ABAQUS 破裂
- 格式:doc
- 大小:143.00 KB
- 文档页数:2
abaqus 外侧钢筋断裂应变
在Abaqus中,外侧钢筋的断裂应变是指钢筋在受力作用下达到
破坏应变的情况。
钢筋的断裂应变通常是在材料拉伸过程中发生的,当钢筋受到的拉伸应力超过其承载能力时,就会发生断裂。
在Abaqus中,我们可以通过建立适当的材料模型和加载条件来模拟外
侧钢筋的断裂应变。
在进行有限元分析时,我们需要考虑外侧钢筋的材料特性、几
何形状以及受力情况。
首先,我们需要选择合适的钢筋材料模型,
比如弹塑性模型或者本构模型,来描述钢筋的应力-应变关系。
其次,我们需要考虑外侧钢筋的截面形状和尺寸,以及其在混凝土构件中
的具体位置和受力情况。
这些信息将有助于我们建立准确的有限元
模型。
在Abaqus中,我们可以通过定义合适的加载条件来模拟外侧钢
筋的受力情况,比如施加拉伸载荷或者模拟混凝土构件在受力过程
中的变形和裂缝扩展。
通过对外侧钢筋的受力情况进行分析,我们
可以得到钢筋的应力分布情况,进而确定钢筋的断裂应变。
除了单纯的应力-应变分析外,我们还可以考虑外侧钢筋在混凝
土构件中的变形和破坏情况。
通过综合考虑钢筋和混凝土的相互作用,可以更全面地理解外侧钢筋的断裂应变情况。
总之,在Abaqus中,我们可以通过建立准确的有限元模型,定义合适的材料模型和加载条件,来模拟外侧钢筋的断裂应变情况。
这将有助于工程师们更好地理解钢筋在混凝土构件中的受力行为,从而指导工程实践并提高结构的安全性和可靠性。
关键字:crack,裂纹,断裂,cohesive,XFEM这个问题不大好总结,比较复杂,我能想到什么就说些什么吧,这个任务已经托了很长时间了,抱歉!有新的想法我会更新。
求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
俩者不是一个概念,断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等;损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这个就是基于断裂力学的方法,大家可以参考敦诚版主做的这个例子(一个简单的裂纹模拟例子:/thread-858322-1-1.html),这种方法可以计算裂纹的应力强度因子,J积分及T-应力等,详细情况可以参考下这个帖子:/thread-821531-1-1.html考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等,详细情况可参看yaooay的这个帖子,总结的相当不错!/thread-853029-1-1.html除VCCT(虚拟裂纹闭合技术)和低周疲劳判据外,其他debond技术只能适用于二维模型,所以应用范围受到很大的限制。
VCCT是基于线弹性断裂力学的应变能释放率判据,适用于模拟脆性断裂扩展,且只能沿着事先确定的扩展面扩展,分析前需指定初始裂纹(缺陷),详细信息请查看分析手册11.4.3。
abaqus cae中的mmc断裂设置
在ABAQUS CAE中,可以使用MMC断裂设置来模拟材料的断裂行为。
具体的设置方法可能因模型的不同而有所差异,但通常包括以下步骤:
1. 创建断裂部件:进入草图模式,创建一个矩形板,然后退出草图模式。
点击PartitionFace:Sketch,再次进入草图模式,创建一条seam。
在草图模式下,创建4个半圆,为定义裂纹及mesh做准备。
2. 设置材料属性:创建材料,并为断裂部件分配相应的材料属性。
3. 定义断裂准则:选择合适的断裂准则,如最大应力、应变能密度等。
4. 设置断裂参数:设置断裂韧性、临界张开位移等参数,以控制断裂行为。
5. 划分网格:对断裂部件进行网格划分,确保断裂区域的网格足够细。
6. 求解:进行静态分析,观察断裂过程和结果。
请注意,上述步骤仅为一般性指导,具体的设置方法可能因模型的不同而有所差异。
如果你需要关于MMC断裂设置的更详细信息,请提供相关的模型和问题描述,我将尽力为你提供帮助。
这是一个巷道受冲击载荷的模型,延性损伤本构只考虑塑性大变形引起材料的失效情况,即应变大于某个值时视为单元失效,弹塑性问题的计算处理由DP 准则来判断,两者之间需要定义一些控制方式,这个短时间内也不怎么好讲吧。
