线性规划应用题精选 苏教版
- 格式:doc
- 大小:1.44 MB
- 文档页数:7
第9课线性规划应用题
分层训练
1.若点P满足(x+2y-1) (x-y+3)≥0, 求P到原点的最小距离为。
.
考试热点
2一家饮料厂生产甲、乙两种果汁饮料, 甲种饮料主要西方是每3份李子汁加1份苹果汁, 乙种饮料的西方是李子汁和苹果汁各一半. 该厂每天能获得的原料是2000L李子汁和1000L苹果汁, 又厂方的利润是生产1L甲种饮料得3元, 生产1L乙种饮料得4元. 那么厂方每天生产甲、乙两种饮料各多少, 才能获利最大?
拓展延伸
3.有粮食和石油两种物资, 可用轮船与飞机两种方式运输, 每天每艘轮船和每架飞机运输效率
现在要在一天内运输2000吨粮食和1500吨石油, 需怎样安排轮船和飞机,使轮船和飞机总数最少?
本节学习疑点:。
苏教版必修5第3章第三节二元一次不等式组与简单的线性规划问题 3 简单的线性规划问题(习题+解析)值;(2)求x y 的取值范围;(3)求x 2+y 2的取值范围。
**8. 已知实数x ,y 满足⎪⎩⎪⎨⎧≤+-≤≥m y x x y y 12,1,若目标函数z =x -y 的最小值的取值范围是[-2,-1],求目标函数的最大值的取值范围。
***9. 某家具厂有方木料90 m 3,木工板600 m 3,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1 m 3,木工板2 m 3;生产每个书橱需要方木料0.2 m 3,木工板1 m 3,出售一张书桌可以获利80元,出售一张书橱可以获利120元。
问:怎样安排生产可以获利最大?1. [4,8]解析:作出满足不等式组⎪⎩⎪⎨⎧≥-≤≤≤≤122010x y y x 的可行域(如图所示)。
作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8;当直线经过点B (1,1)时,z min =2×1-2×1+4=4。
所以z 的取值范围是[4,8]。
2. 16解析:设票面8角的买x 套,票面2元的买y 套。
由题意得:⎪⎩⎪⎨⎧≤⨯+⨯∈≥∈≥504258.0,2,2**y x N y y N x x 即⎪⎪⎩⎪⎪⎨⎧∈≤+≥≥*,,2542,2,2N y x y x y x画出如图平面区域得y =2时,x =2,3,4,5,6,7,8;y =3时,x =2,3,4,5,6;y =4时,x =2,3,4;y =5时,x =2。
共有7+5+3+1=16种买法。
3. (-1,-2)解析:不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个。
代入检验知,整点为(-1,-2)时,x +2y 取得最小值。
高中简单的线性规划问题数学一、考点打破知识点课标要求题型说明1.掌握线性规划问题的求解过线性规划是一类利用图形解决最程,特别是确立最优解的方法。
选择题值问题的方法,表现简单的线性2.能从实质情境中抽象出一些填空题了数形联合的思想,规划问题简单的二元线性规划问题,并也是高考考察的热能加以解决。
点。
二、重难点提示要点:线性规划问题的图解法,追求线性规划问题的最优解;将实质问题转变为线性规划问题,并经过最优解的判断予以解决。
难点:利用图解法求最优解以及怎样把实质问题转变为简单的线性规划问题,并正确给出解答。
考点一:线性规划有关观点名称意义拘束条件由变量 x, y 构成的一次不等式线性拘束条件由 x, y 的一次不等式(或方程)构成的不等式组目标函数欲求最大值或最小值的函数线性目标函数对于 x, y 的一次分析式可行解知足线性拘束条件的解可行域全部可行解构成的会合最优解使目标函数获得最大值或最小值的可行解线性规划问题在线性拘束条件下求线性目标函数的最大值或最小值问题【中心概括】对于有实质背景的线性规划问题,可行域往常是位于第一象限的一个凸多边形地区,此时改动直线的最正确地点一般经过这个凸多边形的极点。
考点二:应用1.求线性目标函数在拘束条件下的最值问题的求解步骤是:(1)作图——画出拘束条件(不等式组)所确立的平面地区和目标函数所表示的平行直线系中的随意一条直线 l ;(2)平移——将l平行挪动,以确立最优解所对应的点的地点;(3)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值。
2.利用线性规划解决实质问题的一般步骤为:注意:解决实质问题的要点在于正确理解题意,将一般文字语言转变为数学语言从而成立数学模型。
