《电磁场与电磁波》测试答案
- 格式:doc
- 大小:134.03 KB
- 文档页数:2
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e eA ˆ3ˆˆ2-+=,z y x e e e B ˆˆ3ˆ5--=,求 (1)B A+ (2)B A⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求 (1) 球内任一点的电场强度(2) 球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
2010-2011-2学期《电磁场与电磁波》课程考试试卷参考答案及评分标准命题教师:李学军 审题教师:米燕一、判断题(10分)(每题1分)1.旋度就是任意方向的环量密度 ( × )2. 某一方向的的方向导数是描述标量场沿该方向的变化情况 ( √ )3. 点电荷仅仅指直径非常小的带电体 ( × )4. 静电场中介质的相对介电常数总是大于 1 ( √ )5. 静电场的电场力只能通过库仑定律进行计算 ( × )6.理想介质和导电媒质都是色散媒质 ( × )7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 ( √ )8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 ( × )9. 在真空中电磁波的群速与相速的大小总是相同的 ( √ ) 10 趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 ( × ) 二、选择填空(10分)1. 已知标量场u 的梯度为G ,则u 沿l 方向的方向导数为( B )。
A. G l ⋅B. 0G l ⋅ C. G l ⨯2. 半径为a 导体球,带电量为Q ,球外套有外半径为b ,介电常数为ε的同心介质球壳,壳外是空气,则介质球壳内的电场强度E 等于( C )。
A.24Q r π B. 204Q r πε C. 24Qr πε3. 一个半径为a 的均匀带电圆柱(无限长)的电荷密度是ρ,则圆柱体内的电场强度E 为( C )。
A.22aE r ρε=B. 202r E a ρε= C. 02r E ρε= 4. 半径为a 的无限长直导线,载有电流I ,则导体内的磁感应强度B 为( C )。
A.02I r μπB. 02Ir a μπC. 022Ir aμπ 5. 已知复数场矢量0x e E =E ,则其瞬时值表述式为( B )。
A.()0cos y x e E t ωϕ+ B. ()0cos x x e E t ωϕ+ C. ()0sin x x e E t ωϕ+6. 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108 Hz ,则电磁波的波长为( C )。
电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
《电磁场与电磁波第四版》考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个物理量是描述电磁场能量密度的?A. 磁感应强度B. 介电常数C. 电场强度D. 电位移矢量答案:C2. 在真空中,电磁波的传播速度为:A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^5 m/sD.3×10^6 m/s答案:B3. 在电磁波传播过程中,哪个物理量始终保持不变?A. 电磁波的频率B. 电磁波的波长C. 电磁波的振幅D. 电磁波的相位答案:A4. 下列哪个条件是电磁波传播的必要条件?A. 介电常数大于1B. 磁导率大于1C. 介电常数等于1D. 磁导率等于1答案:B5. 下列哪个现象可以用电磁波理论解释?A. 麦克斯韦方程组B. 法拉第电磁感应定律C. 光的折射D. 光的衍射答案:D二、填空题(每题2分,共20分)6. 电磁波在传播过程中,电场强度与磁场强度之间的关系为______。
答案:垂直7. 电磁波的能量密度与电场强度和磁场强度的平方成正比,表达式为______。
答案:u = 1/2 εE^2 + 1/2 μH^28. 电磁波在介质中的传播速度v与介质的介电常数ε和磁导率μ之间的关系为______。
答案:v = 1/√(με)9. 在电磁波传播过程中,能流密度矢量的方向与电磁波的传播方向______。
答案:相同10. 麦克斯韦方程组中,描述电场与磁场之间关系的方程是______。
答案:法拉第电磁感应定律三、计算题(每题20分,共60分)11. 已知某电磁波在空气中的波长为λ=2cm,求该电磁波在空气中的传播速度v和频率f。
解:由c=λf,得f=c/λ=3×10^8 m/s / 0.02 m =1.5×10^9 Hz再由v=c/f,得v=3×10^8 m/s / 1.5×10^9 Hz = 0.2m/s答案:v=0.2 m/s,f=1.5×10^9 Hz12. 有一均匀平面电磁波在无损耗介质中传播,已知电场强度E=50 V/m,磁场强度H=10 A/m,求该电磁波的能量密度u和能流密度S。
