北京市各区2012年(含07-11年中考试题)初三一模数学试卷按知识分类汇编——三角形
- 格式:doc
- 大小:438.50 KB
- 文档页数:3
(八)圆五年中考试题(07—11)(08北京)3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离(09北京)10.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为 BC上一点,若∠CEA=28,则∠ABD= °.(10北京)11.如图,AB 为⊙O 的直径,弦CD AB ⊥,垂足为点E ,连结OC ,若5OC =,8CD =,则AE = .(07北京)19. 已知:如图,A 是O 上一点,半径OC 的延长线与过点A 的直线交于B 点,OC BC =,12AC OB =. (1)求证:AB 是O 的切线;(2)若45ACD ∠=°,2OC =,求弦CD 的长.(08北京)19. 已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD∠=(1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.(09北京)20. 已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于点M,经过B,M 两点的⊙O 交BC 于点G,交AB 于点F,FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切; (2)当BC=4,cosC=13时,求⊙O 的半径. (10北京)20.已知:如图,在△ABC 中,D 是AB 边上一点,⊙O 过D B C 、、三点,290DOC ACD ∠=∠=︒.(1)求证:直线AC 是⊙O 的切线;(2)如果75ACB ∠=︒,⊙O 的半径为2,求BD 的长.OABCDA(11北京)20.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF CAB ∠=∠.(1)求证:直线BF 是⊙O 的切线; (2)若AB=5,sin CBF ∠=BC 和BF 的长. 12年一模试题(东城)6.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠C 等于A . 116°B . 64°C . 58°D . 32°(海淀)3. 如图, 点A 、B 、C 在⊙O 上, 若∠C =40︒, 则∠AOB 的度数为 A .20︒ B .40︒ C .80︒ D .100︒(朝阳)11.如图,CD 是⊙O 的直径,A 、B 是⊙O则∠ADC 的度数为.(房山)11.如图,在⊙O 中,半径O C ⊥弦AB 于点D,AB=34,AO=4, 则∠O =_____.(丰台)5。
顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。
北京东城区2011-2012年中考数学模拟试卷(满分:150分 时间:120分钟)一、选择题:(本大题共8小题。
每小题3分,共24分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将你认为正确的答案填涂在答题纸上)1.下列计算正确的是A .011303-⎛⎫⨯= ⎪⎝⎭B .x 5+x 5=x 10C .x 8÷x 2=x4D .(-a 3) 2=a 62.2009年1月9日,住房和城乡建设部部长在全国建设工作会议上透露,2008年全国住房公积金缴纳规模达到了2.02万亿元,请用科学记数法表示2.02万亿元应为A .2.02×1010元B .2.02×1011元C .2.02×1012元D .2.02×1013元3. 如图所示零件的左视图是4.不等式组31284x x ->⎧⎨-≥⎩的解集在数轴上表示为5.估计132128⨯+的运算结果应在A .3到4之间B .4到5之间C .5到6之间D .6到7之间6.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是 A .DA=DE B .BD=CEC .∠EAC=90°D .∠ABC=2∠E 7.如图,直线32y x =-与双曲线ky x=(k>0)在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则k 等于 A .233B .3C .2D .3第6题图 第7题图 第8题图8.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD 的面积是A .10B .16C .18D .20二、填空题:(本大题共10小题.每小题3分.共30分.把答案填在答题纸上)正面(第3题)A .B .C .D .9.函数y =3x -中,自变量x 的取值范围是 ▲ 10.因式分解:2a 3-8a = ▲ .11.已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是 ▲ .12.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为 ▲ .13已知实数a ,b 同时满足a 2+b 2-11=0,a 2-5b -5=0,则b = ▲ .14.一连串分数,共有6个,是按照一种简单规律排成的. 由于抄写的人笔头较慢,别人抄下来前3个,他只抄了前两个,把第3个空着;别人把后面3个也抄好了,他才抄了第4个和第5个,把第6个也空着. 请你帮他补上:120、110、 、15、14、.15.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是 ▲ . 16.如图,在平行四边形ABCD 中,DB=DC ,∠A=70°,CE ⊥BD 于E ,则∠BCE= ▲ °.17.如图,将矩形纸片ABCD 沿AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若AB=3cm ,则AE 的长为 ▲cm .18.如图,MN=3,以MN 为直径的⊙O 1,与一个半径为5的⊙O 2相切于点M ,正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点N ,则正方形ABCD 的边长为 ▲ .三、解答题:(本大题共10小题,共96分,解答应写出必要的计算过程、推演步骤或文字说明) 19.(本小题满分8分)计算20.(本小题满分8分) 请先将下式化简,再选择一个适当的无理数...代入求值. 21.(本小题满分8分)如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是一个格点三角形.(1)在△ABC 中,BC= ▲ ,tanB= ▲ ; (2)请在方格中画出一个格点三角形DEF ,使 △DEF ∽△ABC ,并且△DEF 与△ABC 的相似比为2.22.