0 x2【随堂练习】 已知平面直角坐标系xOy 上的地区 D 由不等式组y 2x2 y给定。
若 M ( x ,→ →的最大值为________ 。
y )为 D 上的动点,点 A 的坐标为( 2, 1),则 z = OM ·OA 思路剖析:作出可行域, 把目标函数利用向量的数目积坐标表示成对于x, y 的一次函数,利用图象法求解。
§3.3.3 简单的线性规划问题 第 课时班级___________姓名______________1.若1223x y ≤≤⎧⎨≤≤⎩,则能使x +y 取得最大值的整点是____________.2.两直线2x -3y+1=0,3x -2y -1=0的交点坐标是 ______________.3.设P(x ,y)满足x ,y ∈N ,且x + y ≤4,x -y 的最小值为___________.4. 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,且能使z=2x +y 的最大值点(x ,y )是______________.5.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .6.若x ,y 满足条件32x y y x +≤⎧⎨≤⎩,则z = 3x + 4y 的最大值是 .7.已知⎪⎩⎪⎨⎧≥-≤-≤+13492x y x y x , 则z = 3x + y 最大值为______________.8.x ,y 满足不等式组 2438x y x y ≤≤⎧⎪≥⎨⎪+≤⎩,则目标函数y x k 23-=的最大值为_____________.9.已知x ,y 满足约束条件 则的最小值为_____________. 10.已知x 、y 满足不等式,则z =3x+y 的最小值为_____________.50,0,3.x y x y x -+≥⎧⎪+≥⎨⎪≤⎩y x z -=4⎪⎩⎪⎨⎧≥≥≥+≥+0y ,0x 1y x 22y 2x11.已知x 、y 满足不等式组,试求z =300x+900y 取最大值时的整点的坐标,及相应的z 的最大值.12.要将甲、乙两种长短不同的钢管截成A 、B 、C 三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:今需A 、B 、C 三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少。
[学业水平训练]一、填空题1.给出下列命题:①线性规划中的最优解指的是使目标函数取得最大值或最小值的变量x 和y 的值; ②线性规划中的最优解指的是目标函数的最大值或最小值;③线性规划中的最优解指的是使目标函数取得最大值或最小值的可行域; ④线性规划中的最优解指的是使目标函数取得最大值或最小值的可行解. 其中正确的命题是________.(写出所有正确命题的序号) 答案:①④2.已知1≤a ≤2,-1≤b ≤3,则2a +b 的取值范围是________.解析:在平面直角坐标aOb 中画出可行域(图略),可得目标函数z =2a +b 的最小值和最大值分别为1与7,故2a +b 的取值范围是[1,7].答案:[1,7]3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,y ≥3x -6,则目标函数z =2x +y 的最小值为________.解析:因为变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,y ≥3x -6,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3),则使目标函数z =2x +y 取最小值的点是B 点,代入即可得z min =3.答案:34.满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x +y ≤6,x ≥0,y ≥0,并使目标函数z =6x +8y 取得最大值的点的坐标是________.解析:可行域(如图所示)是四边形OABC 及其内部的区域.作出l 0:6x +8y =0即3x +4y =0,平移直线l 0到l 的位置,由图形知,当l 过点C (0,5)时,z 取得最大值.答案:(0,5)5.若x,y满足约束条件⎩⎪⎨⎪⎧x+y≥1,x-y≥-1,2x-y≤2,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是________.