当前位置:文档之家› 带编码器步进电机和伺服电机之比较

带编码器步进电机和伺服电机之比较

带编码器步进电机和伺服电机之比较

带编码器的步进电机只是提高了一些性能,高精度定位方面是提高了,力矩方面没有得到提升,基本可以忽略,而且照样会丢步。

伺服电机是必须有编码器的,如果一个伺服电机没有编码器,这个电机不可能是伺服电机。

在高精度控制方面,伺服电机才能真正精确定位,步进的是不行的。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为"步距角",它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

伺服电机与步进电机的性能比较

步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

一、控制精度不同

两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如三洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以三洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。

二、低频特性不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

三、矩频特性不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出

四、过载能力不同

步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以三洋交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

五、运行性能不同

步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

六、速度响应性能不同

步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以山洋400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

选型计算

一、转速和编码器分辨率的确认。

二、电机轴上负载力矩的折算和加减速力矩的计算。

三、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。

四、再生电阻的计算和选择,对于伺服,一般2kw以上,要外配置。

五、电缆选择,编码器电缆双绞屏蔽的,对于安川伺服等日系产品绝对值编码器是6芯,增量式是4芯。

制动方式

用户往往对电磁制动,再生制动,动态制动的作用混淆,选择了错误的配件。

动态制动器由动态制动电阻组成,在故障、急停、电源断电时通过能耗制动缩短伺服电机的机械进给距离。

再生制动是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线,经阻容回路吸收。

电磁制动是通过机械装置锁住电机的轴。

三者的区别:

(1)再生制动必须在伺服器正常工作时才起作用,在故障、急停、电源断电时等情况下无法制动电机。动态制动器和电磁制动工作时不需电源。

(2)再生制动的工作是系统自动进行,而动态制动器和电磁制动的工作需外部继电器控制。

(3)电磁制动一般在SV、OFF后启动,否则可能造成放大器过载,动态制动器一般在SV、OFF或主回路断电后启动,否则可能造成动态制动电阻过热。

调试方法

1、初始化参数

在接线之前,先初始化参数。[1]

在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。

在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,三洋是设置1V电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。

2、接线

将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置

3、试方向

对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。

4、抑制零漂

在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。

5、建立闭环控制

再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,如果实在不放心,就输入控制卡能允许的最小值。将控制卡和伺服的使能信号打开。这时,电机应该已经能够按照运动指令大致做出动作了。

6、调整闭环参数

细调控制参数,确保电机按照控制卡的指令运动,这是必须要做的工作,而这部分工作,更多的是经验,这里只能从略了。

使用范围

直流伺服电机可应用在是火花机、机械手、精确的机器等。可同时配置2500P/R高分析度的标准编码器及测速器,更能加配减速箱、令机械设备带来可靠的准确性及高扭力。调速性好,单位重量和体积下,输出功率最高,大于交流电机,更远远超过步进电机。多级结构的力矩波动小。

主要作用

伺服电机在封闭的环里面使用。就是说它随时把信号传给系统,同时把系统给出的信号来修正自己的运转。

伺服电机也可用单片机控制。

注意事项

一、伺服电机油和水的保护

A:伺服电机可以用在会受水或油滴侵袭的场所,但是它不是全防水或防油的。因此,伺服电机不应当放置或使用在水中或油浸的环境中。

B:如果伺服电机连接到一个减速齿轮,使用伺服电机时应当加油封,以防止减速齿轮的油进入伺服电机

C:伺服电机的电缆不要浸没在油或水中。

二、伺服电机电缆→减轻应力

A:确保电缆不因外部弯曲力或自身重量而受到力矩或垂直负荷,尤其是在电缆出口处或连接处。

B:在伺服电机移动的情况下,应把电缆(就是随电机配置的那根)牢固地固定到一个静止的部分(相对电机),并且应当用一个装在电缆支座里的附加电缆来延长它,这样弯曲应力可以减到最小。