(本小题满分10分)已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平 分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E .求证:(1)△BFC ≌△DFC ;(2)AD=DE . 23.(本小题满分10分)36)21(60tan 1)2(100+-----πOFEDCB A“农民也能报销医疗费了!”这是国家推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款,这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.第23题图 根据以上信息,解答以下问题:(1)本次调查了 ▲ 名村民,被调查的村民中,有 ▲ 人参加合作医疗得到了返回款?(2)若该乡有10000名村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年平均增长率相同,求年平均增长率.24.(本小题满分10分)一个不透明的布袋内装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从布袋中随机地取出一个小球,则小球上所标的数字恰好为4的概率是 ▲ ;(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x ,不将取出的小球放回.........布袋,再随机地取出一个小球,记录小球上所标的数字为y ,这样就确定点P 的一个坐标为(x ,y),求点P 落在直线y=x+1上的概率;(3)从布袋中随机地取出一个小球,用小球上所标的数字作为十位上的数字,将取出小球放回.......布袋后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率. 25.(本小题满分10分)如图,AB 是半圆O 上的直径,E 是 ⌒BC的中点,OE 交弦BC 于点D ,过点C 作⊙O 切线交OE 的延长线于点F . 已知BC =8,DE=2.⑴求⊙O 的半径;⑵求CF 的长;⑶求tan∠BAD 的值26.(本小题满分10分)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩补贴数这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y (亩)与额x (元)之间大致满足如图1所示的一次函数关系.随着补贴数额x 的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z 与x 之间也大致满足如图2所示的一次函数关系. (1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)求政府补贴政策实施后,种植亩数y 、每亩蔬菜的收益z 分别与政府补贴数额x 之间的函数关系式; (3)要使全市种植这种蔬菜的总收益w (元)最大,政府应将每亩补贴数额x 定为多少?并求出总收益w 的最大值.27.(本小题满分10分)两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:图1x /元 50(第26题)1200 800y /亩O图2x /元1003000 2700z /元O(1)如图1,△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,四边形CDBF 面积为 ▲ ;(2)如图2,当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图3,△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sin ∠AED 的值.28.(本小题满分12分) 如图①,在平面直角坐标系中,已知△ABC 是等边三角形,点B 的坐标为(12,0),动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时间为t 秒.以点P 为顶点,作等边△PMN ,点M ,N 在x 轴上.(1)当t 为何值时,点M 与点O 重合.(2)求点P 坐标和等边△PMN 的边长(用t 的代数式表示).(3)如果取OB 的中点D ,以OD 为边在△AOB 内部作如图②所示的矩形ODEF ,点E 在线段AB 上.设等边△PMN和矩形ODEF 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.参考答案及评分标准说明:本评分标准每题只给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(每小题3分,共计24分) 题号 1 2 3 4 5 6 7 8 答案DCBCCBBD二、填空题(每小题3分,共计30分) 9.X ≤3 10.2a(a+2)(a-2)11.612.10% 13. 1 14.203,103 15.着 16.20 17.23 18. 6 三、解答题(本大题共10小题,共计96分) 19.(本题8分)解=1-|1-3|-2+23 (4分)=1+1-3-2+23 (7分) =3 (8分) 20.(本题8分)36)21(60tan 1)2(100+-----π(第28题)FCBA E O Dy xCBMNO A Pxy 图①图②21.(本题8分) (2)画图正确给4分23.(本题10分)24.(本题10分) 25.(本题10分) .⑴ r =5 (3分) ⑵ CF =203(3分) ⑶ tan ∠BAD =617(4分) 26.(本题10分)解:(1)政府没出台补贴政策前,这种蔬菜的收益额为30008002400000⨯=(元). ·················· 2分 (2)由题意可设y 与x 的函数关系为800y kx =+,将(501200),代入上式得120050800k =+, 得8k =,所以种植亩数与政府补贴的函数关系为8800y x =+. ········ 4分 同理可得,每亩蔬菜的收益与政府补贴的函数关系为33000z x =-+. · 5分 (3)由题意(8800)(33000)u yz x x ==+-+ ·············· 7分224(450)7260000x =--+. ··················· 8分所以当450x =,即政府每亩补贴450元时,全市的总收益额最大,最大值为7260000元. 10分注:本卷只在第26题中,学生若出现答题时未写单位或未答分别扣除1分. 27.(本题10分) 28.(本题12分)(1)如图①,点M 与点O 重合.∵△ABC 是等边三角形,∴∠ABO =30°,∠BAO =60°.由OB =12,∴AB =83,AO =43.BMNO A Pxy S Q (本题10分)(6分)∵△PON 是等边三角形,∴∠PON =60°.∴∠AOP =60°. ∴AO =2AP ,即43=23t .解得t =2.∴当t =2时,点M 与点O 重合. ………………4分 (2)如图②,过P 分别作PQ ⊥OA 于点Q ,PS ⊥OB 于点S .