解析:作出可行域如图所示,直线ax+2y=z仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a<2.答案:(-4,2)6.(2014·浙江省嘉兴一中月考)已知x,y满足约束条件⎩⎪⎨⎪⎧x≥1x-y+1≤02x-y-2≤0,则x2+y2的最小值是________.解析:画出满足条件的可行域(如图),根据x2+y2表示可行域内一点到原点的距离,可知x2+y2的最小值是|AO|2.由⎩⎪⎨⎪⎧x=1x-y+1=0得A(1,2),所以|AO|2=5.答案:57.配制A,B两种药剂,需要甲、乙两种原料,已知配一剂A种药需甲料3 mg、乙料5 mg;配一剂B种药需甲料5 mg、乙料4 mg.今有甲料20 mg、乙料25 mg,若A,B两种药至少各配一剂,则不同的配制方法的种数是________.解析:设A,B两种药分别配x,y剂.则⎩⎪⎨⎪⎧x≥1,y≥1,3x+5y≤20,作出可行域(如图).5x+4y≤25,x,y∈N.上述不等式组的解集是可行域中的整点.运用画网格的方法,可得这个区域内的整点为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,2),(4,1),所以在至少各配一剂的情况下,共有8种不同的配制方法.答案:8二、解答题8.在约束条件⎩⎪⎨⎪⎧x≥0y≥0x+y≤sy+2x≤4下,当3≤s≤5时,求目标函数z=3x+2y的最大值的变化范围.解:如图,由⎩⎪⎨⎪⎧x+y=sy+2x=4,得⎩⎪⎨⎪⎧x=4-sy=2s-4,交点为B(4-s,2s-4),其他各交点分别为A(2,0),C(0,s),C′(0,4).(1)当3≤s<4时,可行域是四边形OABC,此时7≤z max<8;(2)当4≤s≤5时,可行域是△OAC′,此时z max=8.由(1),(2)可知目标函数z=3x+2y的最大值的变化范围是[7,8].9.一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?解:设水稻种x亩,花生种y亩,得到的利润为P,则由题意得⎩⎪⎨⎪⎧x+y≤2,240x+80y≤400,x≥0,y≥0.而利润P=(3×400-240)x+(5×100-80)y=960x+420y(目标函数),可行域如图所示,可联立⎩⎪⎨⎪⎧x+y=2,240x+80y=400,得交点B(1.5,0.5).故当x=1.5,y=0.5时,P max=960×1.5+420×0.5=1650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大.[高考水平训练]一、填空题1.某公司招收男职员x名,女职员y名,x和y需满足约束条件⎩⎪⎨⎪⎧5x-11y≥-222x+3y≥92x≤11,则z=10x+10y的最大值是________.解析:先画出满足约束条件的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧5x -11y =-22,2x =11,解得⎩⎪⎨⎪⎧x =5.5,y =4.5, 但x ∈N *,y ∈N *,结合图知当x =5,y =4时,z max =90. 答案:902.(2014·湖北省襄阳四中期中考试)若不等式组⎩⎪⎨⎪⎧x -y +5≥0y ≥a0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.解析:作出满足条件的可行域(如图),当y =a 过点A (0,5)时表示的平面区域为△ABC ;当5<a <7时表示的平面区域均为三角形.综上,5≤a <7.答案:5≤a <7 二、解答题3.某工厂生产甲、乙两种产品,已知生产甲种产品1 t ,需矿石4 t 、煤3 t ,生产乙种产品1 t ,需矿石5 t 、煤10 t ,每1 t 甲种产品的利润是7万元,每1 t 乙种产品的利润是12万元,工厂在生产这两种产品的计划中,要求消耗矿石不超过200 t ,煤不超过300 t ,问:甲、乙两种产品应各生产多少,能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 万元,则z =7x +12y ,且⎩⎪⎨⎪⎧4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0,作出不等式组所表示的平面区域,如图所示.由⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得P (20,24). ∴当x =20,y =24时,z 取得最大值.