C:电缆的弯头半径做到尽可能大。

三、伺服电机允许的轴端负载

A:确保在安装和运转时加到伺服电机轴上的径向和轴向负载控制在每种型号的规定值以内。

B:在安装一个刚性联轴器时要格外小心,特别是过度的弯曲负载可能导致轴端和轴承的损坏或磨损

C:最好用柔性联轴器,以便使径向负载低于允许值,此物是专为高机械强度的伺服电机设计的。

D:关于允许轴负载,请参阅“允许的轴负荷表”(使用说明书)。

四、伺服电机安装注意

A:在安装/拆卸耦合部件到伺服电机轴端时,不要用锤子直接敲打轴端。(锤子直接敲打轴端,伺服电机轴另一端的编码器会被敲坏)

B:竭力使轴端对齐到最佳状态(对不好可能导致振动或轴承损坏)。

主要优点

首先我们来看一下伺服电机和其他电机(如步进电机)相比到底有什么优点:

1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题;

2、转速:高速性能好,一般额定转速能达到2000~3000转;

3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用;

4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合;

5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内;

6、舒适性:发热和噪音明显降低。

简单点说就是:平常看到的那种普通的电机,断电后它还会因为自身的惯性再转一会儿,然后停下。而伺服电机和步进电机是说停就停,说走就走,反应极快。但步进电机存在失步现象。

伺服电机的应用领域就太多了。只要是要有动力源的,而且对精度有要求的一般都可能涉及到伺服电机。如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、自动化生产线等对工艺精度、加工效率和工作可靠性等要求相对较高的设备。

特点对比

直流无刷伺服电机特点

转动惯量小、启动电压低、空载电流小;弃接触式换向系统,大大提高电机转速,最高转速高达100 000rpm;无刷伺服电机在执行伺服控制时,无须编码器也可实现速度、位置、扭矩等的控制;不存在电刷磨损情况,除转速高之外,还具有寿命长、噪音低、无电磁干扰等特点。

直流有刷伺服电机特点

1.体积小、动作快反应快、过载能力大、调速范围宽

2.低速力矩大, 波动小,运行平稳

3.低噪音,高效率

4.后端编码器反馈(选配)构成直流伺服等优点

5.变压范围大,频率可调

参考资料:

1.伺服电机的调试方法

步进与伺服的区别

步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出 统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频 出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。 交流伺服的应用领域 1、冶金、钢铁—连铸拉坯生产线、铜杆上引连铸机、喷印标记设备、冷连轧机,定长剪切、自动送料、转炉倾动。 2、电力、电缆—水轮机调速器、风力发电机变桨系统、拉丝机、对绞机、高速编织机、卷线机、喷印标记设备等。 3、石油、化工—挤压机、胶片传动带、大型空气压缩机、抽油机等。 4、化纤和纺织--纺纱机、精纺机、织机、梳棉机、横边机等。 5、汽车制造业—发动机零部件生产线、发动机组装生产线,整车装配线、车身焊接线、检测设备等。 6、机床制造业—车床、龙门刨、铣床、磨床、机械加工中心、

步进电机与伺服电机的解释与区别

伺服电机和步进电机的解释与区别 步进电机 1.什么是步进电机? 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到 一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种? 步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB) 永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度; 反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很 大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。这种步进电机的应用最为广泛。 3.什么是保持转矩(HOLDING TORQUE)? 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。 4.什么是DETENT TORQUE? DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。 DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解; 由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少?是否累积? 一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少? 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 7.为什么步进电机的力矩会随转速的升高而下降? 当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动 势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。 8.为什么步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声? 步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉

带编码器步进电机和伺服电机之比较

带编码器步进电机和伺服电机之比较 带编码器的步进电机只是提高了一些性能,高精度定位方面是提高了,力矩方面没有得到提升,基本可以忽略,而且照样会丢步。 伺服电机是必须有编码器的,如果一个伺服电机没有编码器,这个电机不可能是伺服电机。 在高精度控制方面,伺服电机才能真正精确定位,步进的是不行的。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为"步距角",它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 伺服电机与步进电机的性能比较 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如三洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