电磁场与电磁波试题与答案一、选择题(每题10分,共40分)1. 以下哪个选项是描述电磁场波动性的基本方程?A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦方程组D. 洛伦兹力定律2. 下列哪个物理量表示电磁波的传播速度?A. 介电常数B. 磁导率C. 电磁波频率D. 波长3. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的电场和磁场相互垂直B. 电磁波的传播方向与电场和磁场方向相同C. 电磁波的传播速度与频率成正比D. 电磁波不能在真空中传播4. 在电磁波传播过程中,以下哪个因素会影响电磁波的衰减?A. 传播距离B. 电磁波频率C. 介质类型D. 所有以上选项二、填空题(每题20分,共60分)5. 电磁波在真空中的传播速度为______。
6. 电磁波的频率与波长之间的关系为______。
7. 麦克斯韦方程组由______个方程组成。
8. 在电磁波传播过程中,电场强度和磁场强度之间的关系为______。
答案:一、选择题1. C. 麦克斯韦方程组2. D. 波长3. A. 电磁波的电场和磁场相互垂直4. D. 所有以上选项二、填空题5. 3×10^8 m/s6. c = λf(其中c为光速,λ为波长,f为频率)7. 4个方程8. E = cB(其中E为电场强度,B为磁场强度,c为光速)以下为电磁场与电磁波试题解析:一、选择题1. 麦克斯韦方程组是描述电磁场波动性的基本方程,包括高斯定律、法拉第电磁感应定律等。
故选C。
2. 电磁波的传播速度v = c/√(εμ),其中c为光速,ε为介电常数,μ为磁导率。
波长λ = v/f,其中f为频率。
故选D。
3. 电磁波的电场和磁场相互垂直,且传播方向与电场和磁场方向垂直。
故选A。
4. 电磁波传播过程中,传播距离、电磁波频率和介质类型都会影响电磁波的衰减。
故选D。
二、填空题5. 电磁波在真空中的传播速度为3×10^8 m/s。
6. 电磁波的频率f与波长λ之间的关系为c = λf,其中c 为光速。
电磁学试题库试题4一、填空题(每小题2分,共20分)1、一均匀带电球面,电量为Q,半径为R,在球内离球心R/2处放一电量为q 的点电荷,假定点电荷的引入并不破坏球面上电荷的均匀分布,整个带电系统在球外P点产生的电场强度( )。
2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。
3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、平行板电容器充电后两极板的面电荷密度分别为+σ与-σ,极板上单位面积的受力( )5、一电路如图所示,已知V 121=ε V 92=ε V 83=ε Ω===1321r r rΩ====25431R R R R Ω=32R 则Uab =( )6、两条无限长的平行直导线相距a ,当通以相等同向电流时,则距直导线距离都为a 的一点P 的磁感应强度的大小是( )7、通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势,引起磁通量变化的物理量是( )R R 33r ε54I a Pa a I8、0C C r ε=成立的条件是( )。
9、铁介质的主要特征是( )。
10、麦克斯韦在总结前人电磁学全部成就的基础上,提出了两条假设。
一、选择题(每小题2分,共20分)1、在用试探电荷检测电场时,电场强度的定义为:0q FE =则( )(A )E 与q o 成反比(B )如果没有把试探电荷q o 放在这一点上,则E=0(C )试探电荷的电量q o 应尽可能小,甚至可以小于电子的电量 (D )试探电荷的体积应尽可能小,以致可以检测一点的场强 2、一点电荷q 位于边长为d 的立方体的顶角上,通过与q 相连的三个平面的电通量是( )(A )04εq (B )08εq(C )010εq (D )03、两个平行放置的带电大金属板A 和B ,四个表面电荷面密度为4321σσσσ、、、如图所示,则有( ) (A )3241σ-=σσ=σ,(B )3241σ=σσ=σ, (C )3241σ-=σσ-=σ, (D )3241σ=σσ-=σ,4、如图所示,图中各电阻值均为R ,AB R 为( ) (A )Ω=4AB R (B )Ω=2AB R(C ) R R AB 43=(D ) R R AB 23=5、一圆线圈的半径为R ,载有电流I ,放在均匀外磁场中,如图所示,线圈导线上的张力是:( ) (A )T=2RIB (B )T=IRB (C )T=0(D )T=RIB π26、一个分布在圆柱形体积内的均匀磁场,磁感应强度为B ,方向沿圆柱的轴线,圆柱Q Q 1234A B的半径为R ,B 的量值以κ=dt dB 的恒定速率减小,在磁场中放置一等腰形金属框ABCD (如图所示)已知AB=R ,CD=R/2,线框中总电动势为:( )(A )K R 