;②.解析:本题考查立方根的值的变化规律,由已知的值及其开立方得到的规律相比较得出规律:当被开方数的小数点向右或向左移动3位时,它的立方根的小数点就相应地向右或向左移动1位,分别利用此规律求出所给数的值.0.000001.0011100010000000.01.1110100 (1)当已知数的小数点向右或向左移动3位时,它的立方根的小数点就相应地向右或向左移动1位;(2)①;②.。
专题12.5 三角形全等的判定2(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 特别说明:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边” 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 特别说明:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:'A ''A B 'B '''A BC2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】 类型一、全等三角形的判定3——“角边角”1. 如图,已知在ABC 中,AC BC AD ==,CDE B ∠=∠,求证:ADE BCD △≌△.【分析】证明ADE BCD ∠=∠,为三角形的全等提供条件即可.证明:ADE CDE B BCD ∠+∠=∠+∠,CDE B∠=∠,ADE BCD ∴∠=∠,AC BC =,A B ∴∠=∠,在ADE 和BCD △中A B AD BCADE BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,ADE ∴≌BCD △(ASA) .【点拨】本题考查了ASA 证明三角形的全等,抓住题目的特点,补充全等需要的条件是解题的关键.举一反三:【变式】 如图,已知:≌AEC=≌ADB ,AD=AE .BD 与CE 相等吗?为什么?【答案】BD CE =,理由见解析;【分析】根据三角形全等即可得到结果.解答:BD CE =,理由如下:在≌AEC 和≌ADB 中,A A AD AEADB AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ≌ADB AEC ≅,≌BD CE =.【点拨】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.类型二、全等三角形的判定4——“角角边”2、 如图,已知DE ≌AB ,≌DAE =≌B ,DE =2,AE =4,C 为AE 的中点.求证:≌ABC ≌≌EAD .【分析】根据中点的定义,再根据AAS 证明≌ABC ≌≌EAD 解答即可.证明:≌C 为AE 的中点,AE =4,DE =2,≌AC =12AE =2=DE , 又≌DE≌AB ,≌≌BAC =≌E ,在≌ABC 和≌EAD 中,B DAE BAC E AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌EAD (AAS ).【点拨】此题考查全等三角形的判定,关键是根据AAS 证明≌ABC≌≌EAD 解答. 举一反三:【变式1】 将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.【答案】32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出 3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.解:≌AD CE ⊥, BE CE ⊥, ≌90ADC CEB ∠=∠=︒,≌90ACB ∠=︒,≌90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADC CEBACD CBE AC BC≌ACD CBE ≌(AAS) ≌ 3CD BE ==, AD CE =,≌ 358CE CD DE =+=+=,≌ 8AD =.ACE 11883222S CE AD △.【点拨】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键.【变式2】、 如图,在ABC 中,AB AC =,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足为E 、F ,求证:DE DF =.【分析】根据等腰三角形的性质得到B C ∠=∠,根据D 为BC 的中点,得到BD CD =,再根据DE AB ⊥,DF AC ⊥,得到90BED CFD ∠=∠=,利用全等三角形的性质和判定即可证明DEDF =. 解:AB AC =,∴B C ∠=∠,DE AB ⊥,DF AC ⊥,∴90BED CFD ∠=∠=,D 为BC 的中点,∴BD CD =,在BED 与CFD △中BED CFD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌CFD △()AAS ,≌DE DF =.