可求得AQ =12AP =32t ,PS =QO =43-32t .∴点P 坐标为(t 23,43-32t ). ………………6分 在Rt △PMS 中,sin60°=PSPM ,∴PM =(43-32t)÷32=8-t .………………8分(3)(Ⅰ)当0≤t ≤1时,见图③.设PN 交EF 于点G ,则重叠部分为直角梯形FONG , 作GH ⊥OB 于点H .∵∠GNH =60°,GH =23,∴HN =2. ∵MP =8-t ,∴BM =2MP =16-2t .∴OM =BM -OB =16-2t -12=4-2t . ∴ON =MN -OM =8-t -(4-2t )=4+t . ∴FG =OH =ON -HN =4+t -2=2+t . ∴S =12(2+t +4+t )×23=23t +63. ∵S 随t 的增大而增大,∴当t =1时,S 最大=83.…10分 (Ⅱ)当1<t ≤2时,见图④.设PM 交EF 于点I ,交FO 于点Q ,PN 交EF 于点G . 重叠部分为五边形OQIGN .OQ =43-23t ,FQ =23-(43-23t )= 23t -23, FI =33FQ =2t -2. ∴三角形QFP 的面积=12(23t -23)(2t -2)= 23(t 2-2t +1).由(Ⅰ)可知梯形OFGN 的面积=23t +63,∴S =23t +63-23(t 2-2t +1)=-23(t 2-3t -2). ∵-23<0,∴当t =32时,S 有最大值,S 最大=1732.图④CBM NO A P xy E F G I Q D 图③CBM N O A PxyH E F G D综上所述:当0≤t≤1时,S=23t+63;当1<t≤2时,S=-23t2+63t+43;∵1732>83,∴S的最大值是1732.……………………12分北京顺义区2011-2012中考数学全真模拟试题第Ⅰ卷 ( 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( )A .528510⨯B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4.我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )城市 北京 上海 重庆 杭州 苏州 广州 武汉 最高温度 (℃)2625 3129293131A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是 A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .2108.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).A .B .C .D .第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数1y x =-中,自变量x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°. 11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .AO B0.1625—32AOCBACE O BDF D三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:1012sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x-<⎧⎪⎨+-⎪⎩≥,15.(本小题满分5分)已知:如图,AB ∥DE ,∠A =∠D ,且BE =CF , 求证:∠ACB =∠F . 16.(本小题满分5分)先化简,再求值:2314223a a a a +-⎛⎫+÷⎪--⎝⎭,其中2410a a -+=.17.(本小题满分5分)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.求反比例函数与一次函数的解析式.四、解答题(共2道小题,共10分)18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交 于点F ,且CF =9,cos ∠BF A =32,求EF 的长. 五、解答题(本题满分5分)20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号);(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人.(注:图2中相邻两虚线形成的圆心角为30°) 六、解答题(共2道小题,共10分) 21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的A B C DE F心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷. 22.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长;(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由. 七、解答题(本题满分7分)23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F、不重合),并说明理由. 八、解答题(本题满分7分)24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF CD =.设矩形CDEF 与ABO △重叠部分的面积为S .(1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90,请直接..写出b 的取值范围. 九、解答题(本题满分8分) 25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A .B图2 A E 1CD 1OF 图1A B D F E C 图2 AB D EC F F图3 A B DC EO 1423CBD 'A 图2图1A D BCE二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12.2π. 三、解答题(共5道小题,共25分)13.解:1012sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭14.()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,②3212322=⨯+-+…………4分 解:解不等式①,得x >2; ····· 2分 33=-.