所以应生产甲种产品20 t ,乙种产品24 t ,能使利润总额达到最大.4.某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A 地10台、B 地8台.已知从甲地调运1台至A 地、B 地的运费分别为400元和800元,从乙地调运1台至A 地、B 地的运费分别为300元和500元.请你设计调运方案,使总运费不超过9 000元.解:设从甲地调x 台给A 地,则给B 地(12-x )台;从乙地调y 台给A 地,则给B 地(6-y )台.由题意得⎩⎪⎨⎪⎧x +y =10,400x +800(12-x )+300y +500(6-y )≤9 000,0≤x ≤12,0≤y ≤6,x ,y ∈N ,即⎩⎪⎨⎪⎧x +y =10,2x +y ≥18,0≤x ≤12,0≤y ≤6,x ,y ∈N .作出可行域如图所示.由图知,符合条件的x ,y 为⎩⎪⎨⎪⎧x =8,y =2或⎩⎪⎨⎪⎧x =9,y =1或⎩⎪⎨⎪⎧x =10,y =0.所以为使运费不超过9 000元,可有三种调运方案.方案1 从甲地调8台给A 地、4台给B 地;再从乙地调2台给A 地、4台给B 地. 方案2 从甲地调9台给A 地、3台给B 地;再从乙地调1台给A 地、5台给B 地. 方案3 从甲地调10台给A 地,2台给B 地,再从乙地调6台给B 地.。
第8课 简单的线性规划问题分层训练1.若⎪⎩⎪⎨⎧≥+≤≤222y x y x , 则目标函数Z=x+2y 的取值范围 ( )A. [2 , 6]B. [2 , 5]C. [3 , 6]D. [3 , 5] 2.目标函数Z=2x -y , 将其看成直线方程时, Z 的意义是 ( ) A.该直线的截距 B.该直线的纵截距 C.该直线纵截距的相反数 D.该直线的横截距3.△ABC 中, A(2 , 4) , B(-1 , 2) , C(1 ,0), 点P 在△ABC 内部及其边界上运动, 则W=y -x 的取值范围是 ( )A. [1 , 3]B. [-3 , 1]C. [-1 , 3]D. [-3 , -1] 考试热点 4.不等式组⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域的确面积为________5.约束条件⎪⎩⎪⎨⎧≥≥≤+≤=4,0621052y x y x y x , 所表示的区域中,整点其有________个.6.设变量,x y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩,则23z x y =+的最大值为7.若⎩⎨⎧≤-≤≤+≤4264y x y x , 则Z=2x+y 的最大值为___________ , 最小值为___________ . 8.写出不等式组⎩⎨⎧≤<-≤<-1111y x 所表示的平面区域内整点坐标.拓展延伸9.求Z=2x+y 的最大值和最小值, 其中x , y 满足约束条件⎪⎩⎪⎨⎧≤≤≥-+2202y x y x .。
典型例题
【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.
【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?
参考答案
例1:
【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.
【解】|x-1|+|y-1|≤2可化为
或或或
其平面区域如图:
∴面积S=×4×4=8
【点拨】画平面区域时作图要尽量准确,要注意边界.
例2:
【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.
【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么
z=252x+160y,
作出不等式组所表示的平面区域,即可行域,如图
作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.
观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.
此时,z=252x+160y取得最小值,即x=2,y=5时,
zmin=252×2+160×5=1304.
答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.