伺服马达和步进马达的区别

伺服马达和步进马达的区别 1.步进马达,它是直流脉冲控制的,一般说来功率比较小,用于精度要求不高的开环自控系统中,它有一个缺点是容易失步! 步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。步进电机靠一种叫环形分配器的电子开关器件,通过功率放大器使励磁绕组按照顺序轮流接通直流电源。由于励磁绕组在空间中按一定的规律排列,轮流和直流电源接通后,就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高,转速就会增大。步进电机的旋转同时与相数、分配数、转子齿轮数有关。 现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。 步进电机和普通电机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。 步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。早期的步进电机输出转矩比较小,无法满足需要,在使用中和液压扭矩放大器一同组成液压脉冲马达。随着步进电动机技术的发展,步进电动机已经能够单独在系统上进行使用,成为了不可替代的执行元件。比如步进电动机用作数控铣床进给伺服机构的驱动电动机,在这个应用中,步进电动机可以同时完成两个工作,其一是传递转矩,其二是传递信息。步进电机也可以作为数控蜗杆砂轮磨边机同步系统的驱动电动机。除了在数控机床上的应用,步进电机也可以并用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。 步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。 不同点很多,伺服是多用在闭环的,而步进多用在开环系统中伺服马达可高速运行,而步进则没有伺服那样的高速:步进马达一般在1500转以下,伺服可达3000转以上;还有就是,步进马达不能高速启动 精度不一样。步进有步距角限制,也就是精度不如伺服 2.伺服马达分为交流和直流两大类,功率相对教大,精度高;两者主要的区别是看马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的.顺便提一下闭环控制又可分半闭环和全闭环两种,但是普遍使用的是半闭环装置,只有非常精密的设备才用全闭环装置,如8#楼所说的最后一个就是全闭环装置,

带编码器步进电机和步进伺服电机(闭环步进电机)区别

步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。步进电机本身是属于精密控制类电机,但是属于开环控制方式,故有些场合及应用方式用开环电机是不行的,比如电机丢步造成重大财产损失或生命安全的。 带编码器步进电机,就是在步进电机的基础上加编码器,它能够避免因为步进电机丢步而造成损失,编码器就是个保险。还有一种应用就是加绝对值编码器来作为定位的原点位置,有些场合不方便加原点位置,带编码器步进电机和步进伺服电机(闭环步进电机)最主要区别就是编码器信号接收方式,带编码器步进电机的编码器信号是控制系统接受的,步进伺服电机(闭环步进电机)的编码器信号是驱动器接受的。 步进伺服电机或称闭环步进电机,此产品结合了步进电机和伺服电机的优点,在步进电机上面加编码器,在驱动器上接受编码器信号,运动方式就是你发一个指令,A点到B点,若电机万一丢步后编码器反馈到驱动直接监督让电机走到B的位置,交流伺服电机原理就是普

通电机快到原点时直接通过编码器找位置,故到位置点的时候会震荡,很多半导体设备或要求高精度设备就用步进伺服电机(闭环步进电机),不用交流伺服,因为交流伺服到位置点的时候会震荡,影响精度。 步进伺服电机(闭环步进电机)和交流伺服电机优缺点: 1:步进伺服电机(闭环步进电机)本身大惯量,传动皮带场合比交流伺服更好,而大惯量缺点就是响应速度和高速效果比不上交流伺服。 2:交流伺服电机运行噪声比步进伺服电机(闭环步进电机)更好,因为步进伺服电机(闭环步进电机)运动原理还是和步进电机一样,通过定子和转子相吸产生动力。 3:运行精度平滑性上步进伺服电机(闭环步进电机)比交流伺服更好,因为达到终点不会震荡。 4:性价比,步进伺服电机(闭环步进电机)比交流伺服电机便宜很多。