………………………5分 解不等式②,得1x -≥; ···· 4分在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. ·· 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF , ·························································· 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , ································ 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . ···················································· 4分 ∴∠ACB =∠F . ············································································· 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ ····················································· 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+. ················································· 5分 17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分∴反比例函数的解析式为3y x =, ··················································· 2分∵点B (1)n -,在反比例函数3y x=的图象上,∴31n=-,∴3n =-, ································································ 3分 ∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上.∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩∴一次函数的解析式为2y x =+ ····················································· 5分四、解答题(共2个小题,共10分)18.解:设AD ’交BC 于O ,方法一:过点B 作BE ⊥AD ’于E , 矩形ABCD 中,∵AD ∥BC ,AD =BC , ∠B =∠D =∠BAD =90°, 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==,A C E O BD F ∴∠BAC =60°,∴∠DAC =90°—∠BAC =30°,……………………………2分 ∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD’=AD =BC =43,∠1=∠DAC =30°, ∴∠4=∠BAC —∠1=30°,又在Rt △ABE 中,∠AEB =90°,∴BE =2, ……………………………………4分 ∴AE =2223AB BE -=,∴D’E =AD’—AE =23,∴AE =D’E ,即BE 垂直平分AD’,∴BD ’=AB =4. ……………………………5分 方法二:矩形ABCD 中,∵AD ∥BC ,AD =BC ,∠B =∠D =90°,∴∠ACB =∠DAC , 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠ACB =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD =AD’=BC ,∠1=∠DAC =∠ACB =30°, ∴OA =OC ,∴OD ’=OB ,∴∠2=∠3,∵∠BOA =∠1+∠ACB =60°, ∠2+∠3=∠BOA , ∴∠2=12∠BOA =30°,…………………………………………………………4分 ∵∠4=∠BAC —∠1=30°,∴∠2=∠4,∴BD ’=AB =4. …………………5分19.(1)证明:联结BO ,……………………………1分 方法一:∵AB =AD ,∴∠D =∠ABD ,∵AB =AO ,∴∠ABO =∠AOB ,………………2分 又在△OBD 中,∠D +∠DOB +∠ABO +∠ABD =180°,∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ····························································· 3分方法二:∵AB =AO ,BO =AO ,∴AB =AO =BO ,∴△ABO 为等边三角形,∴∠BAO =∠ABO =60°, ∵AB =AD ,∴∠D =∠ABD ,又∠D +∠ABD =∠BAO =60°,∴∠ABD =30°, …………………2分 ∴∠OBD =∠ABD +∠ABO =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ……………………………………………………3分方法三:∵ AB =AD =AO ,∴点O 、B 、D 在以OD 为直径的⊙A 上 …………2分∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ……………………………………………………3分(2)解:∵∠C =∠E ,∠CAF =∠EBF ,∴△ACF ∽△BEF , …………………… 4分∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △BF A 中,cos ∠BF A =32=AF BF ,∴32==AF BF CF EF ,又∵CF =9,∴EF =6.…………………5分五、解答题(本题满分5分) 20.解:(1)③,……………………1分(2)图1补充完整, ……3分 (3)220. …………………5分六、解答题(共2个小题,共10分)21.解:设该厂原来每天加工x 顶帐篷,则工作效率提高后每天加工1.5x 顶帐篷. ···· 1分G B D C E FA 根据题意,得1500300150030041.5x x---=, ········································· 3分 解这个方程,得100x =, ··································································· 4分 经检验:100x =是原方程的解.答:该厂原来每天加工100顶帐篷. ······················································ 5分22.