【点拨】本题考查了等腰三角形的性质以及全等三角形的性质和判定,找到全等的条件是解题的类型三、添加条件构造三角形全等3.如图,已知∠B =∠DEC ,AB =DE ,要推得∠ABC ∠∠DEC ;(1)若以“SAS ”为依据,还缺条件______________;(2)若以“ASA ”为依据,还缺条件__________________;(3)若以“AAS ”为依据,还缺条件_____________________;【答案】BC=EC ≌A=≌EDC ≌ACB=≌DCE (或≌ACD=≌BCE)【解析】根据三角形全等的判定方法,和题目中所给的条件,依次去判断添加哪一个条件;现有的条件是,≌B =≌DEC ,AB =DE ,如以“SAS”为依据,还缺边相等,找边即可;若以“ASA”为依据,还缺角相等,找角即可;以“AAS”为依据,也是缺角相等,找角即可. 解答:≌≌B=≌DEC ,AB=DE≌(1)要利用SAS ,则还缺少一边即:BC=EC(2)要利用ASA ,则缺少一角即:≌A=≌EDC(3)要利用AAS ,则缺少一角即:≌ACB=≌DCE .故填BC=EC ,≌A=≌EDC ,≌ACB=≌DCE .点睛:本题属开放型的题目,解答关键是明白SAS 、ASA 、AAS的含义,据已知,缺什么条件,找什么条件,直接或间接的都可以.答案不唯一是本题的特点.要根据已知条件的位置选择方法.【变式1】如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使∠ABC∠∠DEF ,并加以证明.(不再添加辅助线和字母)【答案】AC=DF(答案不唯一),理由见解析【分析】先求出BC=EF ,添加条件AC=DF ,根据SAS 推出两三角形全等即可. 解答:添加AC=DF .证明:≌BF=EC ,≌BF ﹣CF=EC ﹣CF ,≌BC=EF ,在≌ABC 和≌DEF 中12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DEF (SAS ).考点:全等三角形的判定.【变式2】如图,点D ,C 分别在线段AB ,AE 上,ED 与BC 相交于O 点,已知AB =AE ,请添加一个条件(不添加辅助线)使∠ABC ∠∠AED ,并说明理由.【分析】根据全等三角形的判定方法即可解决问题.解:根据SAS 可以条件AC =AD ,根据ASA 可以条件≌B =≌C ,根据AAS可以条件≌ACB=≌ADC.【点拨】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3】如图,在∠AEC和∠DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:∠AE∠DF,∠AB=CD,∠CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果∠,∠,那么∠”);(2)选择(1)中你写出的一个命题,说明它正确的理由.解:(1)命题1:如果①,②,那么③;命题2:如果①,③,那么②(2)命题1的证明:∵①AE∥DF,∴∠A=∠D,∵②AB=CD,∴AB+BC=CD+BC,即AC=DB,在△AEC和△DFB中,∵∠E=∠F,∠A=∠D,AC=DB,∴△AEC≌△DFB(AAS),∴CE=BF③(全等三角形对应边相等);命题2的证明:∵①AE∥DF,∴∠A=∠D,在△AEC和△DFB中,∵∠E=∠F,∠A=∠D,③CE=BF,∴△AEC≌△DFB(AAS),∴AC=DB(全等三角形对应边相等),则AC-BC=DB-BC,即AB=CD②.注:命题“如果②,③,那么①”是假命题.类型四、全等三角形判定的综合训练4 如图(1),已知ABC 中,90BAC ∠=︒,AB AC =;AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+;(2)若直线AE 绕A 点旋转到图(2)位置时(BD CE <),其余条件不变,问BD 与DE ,CE 的数量关系如何?请给予证明.(3)若直线AE 绕A 点旋转到图(3)位置时(BD CE >),其余条件不变,问BD 与DE ,CE 的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE 在不同位置时BD 与DE ,CE 的位置关系.【答案】(1)见解析;(2)BD DE CE =-,见解析;(3)BD DE CE =-;(4)当B ,C 在AE 的同测时,BD DE CE =-;当B ,C 在AE 的异侧时,若BD CE >,则BD DE CE =+,若BD CE <,则BD CE DE =-【分析】(1)在直角三角形中,由题中条件可得≌ABD=EAC ,又有AB=AC ,则有一个角及斜边相等,则可判定≌BAD≌≌AEC ,由三角形全等可得三角形对应边相等,进而通过线段之间的转化,可得出结论;(2)由题中条件同样可得出≌BAD≌≌AEC ,得出对应线段相等,进而可得线段之间的关系; (3)同(2)的方法即可得出结论.(4)利用(1)(2)(3)即可得出结论.