步进电机舵机伺服电机的区别

步进电机舵机伺服电机的区别 怎么去区分伺服电机、舵机、步进电机呢?电机种类有很多种,不同的电机的优点、 缺点各不相同,因此用途也不同。这里简单的讲下伺服电机、舵机、步进电机的区别,尽 量的让大家通熟易懂。 其实伺服电机是这么一种电机,它主要用于比较精准的位置、速度或力矩输出。准确 地说,伺服电机不是说一个电机,而是一个系统。所以仅仅一台电机都不能算是伺服电机,因为他们并不具备伺服电机的功能。伺服电机是一个电机系统,它包含电机、传感器和控 制器。直流无刷电机可以是伺服电机里面的一部分,交流电机也可以是,但他们并不是伺 服电机。作为一个系统,它可以有减速齿轮,也可以没有。 那么舵机是什么呢?舵机是个俗称,是玩航模、船模的人起的。因为这种电机比较常 用于舵面操纵。 舵机,其实就是个低端的伺服电机系统,它也是最常见的伺服电机系统,因此英文叫 做Servo,就是Servomotor的简称。它将PWM信号与滑动变阻器的电压相比对,通过硬件电路实现固定控制增益的位置控制。也就是说,它包含了电机、传感器和控制器,是一个 完整的伺服电机系统。价格低廉、结构紧凑,但精度很低,位置镇定能力较差,能够满足 很多低端需求。 步进电机英文是stepper/step/stepping motor。主要是依靠定子线圈序列通电,顺 次在不同的角度形成磁场,推拉定子旋转。 步进电机的好处是,你可以省掉用于测量电机转角的传感器。因此在结构上和价格上 有一定的优势。而且它的位置和速度控制相对简单。其缺点是,第一,与同等功率的电机 相比载荷比较小,没有角度传感器的情况下不能输出大力矩。第二,功耗相对较大,要么 全开,要么全关。所以要么接近满功耗,要么就不能出力。具体原因和结构可以查阅相关 资料,网上到处都是,并不难以理解,我这里就不冗述了 因此步进电机一般只用于载荷较小而且十分确定、位置精度要求并不非常高,对体积 敏感或在较低价格想要做到较高可靠性的场合。最常见的就是光驱、扫描仪、复印机等等。当然,它和舵机一样,也受到没有能力自行搭建伺服电机系统的业余爱好者的喜爱,在一 些业余项目上面用于替代完整的伺服电机系统。 那么举个简单的例子。扫描仪包括现在商务打印机里面的扫描仪经常有一个动作,就 是在真正扫描之前,扫描器要从滑轨一头先快速运动到另一头。其实那是系统在找位置零点。那里面用的是一个步进电机,它驱动扫描器运动。但是开始执行扫描任务时,系统并 不知道那个扫描器的确切位置因为没有位置传感器,所以它只能先驱动扫描器向滑轨另一 边走。在滑轨的那个尽头,有一个触碰开关,一旦扫描器碰到它,就会产生电信号。这样 系统就知道扫描器走到了尽头,这时候就确定了扫描器的位置,这样就可以开始扫描了。 这个步进电机在执行完任务后会关闭因为功耗不低,因此一旦有震动什么的,扫描器很容

步进马达和伺服马达的区别

步进马达和伺服马达的区别 步进马达由直流脉冲信号控制的,靠一种叫环形分配器的电子开关器件通过功率放大器使励磁绕组按照顺序轮流接通直流电源运转。由于励磁绕组在空间中按一定的规律排列,轮流与直流电源接通后就会在空间形成一种阶跃变化的旋转磁场,使转子步进式的转动,随着脉冲频率的增高转速也会增大。步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移。一般说来功率比较小,用于精度要求不高的开环自控系统中,它有一个缺点是容易失步!伺服马达分为交流和直流两大类,功率相对较大,精度高;两者主要的区别是看马达的端部是否有光电编码器!伺服马达就是靠光电编码器来反馈位置信号的。 步进电机是一种将电子脉冲转化为角位移的执行机构。当步进驱动器收到一个脉冲信号时它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是已固定的角度一步一步运行的。可以通过控制脉冲频率来控制电机的速度和加速度。从而达到调速的目的,主要用于各种开环控制。 Servo motor的转子是永磁铁U/V/W三相电形成电磁场,转子在磁场的作用下转动,同时电机内部的encoder把角位移信号反馈给driver,driver根据反馈值与目标值进行比较,调整转子的转动角度。其主要特点是当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 步进电机的精度和性能都不如Servo motor,但价格便宜,所以在精度要求不高的场合下使用。 1.步进电机的控制原理