这里只给出一种情况吧,也就是冲击载荷作用于巷道的顶板,考虑不同顶板厚度时,巷道对冲击的响应。
这种情况是根据这边的一个项目里的实际情况来做的,主要也就看看巷道受冲破坏时,到底是什么一回事。
图 巷道模型
H=2m H=4m
H=5m H=6m
H=8m H=12m
图 冲击载荷下不同顶板厚度H 时等效塑性应变 这个问题和之前的一个类似,用的是关键字将现成的两个本构联合作用的,我一直在试着用这种方式在静力学模块中实现工作面开采时的覆岩移动及跨落问题,但是由于静力学部分是隐式算法,涉及到各种各样的矩阵运算,从而收敛性不是很好,一直没有做出来好的效果。
这个问题中是动力学问题,用的是显式算法,有限差分原理。
程序比较麻烦,这里就不贴出来了。
ABAQUS中有四种初始断裂准则:在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍)对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shearcriteria)对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。
损伤的感念如下图所示:1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。
Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系:公式中::应力三轴度。
即平均应力和屈服应力的比值;为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变,力三轴度,其值为-2/3;因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出和参数三个参数即可。
根据方程已得到不同应力三轴度下的断、裂应变。
、和在一个应变速率下只需要三组数据,就可以求出方程中的。
帮助文件中的建议:ABAQUS==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?)=此时,通过对进行杯突实验的板料印制网格,可以得到其成形极限(。
):例如三点弯曲试验中,应力三轴度为已知量(印制方程二=0.57735。
网格测量,具体如何测量不是很清楚):例如在单轴拉伸实验中,应力三轴度为已知量=0.333方程三。
平均应力为屈服应力的三分之一。
SIMUWE论坛中的建议:这个应该通过单轴拉伸实验、压缩实验和纯剪切实验。
混凝土开裂模型适用模块:Abaqus/Explicit Abaqus/CAE参考●“Material library: overview,” Section 18.1.1●“Inelastic behavior,” Section 20.1.1●*BRITTLE CRACKING●*BRITTLE FAILURE●*BRITTLE SHEAR●“Defining brittle cracking” in “Defining other mechanical models,” Section 12.9.4 of theAbaqus/CAE User's Manual概述Abaqus/Explicit模块中脆性断裂模型:●提供一种通用模型来模拟包括梁单元、桁架单元、壳单元以及实体单元在内的所有单元形式;●也可以用来模拟诸如陶瓷及脆性岩石的其他材料;●用于模拟受拉开裂占主导地位的材料本构行为;●假设受压行为是线弹性的;●必须与线弹性模型(“Linear elastic behavior,” Section 19.2.1)同时使用,它也定义了材料开裂前的本构行为;●用于模拟脆性行为占主导地位的本构关系是十分准确的,基于此,假设受压行为是线弹性的是合理的;●该模型主要是用于钢筋混凝土结构的分析,同时也适用于素混凝土;●基于脆性失效准则,将失效单元删除;关于失效单元删除的内容详见“A cracking model for concrete and other brittle materials,” Section 4.5.3 of the Abaqus Theory Manual.关于ABAQUS中可用混凝土本构模型的相关讨论参见“Inelastic behavior,” Section 20.1.1。