解:(1)≌BD≌AE ,CE≌AE≌≌ADB=≌CEA=90°≌≌ABD+≌BAD=90°又≌≌BAC=90°≌≌EAC+≌BAD=90° ≌≌ABD=≌CAE 在≌ABD 与≌ACE 中 ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌ACE ≌BD=AE ,AD=EC , ≌BD=DE+CE (2)≌BD≌AE ,CE≌AE ∴∠ADB=∠CEA=90° ∴∠ABD+∠BAD=90° 又∵∠BAC=90° ∴∠EAC+∠BAD=90° ∴∠ABD=∠CAE 在△ABD 与△ACE 中ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌ACE ≌BD=AE ,AD=EC ≌BD=DE -CE ,(3)≌≌BAC=90°, ≌≌BAD+≌EAC=90°, 又≌BD≌AE ,CE≌AE , ≌≌BDA=≌AEC=90°, ≌BAD+≌ABD=90°, ≌≌ABD=≌EAC , 在≌ABD 与≌CAE 中,BDA AEC ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌CAE ,≌BD=AE ,AD=CE ,≌DE=AD+AE=BD+CE ,≌BD=DE -CE .(4)归纳:由(1)(2)(3)可知:当B ,C 在AE 的同侧时,若BD> CE,则BD= DE +CE,若BD> CE,则BD= DE +CE,若BD< CE,则BD= CE - DE.【点拨】此题是几何变换综合题,主要考查了三角形全等的判定方法,余角的性质,线段的和差,熟练掌握全等三角形的判定和性质是解题的关键.举一反三:【变式】 如图1,≌ABC 中,AB =AC ,≌BAC =90°,点D 是线段BC 上一个动点,点F 在线段AB 上,且≌FDB =12≌ACB ,BE ≌DF .垂足E 在DF 的延长线上.(1)如图2,当点D 与点C 重合时,试探究线段BE 和DF 的数量关系.并证明你的结论; (2)若点D 不与点B ,C 重合,试探究线段BE 和DF 的数量关系,并证明你的结论.【答案】(1)BE =12FD .证明见解析;(2)BE =12FD ,证明见解析. 【分析】(1)首先延长CA 与BE 交于点G ,根据≌FDB=12≌ACB ,BE≌DE ,判断出BE=EG=12BG ;然后根据全等三角形的判定方法,判断出≌ABG≌≌ACF ,即可判断出BG=CF=FD ,再根据BE=12BG ,可得BE=12FD ,据此判断即可. (2)首先过点D 作DG≌AC ,与AB 交于H ,与BE 的延长线交于G ,根据DG≌AC ,≌BAC=90°,判断出≌BDE=≌EDG ;然后根据全等三角形的判定方法,判断出≌DEB≌≌DEG,即可判断出BE=EG=12BG ;最后根据全等三角形的判定方法,判断出≌BGH≌≌DFH ,即可判断出BG=FD ,所以BE=12FD ,据此判断即可. 解:(1)如图,延长CA 与BE 交于点G ,≌≌FDB =12≌ACB , ≌≌EDG =12≌ACB , ≌≌BDE =≌EDG ,即CE 是≌BCG 的平分线,又≌BE≌DE ,≌BE =EG =12BG , ≌≌BED =≌BAD =90°,≌BFE =≌CFA ,≌≌EBF =≌ACF ,即≌ABG =≌ACF ,在≌ABG 和≌ACF 中,90ABG ACF AB AC BAG CAF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ≌≌ABG≌≌ACF (ASA ),≌BG =CF =FD ,又≌BE =12BG , ≌BE =12FD . (2)BE =12FD , 理由如下:如图,过点D 作DG≌AC ,与AB 交于H ,与BE 的延长线交于G ,,≌DG≌AC ,≌BAC =90°,≌≌BDG =≌C ,≌BHD =≌BHG =≌BAC =90°,又≌≌BDE =12≌ACB , ≌≌EDG =≌BDG ﹣≌BDE =≌C ﹣12≌C =12≌C , ≌≌BDE =≌EDG ,在≌DEB 和≌DEG 中,90BDE EDG DE DE DEB DEG ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ≌≌DEB≌≌DEG (ASA ),≌BE =EG =12BG , ≌AB =AC ,≌BAC =90°,≌≌ABC =≌ACB =≌GDB ,≌HB =HD ,≌≌BED =≌BHD =90°,≌BFE =≌DFH ,≌≌EBF =≌HDF ,即≌HBG =≌HDF ,在≌BGH 和≌DFH 中,HBG HDF HB HDBHG DHF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ≌≌BGH≌≌DFH (ASA ),≌BG =FD ,又≌BE =BG ,≌BE =12FD .【点拨】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.