步进电机两个相邻磁极之间的夹角为60。。线圈绕过相对的两个磁极, 构成一相(A-A’,B-B’,C-C’)。磁极上有5个均匀分布的矩形小齿, 转子上没有绕组,而有40个小齿均匀分布在其圆周上,且相邻两个齿 之间的夹角为9。。 当某组绕组通电时,相应的两个磁极就分别形成N-S极,产生磁场,并 与转子形成磁路。如果这时定子的小齿与转子没有对齐,则在磁场的作 用下转子将转动一定的角度,使转子齿与定子齿对齐,从而使步进电机 向前“走”一步 步进电机有如下优点: 1.不需要反馈,控制简单。 2.与微机的连接、速度控制(启动、停止和反转)及驱动电路的设计比较简单。 3.没有角累积误差。 4.停止时也可保持转距。 5.没有转向器等机械部分,不需要保养,故造价较低。 6.即使没有传感器,也能精确定位。 7.根椐给定的脉冲周期,能够以任意速度转动。 但是,这种电机也有自身的缺点。 8.难以获得较大的转矩 9、不宜用作高速转动 10.在体积重量方面没有优势,能源利用率低。

步进电机和伺服电机的功能介绍和比较

步进电机和伺服电机 一、步进电机 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 二、伺服电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 三、步进电机和伺服电机的区别 区别1:控制的方式不同 步进电机是通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角。伺服电机是通过控制脉冲时间的长短控制转动角度的。 区别3 : 低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能

有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。 当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。 交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 区别4 :矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600r/min。 交流伺服电机为恒力矩输出,即在其额定转速(一般为2000 或3000 r/min)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 区别5:过载能力不同 步进电机一般不具有过载能力。 交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额转矩的3倍,可用于克服惯性负载在启动瞬间的惯性力矩。 (步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象) 区别6:速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~

伺服电机和步进电机的区别

伺服电机和步进电机的区别 伺服电机和步进电机是常用的两种电机类型,它们在工业自动化和 机械控制领域有广泛的应用。虽然它们都是用于转动控制,但在工作 原理、性能特点以及适用场景上存在一些重要的区别。本文将详细介 绍伺服电机和步进电机的区别。 一、工作原理的区别 1. 伺服电机的工作原理 伺服电机是通过外部的控制信号来实现位置和速度的闭环控制。它 包括了电机、编码器、驱动器和控制器等部件。当控制信号传输到电 机驱动器时,驱动器会将电流传送到电机,以产生转矩。同时,编码 器会不断地向控制器反馈电机的实际位置信息。控制器利用编码器所 反馈的信息来计算误差,并产生相应的调整信号送回驱动器,从而实 现位置和速度的精确控制。 2. 步进电机的工作原理 步进电机是一种开环控制的电机,它通过向电机控制器输入脉冲信 号来驱动电机转动。电机驱动器会将脉冲信号转换为电流,产生转矩。步进电机的转角是离散的,每个脉冲信号使电机转动一个固定的步距,因此步进电机的运动是精确可控的。 二、性能特点的区别 1. 伺服电机的性能特点