21633 顺时针方向(B )KR 21633 逆时针方向 (C )KR 243 顺时针方向 (D )KR 243 逆时针方向7、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R <r <R+a 电场强度为:( )(A )2004r q r επε (B)2004r q πε (C)204r q π (D)2041r q r r πε-ε)(8、在与磁感应强度为B 的均匀恒定磁场垂直的平面内,有一长为L 的直导线ab ,导线绕a 点以匀角速度ω转动,转轴与B 平行,则ab 上的动生电动势为:( )(A )221BL ω=ε(B )2BL ω(C )241BL ω=ε(D )ε=09、放在平滑桌面上的铁钉被一磁铁吸引而运动,其产生的动能是因为消耗了( ) (A )磁场能量; (B )磁场强度; (C )磁场力; (D )磁力线。
电磁场与电磁波试题及答案一、选择题1. 下列哪种场称为保守场?A. 电场B. 磁场C. 安培场D. 非保守场答案:A2. 在真空中,电磁波的传播速度是多少?A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^5 m/sD. 3×10^8 km/s答案:B3. 下列哪种物理量描述了电磁波的能量?A. 电场强度B. 磁场强度C. 频率D. 波长答案:C4. 在电磁波传播过程中,哪个方向的电磁场强度与传播方向垂直?A. 横向电磁波B. 纵向电磁波C. 任意方向的电磁波D. 无法确定答案:A5. 电磁波的哪个特性决定了它的传播速度?A. 电场强度B. 磁场强度C. 频率D. 波长答案:C二、填空题1. 电磁波是由____和____交替变化而产生的。
答案:电场;磁场2. 电磁波在真空中的传播速度等于____。
答案:光速3. 电磁波的传播方向垂直于____平面。
答案:电场;磁场4. 电磁波的能量与____成正比。
答案:频率5. 电磁波的波长、频率和____之间存在固定关系。
答案:传播速度三、简答题1. 请简要说明电磁波产生的原理。
答案:电磁波是由电场和磁场交替变化而产生的。
变化的电场产生磁场,变化的磁场产生电场,二者相互作用,形成电磁波。
2. 请简要说明电磁波在真空中的传播特点。
答案:电磁波在真空中以恒定速度传播,速度等于光速,与电磁波的频率、波长无关。
传播方向垂直于电场和磁场平面。
3. 请简要说明电磁波的能量传递过程。
答案:电磁波的能量通过电场和磁场的相互作用传递。
电场能量转化为磁场能量,磁场能量再转化为电场能量,从而实现能量的传递。
四、计算题1. 已知电磁波在真空中的频率为f=10^9 Hz,求该电磁波的波长。
答案:λ=c/f=3×10^8 m/s / 10^9 Hz = 0.3 m2. 一束电磁波在空气中的传播速度为3×10^8 m/s,频率为f=10^9 Hz,求该电磁波在空气中的波长。
1.矢量z y x e e eA ˆˆˆ++=的大小为3。
2.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 静电场 。
3.若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为 线极化 。
4.从矢量场的整体而言,无散场的 旋度不能处处为零。
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 波 的形式传播出去,即电磁波。
6.随时间变化的电磁场称为 时变(动态) 场。
7.从场角度来讲,电流是电流密度矢量场的 通量 。
8.一个微小电流环,设其半径为a 、电流为I ,则磁偶极矩矢量的大小为2a I p m π=。
9.电介质中的束缚电荷在外加 电场 作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。
10.法拉第电磁感应定律的微分形式为tBE ∂∂-=⨯∇。
11.简述恒定磁场的性质,并写出其两个基本方程。
答:恒定磁场是连续的场或无散场,即磁感应强度沿任一闭合曲面的积分等于零。
产生恒定磁场的源是矢量源。
(3分)两个基本方程:⎰=⋅SS d B 0(1分) I l d H C=⋅⎰ (1分)(写出微分形式也对)12.试写出在理想导体表面电位所满足的边界条件。
200 年 月江苏省高等教育自学考试7568 电磁场理论答案一、填空题(每小题 1 分,共 10 分)二、简述题 (每题 5分,共 20 分)答:设理想导体内部电位为2φ,空气媒质中电位为1φ。
由于理想导体表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有S S 21φφ= (3分) σφε-=∂∂Sn10(2分)13.试简述静电平衡状态下带电导体的性质。
答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分) 14.什么是色散?色散将对信号产生什么影响?答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