类型四、全等三角形判定的实际应用5、如图,小颖站在堤岸边的A 处,正对她的S 点停有一艘游艇.她想知道这艘游艇距离她有多远,于是她沿堤岸走到电线杆B 旁,接着再往前走相同的距离,到达C 点.然后她向左直行,当看到电线杆与游艇在一条直线上时停下来,此时她位于D 点.那么C ,D 两点间的距离就是在A 点处小颖与游艇间的距离.请你用所学的数学知识解释其中的道理.【分析】先根据题目条件证明()SBA DBC ASA △≌△,再由全等三角形的性质即可得到答案;解:根据题意,可知:90A C ∠=∠=︒,AB CB =,SBA DBC ∠=∠.在SBA ∆和DBC △中,A C AB CBSBA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩所以()SBA DBC ASA △≌△.所以SA DC =(全等三角形对应边相等).即,C D 两点间的距离就是在A 点处小颖与游艇间的距离.【点拨】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定、全等三角形对应边相等的性质是解题的关键.举一反三:【变式】如图,小明站在乙楼BE 前方的点C 处,恰好看到甲、乙两楼楼顶上的点A 和E 重合为一点,若B 、C 相距30米,C 、D 相距60米,乙楼高BE 为20米,小明身高忽略不计,则甲楼的高AD 是多少米?【答案】甲楼的高AD是40米.【分析】由图可知,EF≌DC,AD≌DC,EB≌BC,证明≌AEF≌≌ECB,根据全等三角形的判定和性质定理即可得到结论.解:∵EF∥DC,AD⊥DC,EB⊥BC,∴∠AEF=∠C,∠AFE=∠EBC=90°,∵B、C相距30米,C、D相距60米,∴EF=DB=BC=30米,∴△AEF≌△ECB(ASA),∴AF=BE,∵DF=BE,∴AD=2BE=2×20=40(米).答:甲楼的高AD是40米.【点拨】本题考查了全等三角形的判定和性质,解题的关键是找出证明三角形全等的条件.。
12.2 角边角,角角边说课稿 2021–2022学年人教版八年级数学上册一、教学目标1.知识目标:掌握角边角的概念,能够根据已知条件求解角边角的大小。
2.能力目标:能够运用所学知识解决实际问题,发现并总结角边角之间的关系。
3.情感目标:培养学生的探索和合作意识,提高他们解决问题的能力。
二、教学重点与难点1.教学重点:角边角的概念、角边角的关系。
2.教学难点:角边角之间的关系的发现与总结。
三、教学准备1.教材:人教版八年级数学上册。
2.PPT演示文稿。
3.板书工具。
四、教学过程1. 导入新知教师先向学生展示一张图,图中有两条直线相交,形成一个角。
2. 角边角的概念教师通过引导学生观察图形,引出角边角的概念。
并向学生解释什么是角,什么是边角。
3. 角边角的表示方法教师告诉学生角可以用字母来表示,比如∠ABC表示角ABC。
边角可以用字母来表示,比如∠ACB表示角ACB所对的边。
4. 角边角之间的关系教师通过示例和图形向学生展示角边角之间的关系。
并引导学生观察、发现规律,总结角边角之间的关系。
5. 解决实际问题教师提供一些实际问题,让学生应用所学知识解决问题。
鼓励学生思考,合作,找到解决问题的方法。
6. 总结与拓展教师带领学生总结所学内容,并拓展到其他相关知识点。
鼓励学生积极参与,提问疑惑,与同学讨论。
五、教学反思本节课通过引导学生观察图形,引出了角边角的概念,并通过示例和图形展示了角边角之间的关系。
通过解决实际问题,培养了学生应用知识解决问题的能力。
在教学过程中,学生积极参与,愿意思考,与同学互动讨论,达到了预期的教学目标。
然而,在教学过程中,有些学生还是对角边角的概念和关系理解不够深入,在巩固和拓展的环节,需要更多的实例和练习来加深学生的理解。
下一节课可以安排一些角边角的练习题,帮助学生巩固所学知识。
八年级上册人教版数学第二章知识点归纳数学课本中介绍了大量的数学专题学问,尤其是应用题部分,是全部年级全部竞赛考试中必考的重点学问。
学生肯定要在各个应用题专题学习的初期打下良好的基础。
下面是我为大家整理的有关八年级上册数学第二章学问点,盼望对你们有关心!八年级上册数学第二章学问点1一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0;另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和肯定值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、肯定值在数轴上,一个数所对应的点与原点的距离,叫做该数的肯定值。
(|a|≥0)。
零的肯定值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.3、倒数假如a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1.零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。
解题时要真正把握数形结合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。