伺服电机具有高精度、高速度和高转矩输出的特点。由于采用闭环 控制,伺服电机能够实现准确的位置和速度控制。此外,伺服电机具 有较低的转矩波动和较快的动态响应性能,适用于对运动精度要求较 高的场景。 2. 步进电机的性能特点 步进电机具有较低的成本和较简单的控制系统。由于采用开环控制,步进电机的控制系统相对简化,适用于一些对成本要求较低且控制精 度要求不高的场景。此外,步进电机具有较高的静态转矩和较大的抗 负载特性,适用于一些需要大转矩输出的场合。 三、适用场景的区别 1. 伺服电机的适用场景 伺服电机广泛应用于需要高精度、高速度和高转矩输出的场景,如 数控机床、印刷设备和纺织设备等。由于其闭环控制的特点,伺服电 机能够实现较高的定位精度和过载能力,适用于对运动控制要求严格 的应用领域。 2. 步进电机的适用场景 步进电机广泛应用于需要连续旋转、较低成本和简化控制系统的场景,如3D打印机、扫描仪和机器人等。步进电机由于其开环控制的特点,能够简化控制系统,降低成本。但在高速和高负载的情况下,步 进电机由于限制了最大转速和较小的转矩波动,使得其应用受到一定 限制。

伺服电机 步进电机 通俗讲解

伺服电机和步进电机是现代工业中常见的两种电机类型,它们都有着广泛的应用领域,但是在工作原理、性能特点和适用场景上有着明显的区别。在本文中,我们将对这两种电机进行通俗易懂的解释,帮助读者更好地理解它们的工作原理和特点。 一、伺服电机 1.1 工作原理 伺服电机通过控制系统对电机的转矩、速度和位置进行精确的调节,以实现精准的运动控制。通常情况下,伺服电机由电机、编码器、控制器和反馈系统等组成。控制器接收指令并通过反馈系统获取实际运动状态,然后调节电机的输出来实现所需的运动控制。 1.2 特点 (1)精准控制:伺服电机能够实现高精度的位置控制和速度控制,广泛应用于需要高精度运动控制的场合。 (2)响应速度快:由于采用了闭环控制系统,伺服电机的响应速度非常快,能够迅速响应外部指令并实现快速准确的运动。 (3)负载能力强:伺服电机能够承受较大的负载,在高速、高精度运

动控制的情况下仍能保持稳定的输出。 1.3 应用领域 伺服电机广泛应用于数控机床、工业机器人、印刷设备、纺织设备等需要高精度运动控制的领域,以及飞行器、导弹、船舶等需要快速响应和精准控制的领域。 二、步进电机 2.1 工作原理 步进电机是一种数字式电机,通过依次通电给定的电磁线圈,使电机按一定的步距顺序转动。步进电机的步距角和步距数与其结构有关,不同的步进电机有不同的步距角和步距数。 2.2 特点 (1)结构简单:步进电机结构相对简单,通常由定子、转子、电磁线圈和控制电路组成,维护和安装相对方便。 (2)定位精度高:步进电机能够实现高精度的位置控制,适用于一些需要精准定位的场合。

(3)低速高扭矩:步进电机在低速情况下能够提供较大的输出扭矩,适合一些需要较大输出扭矩和低速运动的场合。 2.3 应用领域 步进电机广泛应用于打印机、数码相机、纺织设备、医疗设备、自动售货机等需要精准定位和低速高扭矩输出的领域。 三、伺服电机和步进电机的比较 3.1 工作原理对比 伺服电机通过控制系统对电机的转矩、速度和位置进行精确的调节,实现精准的运动控制;步进电机是一种数字式电机,通过依次通电给定的电磁线圈,使电机按一定的步距顺序转动。 3.2 特点对比 (1)精准度:伺服电机具有更高的精准度,能够实现更精确的位置和速度控制;步进电机在低速情况下能够提供较大的输出扭矩,在一定范围内具有较高的精准度。

步进电动机和伺服电动机

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。综上所述,交流伺服系统在许多性能方面都优于步进电机,但是价格比就不一样了。