钢筋ABAQUS中,混凝土结构中的钢筋是通过指定Rebar单元实现的。
Rebar单元是一维应变理论单元(杆单元),既可以单独定义,也可以镶嵌在有向曲面上。
ABAQUS中的断裂力学及裂纹分析总结ABAQUS中的断裂力学及裂纹分析总结(转自simwe)(1)做裂纹ABAQUS有几种常见方法。
最简单的是用debond命令, 定义*FRACTURE CRITERION, TYPE=XXX,参数。
***DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1,……......time,0要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在*INITIAL CONDITIONS, TYPE=CONTACT中定义master, slave, 及指定的Nset这种方法用途其实较为有限。
(2)另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数.裂尖及奇异性定义:在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。
这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。
如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性,适合perfect plasticity的情况.网格划分:裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上布点,记住要点constraint, 然后选第三个选项do not allow the number of elements to change不准seed变化,密度可以自己调整. 最里面靠近圆的正方形可以只在对角线上布点. 也可以进一步分割内圆及在圆周上布点. 里面裂尖周围的内圆选free mesh, element type 选cps6或者cpe6,外面四边形选sweep mesh, element type选cps8或者cpe8, 记住把quad下那个缩减积分的勾去掉。
abaqus 断裂图文实例在abaqus中创建裂纹1. create part,如图1所示:图12. 进入草图模式,创建一矩形板,点鼠标中键2次退出草图模式,点击Partition Face: Sketch,再次进入草图模式,创建一条seam,如图2所示:图213. 在草图模式下,创建4个半圆(为以后定义裂纹及mesh 做准备),如图3所示:图34. 退出part模块,进入property模块,create material,create section,assign section,此过程不再细述。
(材料定义为线弹性即可)5. 进入assembly模块,create instance;进入step模块,create step,默认选择即可,不需要改动。
d6. 进入interaction模块,点击special——crack——assign seam,按住shift键,选择3段直线段作为seam(见图4),然后点击special——crack——create,给裂纹起名,continue,选择内部小圆区域作为first contour region,选择圆心作为crack tip region,用向量q表示裂纹扩展方向(需输入向量起点和终点坐标),进入edit crack菜单,定义裂尖奇异性,见图5所示,相关内容请参考abaqus manual,定义完成的裂纹见图6所示。
图4 2图5图67. 进入step模块,点击history output manager,点击edit,进入edit history output request菜单,设置见图7所示,详细内容请参考abaqus manual。
8. 进入load模块,定义外力及边界条件,定义好后见图8所示,此过程不再细述。
3图7图849. 进入mesh模块,设置边种子(根据建模情况考虑),最内部用三角形单元,外层用四边形单元,最后效果如图9所示,此过程不再细述。
abaqus在水力压裂模拟中的应用(一)ABAQUS在水力压裂模拟中的应用1. 简介水力压裂是一种常用的增产技术,ABAQUS作为一款强大的有限元分析软件,在水力压裂模拟中有着广泛的应用。
