线性规划的实际应用题解题步骤
- 格式:doc
- 大小:92.00 KB
- 文档页数:3
线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。
1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。
问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。
那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。
从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。
作出以上不等式组所表示的平面区域(图1),即可行域。
令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。
答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。
2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。
每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。
可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。
问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。
实际问题中的线性规划方法线性规划是数学中一种非常重要的优化方法,广泛应用于各个领域。
在实际问题中,线性规划方法可以很好地解决很多优化问题。
本文将会介绍线性规划方法在实际问题中的应用,例如网络流问题、供应链优化问题以及航空公司航班计划问题等。
一、网络流问题网络流问题是指在具有网络形式的问题中,求得网络中一些关键指标的最优解。
这些指标可能是物流方面的,也可能是通信方面的,甚至可能与能源、水资产有关。
这个问题的形式是一组由多个变量组成的线性方程组,并且这些方程组的决策变量通常用来描述网络的流量问题。
这里的问题是要求出网络中流量的最大值图。
在实际应用中,经常使用线性规划的方法来解决这种问题。
例如,在物流配送领域,我们可能需要在多个仓库和客户之间优化货物的运输路线。
当运输网络以“源点”(例如一个集散地或一个公路)开始,并以“汇点”(例如一家客户或一个仓库)结束时,通常需要考虑许多线性限制约束,例如运输成本、运输距离和货物数量等。
使用线性规划的方法,可以快速找到最小的总运输成本以及分配给每个节点的货物数量,从而提高物流的效率并降低成本。
二、供应链优化问题供应链优化问题通常可以看作是网络流问题的一个具体实例,它也可以使用线性规划的方法以最小化成本或最大化利润的方案来求解。
这个问题涉及到优化生产和分销的方案,从而最大限度地降低整个供应链的成本或提高利润。
这种问题通常包括许多限制条件,例如合理的货物存储、库存管理、运输和分销等。
线性规划的方法可以非常有效地解决这些问题,以实现最优化的运营方案。
例如,在某个制造公司中,我们可能需要考虑如何最小化原材料和物流成本,同时最大程度地利用现有的生产能力以及最大程度地满足客户要求。
这个问题涉及到许多因素,例如供应链的表现、货物的需求、生产规模等。
使用线性规划的方法,可以快速找到最佳的物流路线、最佳的生产数量以及最佳的库存管理方案等,从而提高供应链的效率。
三、航空公司航班计划问题航空公司航班计划问题是指在规定时间内,根据市场需要以及规定的飞行路线等因素,为航空公司确定一个最佳的航班计划。
线性规划常规解题方式
线性规划问题解题方法,首先画出可行域,也就是阴影部分的区域,怎么画,给出几个约束条件,一个一个直线方程的画,区域呢?x>那就是右侧,y<>
完成了一半了,接下来把那个目标函数就是z=什么什么的那个化成y=kx+b的形式,z前面是正的,那就最小值就是截距最小,如果是负的那就相反,就是和y轴交点。
确定向下移还是向上移,那条线一定要在那个阴影里,在端点取最值,联立然后把直线把交点解出来,最后把交点坐标带入z=什么什么的那个目标函数里就解出来了。
用白话说的,希望基础差些的也会算这个,。
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
解决线性规划问题的基本步骤
1)求线性目标函数的在约束条件下的最值问题的求解步骤是:
①作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l;
②平移——将l平行移动,以确定最优解所对应的点的位置;
③求值——解有关的方程组求出最优点的坐标,再代入目标函数,求出目标函数的最值
2)解决应用问题的基本步骤
1. 列举已知条件
2. 分别画出已知条件代表的直线或范围
3. 画出满足条件的区域
4.标出极值点
5理解目标函数的几何意义
6.求出目标函数的最值或范围。
线性规划通过线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决实际问题。
它能够帮助我们合理安排资源,最大化利益或最小化成本。
通过线性规划,我们可以得到一个最优的决策方案。
一、线性规划的基本概念和原理线性规划是一种在约束条件下求解线性目标函数的优化问题。
它的基本概念包括决策变量、目标函数和约束条件。
1. 决策变量: 在线性规划中,我们需要定义一些决策变量,它们代表着我们需要做出的决策或者选择的方案。
2. 目标函数: 目标函数是线性规划中需要优化的目标,可以是最大化利润、最小化成本等。
3. 约束条件: 约束条件是限制线性规划问题的条件,可以是资源的限制、技术要求等。
线性规划的原理是通过建立数学模型,将实际问题转化为数学问题,然后通过求解数学模型来得到最优解。
二、线性规划的应用领域线性规划在实际中有着广泛的应用领域,下面举几个例子来说明:1. 生产计划: 一家制造厂需要决定如何安排生产计划,以最大化利润。
线性规划可以帮助厂商确定每种产品的生产数量,以及每种产品所需要的资源和人力安排。
2. 运输调度: 一个物流公司需要决定如何合理地调度运输车辆,以最小化运输成本。
线性规划可以帮助物流公司确定各个仓库之间的物流路径和货物的运输量。
3. 资源分配: 一个学校需要决定如何合理地分配教职工和学生的资源,以最大化教育效益。
线性规划可以帮助学校确定教职工的安排和学生的班级编排。
三、线性规划的解决步骤解决线性规划问题一般需要以下几个步骤:1. 建立模型: 根据实际问题,将问题转化为线性规划模型,包括确定决策变量、目标函数和约束条件。
2. 求解方法: 使用线性规划方法,如单纯形法、对偶法等,求解线性规划模型,得到最优解。
3. 解释结果: 对最优解进行解释和分析,确定最优决策方案。
四、线性规划方法的优势和局限性线性规划方法有一定的优势和局限性。