伺服电机驱动器与步进电机驱动器之间的区别

步进电机的控制系统由可编程控制器、环行脉冲分配器和步进电机功率驱动器组成,控制系统中plc用来产生控制脉冲;通过plc编程输出一定数量的方波脉冲,控制山社步进电机的转角进而控制伺服机构的进给量;同时通过编程控制脉冲频率就是伺服机构的进给速度,环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。 PLC控制的步进电机可以采用软件环行分配器,也可以采用硬件环行分配器。采用软环占用的PLC资源较多,特别是步进电机绕组相数M》4时,对于大型生产线应该予以充分考虑。采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数。 一般PLC的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几—几十伏特、几十—几百毫安;但对于功率步进电机则要求几十—上百伏特、几安—十几安的驱动能力,因此应该采用驱动器对输出脉冲进行放大。 伺服机构的步进电机无脉冲输入时便停止运转,伺服执行机构定位。当伺服执行机构的位移速度要求较高时,可以用PLC中的高速脉冲发生器。不同的PLC 其高速脉冲的频率可达4000—6000Hz。对于自动线上的一般伺服机构,其速度可以得到充分满足。 如伺服机构采用硬件环行分配器,则占用PLC的I/O口点数少于5点,一般仅为3点。其中I口占用一点,作为启动控制信号;O口占用2点,一点作为PLC的脉冲输出接口,接至伺服系统硬环的时钟脉冲输入端,另一点作为山社步

进电机转向控制信号,接至硬环的相序分配控制端。 伺服系统采用软件环行分配器时,将PLC控制的开环伺服机构用于某大型生产线的数控滑台,每个滑台仅占用4个I/O接口,节省了CNC控制系统,其脉冲当量为0.01~0.05mm,进给速度为Vf=3~15m/min,完全满足工艺要求和加工精度要求。 步进电机驱动器与伺服电机驱动器的区别在于: 1.转速要求不同:步进适合低转速场合,转速调整范围较小的场合。伺服电机可控转速较大的场合。 2.可控可靠性不同:因为伺服电机有反馈信号,因此在控制系统里里,可以实现高可靠性控制。 3.输出转矩要求不同:目前国外和国内,步进电机最大系列为130框。最大输出静转矩为50牛/米。伺服电机可以有180框以上,60牛/米以上的输出转矩可选。

伺服电机与步进电机的效率比较

伺服电机与步进电机的效率比较电机是现代工业中的重要组成部分,它们可以通过转换电能和电磁 能来产生动力。一般来说,电机被分为两类:伺服电机和步进电机。 这两种电机各自有自己的特点和应用场景,但它们在效率方面的比较 却是一个常见的话题。本文将对伺服电机和步进电机的效率进行比较 和分析。 一、伺服电机的效率 伺服电机是一种能够准确控制位置、速度和加速度的电机。其控制 电路将反馈信号与指令信号进行比较,并使用任何差异来控制电机。 伺服电机可使用各种类型的传感器来提高其控制性能,如光电编码器、霍尔传感器和电容传感器。这些传感器可以检测旋转量、角度、速度 和加速度,从而提供实时反馈。这种反馈机制使得伺服电机在各种应 用中都能够提供较高的精度和可靠性。 伺服电机的效率通常比步进电机高,其中一些原因是伺服电机的反 馈控制机制和其能够提供更高的加速度和速度。因此,伺服电机通常 用于较大载荷和高速运动的应用,例如印刷、数控机床、气动和液压 系统等。 二、步进电机的效率 步进电机是由电磁力驱动的电机,其转子在电磁场的作用下向前移动。步进电机是控制位置和速度的一种有效方式,它们可以通过逐步 地施加电压来引起旋转。步进电机可以被设计成单向旋转或可逆转,