下面将列举一些ABAQUS在水力压裂模拟中的应用,并进行详细讲解。
2. 地层模拟在水力压裂中,首先需要对地层进行模拟。
ABAQUS可以使用其强大的有限元分析功能,创建地层的模型,并进行力学响应的仿真。
通过对地层模拟的研究,可以识别出适宜的水力压裂位置和水平井路径。
3. 水力压裂介质分析在水力压裂中,压裂液通过井筒进入地层中,对地层进行压裂。
ABAQUS可以对水力压裂介质进行建模,并分析介质在压裂过程中的应变、应力和变形。
这有助于评估地层岩石的破坏程度和断裂网络的形成情况。
4. 压裂液与地层作用分析压裂液在进入地层后,与地层岩石相互作用。
ABAQUS可以模拟压裂液与地层的作用过程,包括压力传递、渗透性变化和微裂缝的扩展。
通过这些分析,可以评估压裂液的传输能力和地层的反应。
5. 断裂网络模拟水力压裂过程中,地层岩石通过压力作用破裂,并形成断裂网络。
ABAQUS可以模拟岩石的断裂行为,并生成断裂网络。
这对于预测水力压裂结果、优化施工方案和评估产能增加具有重要意义。
6. 应力补偿分析水力压裂过程中,人工施加的压力会导致地层应力分布发生变化。
ABAQUS可以模拟压裂过程中的应力变化,并进行应力补偿分析。
这有助于合理设计井网,并减少压力耗散。
7. 压裂液压力分布分析在水力压裂中,压裂液的压力分布对于压裂效果具有重要影响。
ABAQUS可以模拟压裂液在地层中的流动,分析压力分布的变化。
这对于优化施工参数和预测压裂裂缝的扩展方向有着重要意义。
以上是ABAQUS在水力压裂模拟中的一些应用。
通过这些应用,可以提供水力压裂施工过程的模拟和优化分析,为水力压裂的实施提供科学依据。
8. 断裂扩展分析水力压裂过程中,断裂会随着压力的增加而扩展,形成裂缝网络。
abaqus断裂准则详解断裂是材料在受到外力作用下发生破裂的过程,它在工程设计和材料研究中具有重要的意义。
为了预测和分析材料断裂行为,需要使用合适的断裂准则。
本文将详细介绍abaqus断裂准则的原理和应用。
abaqus是一种常用的有限元分析软件,它可以用于模拟和分析各种结构和材料的力学性能。
在abaqus中,断裂准则是用来预测材料何时会发生破裂的方法。
abaqus提供了多种不同的断裂准则,包括线性弹性断裂准则、最大剪应力断裂准则、最大正应力断裂准则、最大应变断裂准则等。
线性弹性断裂准则是最简单的一种断裂准则,它假设材料在破裂前是线性弹性的,当应力达到材料的强度极限时,材料会发生破裂。
这种准则适用于某些脆性材料,如陶瓷和玻璃。
然而,对于许多金属和塑料等材料来说,线性弹性断裂准则并不适用,因为它们在破裂前会发生塑性变形。
最大剪应力断裂准则是一种常用的断裂准则,它假设材料在破裂前会发生最大剪应力。
当材料中的剪应力达到材料的剪切强度时,材料会发生破裂。
这种准则适用于某些金属材料,如铝合金和钢材。
最大正应力断裂准则是另一种常用的断裂准则,它假设材料在破裂前会发生最大正应力。
当材料中的正应力达到材料的抗拉强度时,材料会发生破裂。
这种准则适用于某些脆性材料和复合材料。
最大应变断裂准则是一种基于材料的最大应变来判断破裂的准则。
当材料中的应变达到材料的应变极限时,材料会发生破裂。
这种准则适用于某些塑性材料,如聚合物和橡胶。
除了上述几种常用的断裂准则外,abaqus还提供了其他一些断裂准则,如能量释放率准则、J积分准则等。
这些准则可以更准确地预测材料的断裂行为,但需要更复杂的计算和分析。
在abaqus中,断裂准则的选择取决于材料的特性和所需的分析结果。
根据不同的应用场景和材料类型,选择合适的断裂准则可以提高模拟和分析的准确性。
同时,也需要注意断裂准则的局限性,避免错误的预测和分析结果。
abaqus断裂准则是用来预测材料何时会发生破裂的方法。
ABAQUS中分析裂纹问题常用方法概述
1、用定义seam的方法来预设裂纹扩展路径,随着载荷的施加,裂纹会沿seam扩展。
这种方法可以模拟裂纹尖端的奇异性(通过在ABAQUS中设置实现),能很方便的计算出应力强度因子、J积分等断裂参量。
2、用debond命令实现裂纹开裂,为了观察开裂需要在指定的路径上定义一个集合,这种方法简单,但实际应用范围相当有限。