【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.。
例1、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一例2、某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg,其中动物饲料不能少于谷物饲料的51.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50000kg ,问饲料怎样混合,才使成本最低.解:设每周需用谷物饲料x kg ,动物饲料y kg ,每周总的饲料费用为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤≥≥+05000005135000y x xy y x ,而z =0.28x +0.9y 如下图所示,作出以上不等式组所表示的平面区域,即可行域.作一组平行直线0.28x +0.9y =t ,其中经过可行域内的点且和原点最近的直线,经过直线x +y =35000和直线x y 51=的交点)317500,387500(A ,即387500=x ,317500=y 时,饲料费用最低.所以,谷物饲料和动物饲料应按5:1的比例混合,此时成本最低.指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.(例3图) (例4图)例3、下表给出甲、乙、丙三种食物的维生素A 、B 的含量及成本:营养师想购这三种食物共10千克,使之所含维生素A 不少于4400单位,维生素B 不少于4800单位,问三种食物各购多少时,成本最低?最低成本是多少?解:设所购甲、乙两种食物分别为x 千克、y 千克,则丙种食物为(10-x -y )千克.x 、y 应满足线性条件为⎩⎨⎧≥--++≥--++4800)10(4002008004400)10(400600400y x y x y x y x ,化简得⎩⎨⎧≥-≥422y x y 作出可行域如上图中阴影部分目标函数为z =7x +6y +5(10-x -y )=2x +y +50,令m =2x +y ,作直线l :2x +y =0,则直线2x +y =m 经过可行域中A(3,2)时,m 最小,即m min =2⨯3+2=8,∴z min =m min +50=58答: 甲、乙、丙三种食物各购3千克、2千克、5千克时成本最低,最低成本为58元.指出:本题可以不用图解法来解,比如,由⎩⎨⎧≥-≥422y x y 得z =2x +y +50=(2x -y )+2y +50≥4+2⨯2+50=58,当且仅当y =2,x =3时取等号 总结:(1)设出决策变量,找出线性规划的约束条件和线性目标函数;(2)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).2.线性规划问题的一般数学模型是:已知⎪⎪⎩⎪⎪⎨⎧≤+++≤+++≤+++nm nm n n m m m m b x a x a x a b x a x a x a b x a x a x a 22112222212*********(这n 个式子中的“≤”也可以是“≥”或“=”号)其中a ij (i =1,2,…,n , j =1,2,…,m ),b i (i =1,2,…,n )都是常量,x j (j =1,2,…,m ) 是非负变量,求z =c 1x 1+c 2x 2+…+c m x m 的最大值或最小值,这里c j (j =1,2,…,m )是常量.(3)线性规划的理论和方法主要在以下两类问题中得到应用:一是在人力、物力资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.线性规划中整点最优解的求解策略在工程设计、经营管理等活动中,经常会碰到最优化决策的实际问题,而解决此类问题一般以线性规划为其重要的理论基础。
然而在实际问题中,最优解 (x,y) 通常要满足x,y ∈N ,这种最优解称为整点最优解,下面通过具体例子谈谈如何求整点最优解.1.平移找解法作出可行域后,先打网格,描出整点,然后平移直线l ,直线l 最先经过或最后经过的那个整点便是整点最优解.例1、某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?解:设生产圆桌x 只,生产衣柜y 个,利润总额为z 元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 而z =6x +10y .如图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l :6x +10y =0,即l :3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上点M,且与原点距离最大,此时z =6x +10y 取最大值。
解方程组⎩⎨⎧=+=+5628.008.07209.018.0y x y x ,得M 点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.点评:本题的最优点恰为直线0.18x +0.09y =72和0.08x +0.28y =56的交点M 。
例 2 有一批钢管,长度都是4000mm ,要截成500mm 和600mm 两种毛坯,且这两种毛坯按数量比不小于31配套,怎样截最合理? 解:设截500mm 的钢管x 根,600mm 的y 根,总数为z 根。
根据题意,得 ,目标函数为,作出如图所示的可行域内的整点,作一组平行直线x+y=t ,经过可行域内的点且和原点距离最远的直线为过B (8,0)的直线,这时x+y=8.由于x,y 为正整数,知(8,0)不是最优解。