也可以允许可编程的微步操作来提高其精度。与伺服电机不同的是, 步进电机通常不需要任何反馈机制。 步进电机的效率取决于其设计和控制方式。通常情况下,步进电机 的效率比伺服电机低,这是因为步进电机的控制方式通常使用开环控制,其控制性能不如伺服电机。另一方面,步进电机的成本相对较低,适用于一些低负载应用,如发光二极管(LED)和打印机。 三、效率比较 伺服电机和步进电机的效率虽然互不相同,但可以对其进行比较。 基本上,伺服电机比步进电机更高效,特别是在大负载和高速运动方面。而步进电机的效率较低,但成本较低,更适用于低负载和低速运 动的应用。 在实际应用中,需要根据需求、设计和成本等因素来选择适合的电机。如果您需要高精度和高速度,则伺服电机可能是更好的选择。如 果您需要节省成本,或者运动负载较小,则步进电机可能是更好的选择。 总体来说,伺服电机和步进电机在应用方面有很大的不同,但它们 在效率方面的比较可以帮助工程师在设计和选择电机时做出更明智的 决策。 结论 伺服电机和步进电机是两种常见的电机类型。伺服电机通常比步进 电机更精确、更高效,并在大负载和高速运动方面表现更出色。与之

步进电机与伺服电机的综合比较

步进电机与伺服电机的综合比较 步进电机和伺服电机是自动化工业生产中常用的执行电机,其应用领域十分相似,但事实上两者之间是存在一定差异的,本文通过说明两者之间的特点和工作原理,进一步分析了两者之间的区别,给实际生产运用提供了参考。 一、步进电机和伺服电机的主要特点 (一)步进电机的主要特点 1.步进电机没有积累误差。一般来说,步进电机的精度大约是其实际步距角的3~5%,且不会累积。 2.步进电机在工作时,电脉冲信号会按一定顺序(例如A-B-C-A-B-C等)轮流加到各相绕组上。 3.步进电机与其它电机不同,其实际工作电压和电流可以超过额定大小,但选择时不应偏离额定值太多。 4.步進电机外表允许的最高温度可以达到80-90° C。 5.步进电机的力矩会随着其频率(或速度)的增大而降低。 6.混合式步进电机驱动器的供电电源电压一般是一个较宽的范围。 7.可以通过将电机与驱动器接线的A+和A-(或者B+和B-)对调即可改变其旋转方向。 1/ 5

(二)伺服电机的主要特点 1.起动转矩比较大,当一旦给定子提供控制电压,转子就会立即转动,所以伺服电机具有起动快、灵敏度高的特点。 2.运行范围比较广。 3.不会产生自转现象,正常运转的伺服电机一旦失去控制电压,电机立即停止运转。 二、步进电机和伺服电机的工作原理 (一)步进电机的工作原理 步进电机可以将电脉冲信号转换为机械信号,步进电机每发送一个电脉冲,就可以使其旋转一个固定的角度,称为步距角。步距角的大小由其转子齿数Zr和拍数N所决定。当连续给电机发送多个电脉冲信号时,就可以使其进行连续运行。此外,可以通过改变发送的电脉冲信号的频率来控制电机转动的速度,从而实现精确定位和调速的目的。 (二)伺服电机的工作原理 伺服电机内部也同样由定子和转子组成,其转子是永磁铁,驱动器控制的三相电首先在定子绕组中形成电磁场,而转子在这种电磁场的作用下发生旋转,与此同时伺服电机通过编码器将转动信号反馈给驱动器,通过闭环调节在驱动器内调整转子转动的角度,从而实现精确的定位控制。 三、步进电机和伺服电机的区别 2/ 5

同步电机和步进电机的区别伺服电机步进电机属于执行电机同步

同步电机和步进电机的区别 伺服电机步进电机属于执行电机。同步电动机和异步电动机属于一般电机。四者的联系都是将电能转化为机械能。区别是控制的方式不同。伺服电机用在数控机床,而步进电机用在打印机,磁盘驱动器上。同步电机一般用在机械手起定位作用,异步电机用的就比较多了。 按电源可分为直流电机和交流电机。 按励磁方式可分为串励。,并励,他励。 按用途可分为普通的和特殊的比如:伺服电机步进电机,直线电机等 步进电机和交流伺服电机性能比较 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

相关主题
文本预览
相关文档 最新文档