3、用cohesive单元,通过设置damage initiation和evolution 准则等相关参数实现裂纹问题的模拟,同时,ABAQUS提供了多种准则可供选择,后处理时通过dispaly group可以观察裂纹扩展。
此功能用途较广,而且通过在ABAQUS平台上开发实现多裂纹扩展的模拟。
4、在ABAQUS 6.9中推出的新功能XFEM(扩展有限元),利用XFEM能够很好的模拟裂纹的扩展,而无需用户提前定义扩展路径。
通过设置损伤起始的判据,损伤演化规律,损伤稳定性控制等相关参数实现裂纹扩展。
5、除此之外,对于裂纹问题,还可以通过二次开发、模型对称性、边界条件随分析步的改变等方式实现。
总之,ABAQUS处理裂纹问题的手段很多,功能也十分强大,若能获得较准确的相关材料数据,数值模拟的结果是很有参考价值的。
ABAQUS中有四种初始断裂准则:在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍)对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shearcriteria)对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。
损伤的感念如下图所示:1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。
Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系:公式中::应力三轴度。
即平均应力和屈服应力的比值;为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变,力三轴度,其值为-2/3;因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出和参数三个参数即可。
根据方程已得到不同应力三轴度下的断、裂应变。
、和在一个应变速率下只需要三组数据,就可以求出方程中的。
帮助文件中的建议:ABAQUS==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?)=此时,通过对进行杯突实验的板料印制网格,可以得到其成形极限(。
):例如三点弯曲试验中,应力三轴度为已知量(印制方程二=0.57735。
网格测量,具体如何测量不是很清楚):例如在单轴拉伸实验中,应力三轴度为已知量=0.333方程三。
平均应力为屈服应力的三分之一。
SIMUWE论坛中的建议:这个应该通过单轴拉伸实验、压缩实验和纯剪切实验。
abaqus断裂图文实例创建裂缝1。
在abaqus中创建零件,如图1所示:图12。
进入草图模式,创建一个矩形板,单击鼠标中键两次退出草图模式,然后单击“分割面:草图”。
再次进入草图模式创建接缝,如图2所示:图213。
在草图模式下,创建4个半圆(为以后定义裂缝和网格做准备)。
如图3:图34。
退出零件模块,进入属性模块,创建材料,创建截面,分配截面。
在之后将不再详细描述该过程(材料仅定义为线性弹性)5。
进入装配模块,创建实例;;进入步骤模块,创建步骤,默认选择,不需要修改D6。
进入交互模块,点击特殊-裂缝-分配缝,按住shift键,选择3个直的段作为缝(见图4),然后点击特殊-裂缝-创建命名缝,继续。
选择内部小圆区域作为第一个轮廓区域,选择圆心作为裂纹尖端区域,用矢量q表示裂纹扩展方向(输入矢量起点和终点的坐标),进入编辑裂纹菜单,定义裂纹尖端的奇点,如图5所示。
相关内容参见abaqus手册,定义的裂纹见图6。
图42图5图67。
进入步骤模块,点击历史输出管理器。
单击编辑进入编辑历史输出请求菜单。
设置如图7所示。
详情请参考abaqus手册。
8。
输入载荷模块并定义外力和边界条件。
定义之后,参见图8。
将不详细描述该过程。
3图7图849。
进入网格模块,设置边缘种子(考虑建模情况),在最内部使用三角形单元,在外部使用形单元。
最终效果如图9所示。
将不详细描述该过程。
图910。
输入作业模块、名称并提交计算结果。
最终的应力云图如图10所示这个例子是单边裂纹。
对于双边缘裂纹,需要定义两个裂纹。
如果是缺口裂纹,不必定义接缝,而是直接定义裂纹。
图10 ~结束~59。