八年级上册数学第二章学问点2一、定义1、假如一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
八年级上册人教版数学第二章知识点归纳
数学课本中介绍了大量的数学专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。
学生一定要在各个应用题专题学习的初期打下良好的基础。
八年级上册数学第二章知识点1
一、实数的概念及分类
1、实数的分类
一是分类是:正数、负数、0;
另一种分类是:有理数、无理数
将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1.零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
八年级上册数学第二章知识点2
一、定义
1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形
重合,那么就说这两个图形关于这条直线对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点
1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。
因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。
同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。
由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。
新图形上的每一点,都是原图形上的某一点关于直线的对称点。
连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
等腰三角形两腰上的高或中线相等。
等腰三角形两底角平分线相等。
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。
]
8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。
[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
]
9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
10、等边三角形的判定:等边三角形的三个内角都相等,并且每
一个角都等于60°。
三个角都相等的三角形是等边三角形。
有一个角是60°的等腰三角形是等边三角形。
11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
三、注意
1、(x,y)关于原点对称(-x。
-y)。
关于x轴对称(x,-y)。
关于y 轴对称(-x,y)
2、用坐标表示轴对称。
八年级上册数学第二章知识点3
1 全等三角形的对应边、对应角相等
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等于60°
24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论2 有一个角等于60°的等腰三角形是等边三角形
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a +b =c
37勾股定理的逆定理如果三角形的三边长a、b、c有关系a +b =c ,那么这个三角形是直角三角形
38定理四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理n边形的内角的和等于(n-2)×180°
41推论任意多边的外角和等于360°
42平行四边形性质定理1 平行四边形的对角相等
43平行四边形性质定理2 平行四边形的对边相等
44推论夹在两条平行线间的平行线段相等
45平行四边形性质定理3 平行四边形的对角线互相平分
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2 两组对边分别相等的四边形是平行四
边形
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
50矩形性质定理1 矩形的四个角都是直角
51矩形性质定理2 矩形的对角线相等
52矩形判定定理1 有三个角是直角的四边形是矩形
53矩形判定定理2 对角线相等的平行四边形是矩形
54菱形性质定理1 菱形的四条边都相等
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1 四边都相等的四边形是菱形
58菱形判定定理2 对角线互相垂直的平行四边形是菱形
59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1 关于中心对称的两个图形是全等的
八年级上册人教版数学第二章知识点归纳。