1. 优势:线性规划方法是一种成熟、有效、可靠的数学方法,能够提供合理的决策方案。
线性规划问题的解法与应用线性规划是一种数学工具,被广泛应用于各个行业,例如生产、物流、财务等。
其基本思想是在各种限制条件下,求出某些目标的最优解,被称之为线性规划问题。
解决线性规划问题的方法有很多种,包括普通单纯性法、双纯性法、内点法等。
本文将简要介绍一些解决线性规划问题的方法,并探讨其应用。
一、普通单纯性法在解决线性规划问题时,大多数情况下会采用普通单纯性法。
普通单纯性法是通过对线性规划问题进行简化,来寻找一个最优解的算法。
具体而言,普通单纯性法是基于线性规划的一个关键特性实现的:也就是说,一个线性规划的可行解有一个凸的区域,而这个区域的顶点就是这个线性规划问题的最优解。
因此,普通单纯性法通过不断地沿着顶点移动来查找最优解。
普通单纯性法的优点在于算法复杂度较低,适用于许多简单的线性规划问题。
然而,由于它的原理,普通单纯性法可能会在特定情况下变得相当低效,因此我们将考虑其他方法。
二、双纯性法双纯性法是一种更复杂但最终更有效的线性规划解法。
与普通单纯性法不同的是,双纯性法以两个方法的组合方式来寻找最优解。
首先,与普通单纯性法一样,它通过着眼于最优解所在的多维坐标系的顶点来寻找最优解。
然后,它采用对迭代过程进行精细检查来确保它没有跨过最优解。
双纯性法比普通单纯性法更准确,因为它在每一步操作时都会重新确定一个可行解的凸区域,而不是只沿着现有凸区域的边界线来确定最优解。
尽管双纯性法比普通单纯性法更复杂,但在大多数情况下,它可以在更短的时间内发现最优解。
三、内点法相比之下,内点法是一种数学计算质量不错的算法,它不依赖于这个可行域的顶点。
相反,内点法使用了每个可行域内部的点,即“内点”,来寻找目标函数的最优解。
具体地说,它会构建一个搜索方向,然后在可行域的内部沿着这个方向探索最优解。
这个方法非常适用于那些具有较大维度和复杂约束条件的线性规划问题。
除此之外,值得一提的是,在线性规划的解决过程中,其中一个非常重要的问题是约束条件的表示。
数学线性规划解题技巧数学线性规划解题技巧_解数学线性规划技巧分享控制自己的情绪,保持冷静客观。
练习思维跳跃,拓展思维方式。
对已有知识进行组合和重组,寻找新的解决方法。
下面就让小编给大家带来数学线性规划解题技巧,希望大家喜欢!高数学线性规划解题技巧常用的途径有(一)、充分联想回忆基本知识和题型:按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:对于同一道数学题,常常可以不同的侧面、不同的角度去认识。
因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。
因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
数学线性规划解题实战运用所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。
一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件:在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
线性规划的实际应用题解题步骤
广东 王远征
在近几年的高考试卷中出现了求线性目标函数在线性约束条件下的最大(小)值应用题,本文以高考试题为例,介绍解题的模式和一般步骤.
一、线性规划问题的数学模型如下:
已知⎪⎪⎩⎪⎪⎨⎧≤++++≤++++≤++++n
m nm n n n m m m m b x a x a x a x a b x a x a x a x a b x a x a x a x a ΛΛΛΛΛ3322112232322212111313212111 (I ) 其中ij a ,i b 都是常数,i x 是非负变量. (n i ,,3,2,1Λ= m j ,,3,2,1Λ=).
求m m x c x c x c x c z ++++=Λ332211 的最大(小)值,其中i c 是常数.
我们将(I )称为线性约束条件,把m m x c x c x c x c z ++++=Λ332211称为目标函数.
二、解题的一般步骤:
1. 建模:在读懂题意的前提下,写出反映实际问题的线性约束条件和目标函数表达式;
2. 作出可行解、可行域:将线性约束条件中的每个不等式当作等式,在平面直角坐标
系中作出相应的直线,并确定原不等式所表示的半平面,然后作出所有半平面的交
集;
3. 作出目标函数的等值线;
4. 求出最优解:在可行域内,平移目标函数的等值线,从图中能判断实际问题的解的
情况,有唯一最优解,或无最优解,或有无穷最优解.
三、典型试题解析
例(07年高考山东)本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分
别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
解析:设公司在甲电视台和乙电视台做广告的时间分别为
元,由题意得3005002009000000.x y x y x y +⎧⎪+⎨⎪⎩
≤,≤,≥,≥
目标函数为30002000z x y =+. 二元一次不等式组等价于3005290000.x y x y x y +⎧⎪+⎨⎪⎩
≤,≤,≥,≥
作出二元一次不等式组所表示的平面区域,即可行域.
如图:
作直线:300020000l x y +=,
即320x y +=.
平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.
联立30052900.x y x y +=⎧⎨+=⎩,解得100200x y ==,.
∴点M 的坐标为(100200),. max 30002000700000z x y ∴=+=(元)
答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.
注意:根据不等式的基本性质对线性约束条件中的不等式进行化简,使得系数变小。
一般地,按照上述4个基本步骤来解答线性规划问题即可,解题的关键在于正确理解题意.在写线性约束条件时,要准确理解关键词“不超过”所对应的数学符号是“≤”,“不低于”所对应的数学符号是“≥”.如下试题供同学们巩固练习:
(07年高考四川)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目
2倍,且对每个项目的投资不能低于5万元,对项目甲每甲的投资不小于对项目乙投资的
3
投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确提前投资后,在两个项目上共可获得的最大利润为()
A.36万元
B.31.2万元
C.30.4万元
D.24万元
答案B
写于2008年9月,上传于2014-2-2。