Abaqus裂纹设置引言Abaqus是一种广泛使用的有限元分析软件,它可以用于模拟和分析各种工程结构的力学行为。
在许多工程应用中,裂纹是一个重要的研究对象。
通过合理地设置裂纹参数,可以模拟和分析材料在裂纹影响下的力学行为,从而为工程设计提供有价值的指导。
本文将介绍如何在Abaqus中设置裂纹。
Abaqus中的裂纹设置在Abaqus中,裂纹是通过创建几何实体和使用合适的单元类型来表示的。
以下是一些常用的裂纹设置技巧:1.创建几何实体:在Abaqus中,裂纹通常被视为特殊的几何实体。
可以使用Abaqus的几何建模工具来创建裂纹的几何形状。
一般情况下,裂纹可以通过将几个点连接起来或从一个面切割出来来表示。
2.设置裂纹的尺寸:在Abaqus中,可以通过调整裂纹的尺寸参数来模拟不同大小的裂纹。
一般情况下,裂纹的尺寸可以通过修改几何实体的尺寸参数来实现。
3.选择适当的单元类型:在Abaqus中,有多种单元类型可供选择。
对于裂纹分析,一般使用包含自由节点的单元类型。
例如,在二维裂纹分析中,常用的单元类型有二维平面应力单元(CPS4)和二维平面应变单元(CPE4)等。
4.定义边界条件:在Abaqus中,边界条件是模拟裂纹行为的关键。
通过适当地定义边界条件,可以模拟不同类型的裂纹行为,例如张开的裂纹、剪切裂纹等。
常用的边界条件有固定边界条件、施加外力等。
5.设置材料参数:在Abaqus中,材料参数的设置对于裂纹分析至关重要。
通过设置合适的材料参数,可以模拟材料在裂纹作用下的力学行为。
常用的材料参数有杨氏模量、泊松比等。
示例:使用Abaqus设置一个二维张开裂纹以下示例将介绍如何使用Abaqus设置一个二维张开裂纹:1.创建几何实体:在Abaqus中,打开几何建模工具,创建一个长方形的几何实体。
2.定义裂纹几何形状:通过选择切割工具,在长方形的一侧切割出一个直线形状的几何实体。
3.设置裂纹的尺寸:通过调整切割线的长度来设置裂纹的长度。
断裂模拟方法:一.弥散裂缝模型弥散裂缝模型也可以称为分布裂缝模型,是在年提出的`叫。
此模型假设当单元的最大主应力超过混凝土抗拉强度时,单元在最大主应力垂直的方向形成无数平行的微裂纹如图一所示。
单元发生损伤,需对单元的本构矩阵进行调整。
弥散裂缝模型认为开裂的混凝土还具有一定的连续性,将实际的裂缝“弥散”到整个单元中。
在第一条裂缝出现后,认为混凝土变成了一种“正交异性体”。
裂缝不是离散的或单个的。
此模型一开始认为,当单元开裂时,沿裂纹面垂直方向的应力立刻为零,裂纹面垂直方向与裂纹面切线方向失去了任何抵抗拉应力、剪应力的能力,而另外方向的刚度不变,如果三个方面都发生开裂,则认为这个单元完全失效。
因而单元的弹性矩阵为零。
后来人们发现混凝土开裂后,由于裂纹面颗粒与颗粒之间的相互叹合,裂纹面的抗拉能力并不立即降为零,并且裂纹面还具有一定的抗剪能力。
并且,应力应变曲线具有明显的下降阶段。
于是在本构模型中引进了剪力传递系数,它反映了骨料咬合作用,并且考虑开裂的受拉软化特性,在应变可加性基础上建立开裂单元的本构关系,得到有多条、固定裂纹的单元本构关系或考虑最大主应力方向在加载过程中不断改变的旋转裂纹模型、考虑材料塑性的弹塑性断裂模型。
因为此类模型只需改变开裂单元的本构关系,无须改变单元形式或重新划分单元网格,因此,广泛使用于混凝土结构断裂模拟。
,提出裂缝带模型和非局部连续模型,引入裂缝带、断裂能概念,减少了单元尺寸的影响。
但裂缝带模型假设断裂过程区的宽度是单元的宽度与实际不符。
非局部连续模型的物理意义不明确,且只针对工型张开型裂缝。
二.据北建工一常使用损伤模型的学生说,用损伤模型模拟效果也不错。
《混凝土抗压强度与断裂参数尺寸效应的数值模拟研究》三.《混凝土塑性弥散裂缝模型和应用》混凝土梁的尺寸为600 mm×180 mm ×100 mm[3],2 个支撑点间长度为500 mm,载荷作用点离左端支撑点距离为175 mm,预设在混凝土梁上的裂缝深度为30 mm,见图1.试验中混凝土参数属性见表1.四.ABAQUS中的混凝土模型开裂问题应用弥散裂纹模型。
基于Abaqus的裂缝扩展过程引言裂缝扩展是材料破坏过程中的重要现象之一,对于材料强度和耐久性的评估具有重要意义。
Abaqus是一种常用的计算机辅助工程(CAE)软件,在材料力学领域有广泛的应用。
本文将介绍如何利用Abaqus来模拟和分析裂缝扩展过程。