显然要往下平移该直线,在可行域内找整点,使x+y=7,可知点(2,5),(3,4),(4,3),(5,2),(6,1)均为最优解.答:略.点评:本题与上题的不同之处在于,直线x+y=t 经过可行域内且和原点距离最远的点B (8,0)并不符合题意,此时必须往下平移该直线,在可行域内找整点,比如使x+y=7,从而求得最优解。
从这两例也可看到,平移找解法一般适用于其可行域是有限区域且整点个数又较少,但作图要求较高。
二、整点调整法先按“平移找解法”求出非整点最优解及最优值,再借助不定方程的知识调整最优值,最后筛选出整点最优解.例3.已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l ,1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C 坐标分别为153(,)84A ,(0,3)B -,7512(,)1919C -, 作一组平行线l :x y t +=平行于0l :0x y +=,当l 往0l 右上方移动时,t 随之增大,ABCx yO1l3l2l∴当l 过C 点时x y +最大为6319,但不是整数解,又由75019x <<知x 可取1,2,3,当1x=时,代入原不等式组得2y =-, ∴1x y +=-;当2x =时,得0y =或1-, ∴2x y +=或1;当3x=时,1y =-, ∴2x y +=,故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩.3.逐一检验法由于作图有时有误差,有时仅有图象不一定就能准确而迅速地找到最优解,此时可将若干个可能解逐一校验即可见分晓. 例4 一批长4000mm 的条形钢材,需要将其截成长分别为518mm 与698mm 的甲、乙两种毛坯,求钢材的最大利用率.解:设甲种毛坯截 x 根,乙种毛坯截 y 根,钢材的利用率为 P ,则①,目标函数为②,线性约束条件①表示的可行域是图中阴影部分的整点.②表示与直线518x+698y=4000平行的直线系。
所以使P 取得最大值的最优解是阴影内最靠近直线518x+698y=4000的整点坐标.如图看到(0,5),(1,4),(2,4),(3,3),(4,2),(5,2),(6,1),(7,0)都有可能是最优解,将它们的坐标逐一代入②进行校验,可知当x=5,y=2时,.答:当甲种毛坯截5根,乙种毛坯截2根,钢材的利用率最大,为99.65%. 解线性规划问题的关键步骤是在图(可行域)上完成的,所以作图时应尽可能精确,图上操作尽可能规范,但考虑到作图时必然会有误差,假如图上的最优点并不十分明显易辨时,不妨将几个有可能是最优点的坐标都求出来,然后逐一进行校验,以确定整点最优解.线性规划的实际应用 习题精选1.某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排这两种产品的生产,才能获得最大的利润.最大利润是多少?2.要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格小钢板的块数如下:每张钢板的面积,第一种为1m 2,第二种为2m 2,今需要A 、B 、C 三种规格的成品各12,15,17块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小.3.某人承揽一项业务,需做文字标牌2个,绘画标牌3个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小. 4.某蔬菜收购点租用车辆,将100吨新鲜黄瓜运往某市销售,可供租用的大卡车和农用车分别为10辆和20辆,若每辆卡车载重8吨,运费960元,每辆农用车载重2.5吨,运费360元,问两种车各租多少辆时,可全部运完黄瓜,且动费最低.并求出最低运费. 5.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72立方米,第二种有56立方米,假设生产每种产品都需要两种木料.生产一只圆桌需用第一种木料0.18立方米,第二种木料0.08立方米,可获利润60元,生产一个衣柜需用第一种木料0.09立方米,第二种0.28立方米,可获利润100元,木器厂在现有木料情况下,圆桌和衣柜应各生产多少,才能使所获利润最多.解答提示:1.设x,y分别为甲、乙两种柜的日产量,目标函数z=200x+240y,线性约束条件:作出可行域.z最大=200×4+240×8=2720答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.2.设需截第一种钢板x张,第二种钢板y张,所用钢板面积zm2.目标函数z=x+2y,线性约束条件:作出可行域.作一组平行直线x+2y=t.的整点中,点(4,8)使z取得最小值.答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小.3.设用甲种规格原料x张,乙种规格原料y张,所用原料的总面积是zm2,目标函数z=3x+2y,线性约束条件,作出可行域.作一组平等直线3x+2y=t.A不是整点,A不是最优解.在可行域内的整点中,点B(1,1)使z取得最小值. z最小=3×1+2×1=5,答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m2.4.设租用大卡车x辆,农用车y辆,最低运费为z元.z=960x+360y.线性约束条件是:作出可行域.作直线960x+360y=0.即8x+3y=0,向上平移至过点B(10,8)时,z=960x+360y取到最小值.z最小=960×10+360×8=12480答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元.5.设圆桌和衣柜的生产件数分别为x、y,所获利润为z,则z=6x+10y.作出可行域.即M(350,100).当直线6x+10y=0即3x+5y=0平移到经过点M(350,100)时,z=6x+10y最大。