《电磁场与电磁波》答案(4)一、判断题(每题2分,共20分)说明:请在题右侧的括号中作出标记,正确打√,错误打×1.在静电场中介质的极化强度完全是由外场的强度决定的。
2.电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。
3.两列频率和传播方向相同、振动方向彼此垂直的直线极化波,合成后的波也必为直线极化波。
4.在所有各向同性的电介质中,静电场的电位满足泊松方程2ρϕε∇=-。
5.在静电场中导体内电场强度总是为零,而在恒定电场中一般导体内的电场强度不为零,只有理想导体内的电场强度为零。
6.理想媒质和损耗媒质中的均匀平面波都是TEM 波。
7.对于静电场问题,保持场域内电荷分布不变而任意改变场域外的电荷分布,不会导致场域内的电场的改变。
8.位移电流是一种假设,因此它不能象真实电流一样产生磁效应。
9.静电场中所有导体都是等位体,恒定电场中一般导体不是等位体。
10.在恒定磁场中,磁介质的磁化强度总是与磁场强度方向一致。
二、选择题(每题2分,共20分)(请将你选择的标号填入题后的括号中)1. 判断下列矢量哪一个可能是静电场( A )。
A .369x y z E xe ye ze =++B .369x y z E ye ze ze =++C .369x y z E ze xe ye =++D .369x y zE xye yze zxe =++ 2. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
( B )A .0B .-4C .-2D .-5[ ×]1[ √]2[ ×]3 [ ×]4[ √]5[ √]6[ ×]7[ ×]8[ √]9[ ×]103. 均匀平面波电场复振幅分量为(/2)2-2jkz -2j kz x y E 10e E 510e p --+=? 、,则极化方式是( C )。
电磁场与电磁波
一.填空题
1.已知矢量2z 2y 2x z e xy e x e A ++=,则A ⋅∇= z xy x 222++ ,A
⨯∇=
2y z 。
2.矢量B A
、 0=⋅B A 、 0A B ⨯= 。
3.理想介质的电导率为 0=σ ,理想导体的电导率为
∞→σ ,欧姆定理的微分形式为 E J σ= 。
4.通过求解电位微分方程可获知静电场的分布特性。
静电场电位泊松方程为
ερϕ/2-=∇ ,电位拉普拉斯方程为 02=∇ϕ 。
5.电磁场在两种媒质分界面上无自由电荷与表面电流,其边界条件为:
()021=-⨯n 和 ()
21=-⋅n ; ()
21=-⋅n 和
()02
1
=-⨯n。
6.空气与介质)4(2r =ε的分界面为z=0的平面,已知空气中的电场强度为
4e 2e e E z y x 1
++=,则介质中的电场强度=2E z y x ++2 。
7.已知恒定磁场磁感应强度为z 4e my e x e B z y x
++=,则常数m= 5- 。
8.空气中的电场强度)2c o s(20kz t e E x -=π
,则空间位移电流密度D J =
)/()2sin(4020m A kz t e x --ππε 。
二、分析计算题
1. 一圆心在原点,半径为a 的介质球,其极化强度)0(≥=→
→
n ar a P n r 。
试求 (1)此介质球束缚体电荷密度和球表面束缚面电荷密度。
(2)求球内外各点的电场强度。
解:(1)介质球内束缚电荷体密度为:
21
21()(2)n n p P r ar n ar r r
ρ→
-∂=-∇⋅=-
=-+∂ 束缚电荷面密度为:
1+→
→→→=⋅⋅=⋅=n n r r pS a a a a a P n ρ
(2)先求介质球内自由电荷的体密度:
1
00)2()(-→→→→
→
→
→
→
⋅-+=⋅∇=⇒⋅∇+⋅∇=⋅∇+⋅∇=+⋅∇=⋅∇=n r
n a D P
D P
E P E D εεερεεεερ
然后求球内外各点的场强:
当a r <时,由于→
→
→
+=P E D 10ε且→
→=1E D ε,所以,0
1εε-=→
→n
r ar a E
当a r ≥时,由高斯定律有:
2224επQ
E r S d E S
=
=⋅⎰
→
→
而
3
20
2104sin )2(εεπεϕθθεεετρπ
π
τ
-=
⋅⋅-+==+-⎰
⎰⎰
⎰n a
n a d drd r r n Q d Q ,
所
以
:
2
003
2)(r
a a E n r
εεεε-=+→
→
2. 空气中有一磁导率为μ、半径为a 的无限长导体圆柱,其轴向方向的电流强度为I ,求圆柱内外的磁感应强度和磁场强度。
解:由⎰⎰⋅=⋅S
C
d d ,可得
在圆柱体内时, 2
2
222a I H a I H πρπρππρφφ=⇒=
在圆柱体外时,
πρ
πρφφ22I H I H =
⇒=
所以
⎪⎪⎩⎪⎪⎨
⎧
≥<=a
I a
a I H ρπρ
ρπρφφ222
相应的磁感应强度为
⎪⎪⎩
⎪⎪⎨
⎧
≥<=a
I e a
a I B ρπρ
μρπρ
μφφ2202。