背景知识在开始介绍基于Abaqus的裂缝扩展过程之前,我们先了解一些相关的背景知识。
裂缝扩展裂缝扩展是材料破坏中的一个重要过程。
当裂纹的长度增长时,材料的强度和韧性会逐渐减小,从而导致材料的破坏。
裂纹扩展可以分为静态和疲劳两种类型。
静态裂纹扩展指的是裂纹在应力作用下逐渐扩展,而疲劳裂纹扩展指的是裂纹在循环加载下逐渐扩展。
AbaqusAbaqus是一种常用的有限元分析软件,可以用于模拟和分析材料力学和结构力学问题。
它提供了丰富的建模和分析工具,能够对复杂的力学系统进行准确的数值模拟和分析。
在材料力学领域,Abaqus被广泛用于研究材料的力学性能和变形行为。
模拟裂缝扩展过程的步骤步骤1:建立几何模型在模拟裂缝扩展过程之前,首先需要建立几何模型。
可以通过Abaqus提供的几何建模工具来创建几何模型,或者导入现有的CAD模型。
在建立几何模型时,需要注意将裂纹的几何形状和位置准确地反映在模型中。
步骤2:定义材料属性在进行裂纹扩展模拟之前,需要定义材料的力学性质。
可以通过Abaqus提供的材料数据库来选择合适的材料模型,并设置材料的弹性模量、泊松比、屈服强度等参数。
此外,还可以考虑将材料的损伤和断裂行为纳入模拟中,以更加真实地描述裂纹扩展过程。
步骤3:划分网格将几何模型划分为有限元网格是进行数值模拟的关键步骤。
网格的划分需要根据材料的几何形状和裂纹的位置进行调整,使得在裂纹周围有足够的节点密度,以捕捉裂纹扩展过程中的细节。
步骤4:应用边界条件在模拟裂纹扩展过程时,需要定义边界条件以模拟实际加载条件。
根据实际情况,可以设置裂纹面上的固定位移或施加加载。
此外,还需要定义时间步长和加载速率等参数,以控制模拟的过程和求解的精度。
.ABQUS中的三种混凝土本构模型ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model (ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE1 / 1'.。
abaqus 分析中的断裂判据
在abaqus 分析中,常用以下两种断裂判据用于判定断裂现象的发生:
1.COD 准则:适用于韧性材料
格式: *FRACTURE CRITERION, TYPE=COD
该准则的定义式为:c
f δδ=,其中δ为在裂纹尖端之后某DISTANCE 处测得的张开位移值,c δ为张开位移的临界值。
其中DISTANCE 的具体值需要在分析中设定。
断裂失效的判定公式为:())f 1(f f 1tol tol +≤≤−,其中默认值是0.1
tol f 2.CRITICAL STRESS 准则:适用于脆性材料
格式: *FRACTURE CRITERION, TYPE=CRITICAL STRESS 该准则的定义式为:2
222112⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎠⎞⎜⎝⎛=f f f n f ττττσσ,其中n σ为界面拉应力,2,1τ为界面剪应力。
CRITICAL STRESS 的测定点位于裂纹尖端之前某DISTANCE 处。
该DISTANCE 的具体值需要在分析中设定。
断裂失效的判定公式:())f 1(f f 1tol tol +≤≤−,其中默认值是0.1 tol f。
这是一个巷道受冲击载荷的模型,延性损伤本构只考虑塑性大变形引起材料的失效情况,即应变大于某个值时视为单元失效,弹塑性问题的计算处理由DP 准则来判断,两者之间需要定义一些控制方式,这个短时间内也不怎么好讲吧。
这里只给出一种情况吧,也就是冲击载荷作用于巷道的顶板,考虑不同顶板厚度时,巷道对冲击的响应。
这种情况是根据这边的一个项目里的实际情况来做的,主要也就看看巷道受冲破坏时,到底是什么一回事。
图 巷道模型
H=2m H=4m
H=5m H=6m
H=8m H=12m
图 冲击载荷下不同顶板厚度H 时等效塑性应变 这个问题和之前的一个类似,用的是关键字将现成的两个本构联合作用的,我一直在试着用这种方式在静力学模块中实现工作面开采时的覆岩移动及跨落问题,但是由于静力学部分是隐式算法,涉及到各种各样的矩阵运算,从而收敛性不是很好,一直没有做出来好的效果。
这个问题中是动力学问题,用的是显式算法,有限差分原理。
程序比较麻烦,这里就不贴出来了。