解:(1)如图1,由题意可知:∠BCE 1=15°,∵∠D 1CE 1=60°, ∴∠D 1CB =∠D 1CE 1—∠D 1CB =45°,又∠ACB =90°,∴∠ACD 1=∠ACB —∠D 1CB =45°. ·········· 1分(2)由(1)知,∠ACD 1=45°,又∠CAB =45°,∴∠AOD 1=∠CAB +∠ACD 1=45°∴OC ⊥AB , ∵∠BAC =45°,∠ABC =90°—∠BAC =45°, ∴∠ABC =∠BAC ,∴AC =BC ,∴OC =12AB =OA =3,∴OD 1=CD 1—OC =4, 在R t △AOD 1中,∠5=90°,AD 1=221OA OD +=5. ······················ 3分 (3)点B 在△D 2CE 2内部. ·································································· 4分 理由如下:设BC (或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在R t △PCE 2中,可求CP =212CE 2=722,在R t △ABC 中,可求BC =32,∵72322<,即BC <CP ,………5分 ∴点B 在△D 2CE 2内部.七、解答题(本题满分7分) 23.(1)①垂直,相等;………………………………………………………………………1分②当点D 在BC 的延长线上时①的结论仍成立.…………………………………2分 由正方形ADEF 得 AD =AF ,∠DAF =90º. ∵∠BAC =90º,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90º, AB =AC ,∴∠ABC =45º,∴∠ACF =45º,∴∠BCF =∠ACB +∠ACF =90º. 即 CF ⊥BD . ……………………………………………………………………5分(2)当∠ACB =45º时,CF ⊥BD (如图).……………………………………………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,则∠GAC =90º,∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …………………………………………………………7分八、解答题(本题满分7分)24. 解:(1)∵(40)C ,,(80)D ,,∴4CD =, B 图1A E 1C D 1O F图1B CA D E Fy x O G D E F C 图2A B yx O ∵矩形CDEF 中,12CF CD =,∴2CF DE ==, ∵点E 、F 在第一象限,∴(8)E ,2,(4)F ,2.………………………1分 (2)由题意,可知(2)A b ,0,(0)B b ,,在R t △ABO 中,ta n ∠BAO =12OA OB =, ①当0<b ≤2时,如图1,0S =.……………………………………………2分 ②当2<b ≤4时,如图2,设AB 交CF 于G ,24AC b =-, 在R t △AGC 中,∵ta n ∠BAO =12GC AC =,∴2CG b =-. ∴()()12422S b b =--,即244S b b =-+,……………………………4分 ③当4<b ≤6时,如图3,设AB 交EF 于G ,交ED 于H ,28AD b =-,在R t △ADH 中,∵ta n ∠BAO =12DH AD =,∴4DH b =-,6EH b =-,在矩形CDEF 中,∵CD ∥EF ,∴∠EGH =∠BAO , 在R t △EGH 中,∵ta n ∠EGH =12EH EG =,∴122EG b =-, ∴()()12412262S b b =⨯---,即21228S b b =-+-,……………5分④当b >6时,如图4,8S =.………………………………………………6分(3)0b <≤51+. ………………………………………………………7分九、解答题(本题满分8分)解:(1)解方程2230x x --=,得123x x ==-1,.………………1分∴点()0A -1,,点()0B 3,.∴()()221110213302b c b c ⎧-⨯-+⋅-+=⎪⎪⎨⎪-⨯+⋅+=⎪⎩解,得432b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为224233y x x =-++. ··········································· 2分 (2)∵抛物线与y 轴交于点C .∴点C 的坐标为(0,2).又点()0B 3,,可求直线BC 的解析式为223y x =-+. ∵AD ∥CB ,∴设直线AD 的解析式为23y x b '=-+. 又点()0A -1,,∴23b '=-,直线AD 的解析式为2233y x =--.解2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩,得211241,1003x x y y =⎧=-⎧⎪⎨⎨==-⎩⎪⎩,∴点D 的坐标为(4,103-). ······························································· 4分 过点D 作DD ’⊥x 轴于D ’, DD ’=103,则又AB =4.∴四边形ACBD 的面积S =12AB •OC +12AB •DD ’=2103·························· 5分(3)假设存在满足条件的点R ,设直线l 交y 轴于点E (0,m ),∵点P 不与点A 、C 重合,∴0< m <2,∵点()0A -1,,点()0,2C ,∴可求直线AC 的解析式为22y x =+,∴点112P m m ⎛⎫-⎪⎝⎭,. ∵直线BC 的解析式为223y x =-+,∴点332Q m m ⎛⎫-+ ⎪⎝⎭,. ∴24PQ m =-+.在△PQR 中,①当RQ 为底时,过点P 作PR 1⊥x 轴于点R 1,则∠R 1PQ =90°,PQ =PR 1=m . ∴24m m -+=,解得43m =,∴点1433P ⎛⎫- ⎪⎝⎭,, ∴点R 1坐标为(13-,0). ······························································· 6分 ②当RP 为底时,过点Q 作Q R 2⊥x 轴于点R 2, 同理可求,点R 2坐标为(1,0). ······················································· 7分③当PQ 为底时,取PQ 中点S ,过S 作SR 3⊥PQ 交x 轴于点R 3,则PR 3=QR 3,∠PR 3Q =90°.∴PQ =2R 3S =2m .∴242m m -+=,解,得1m =,∴点112P ⎛⎫- ⎪⎝⎭,,点312Q ⎛⎫ ⎪⎝⎭,,可求点R 3坐标为(12,0). …………………8分 经检验,点R 1,点R 2,点R 3都满足条件.综上所述,存在满足条件的点R ,它们分别是R 1(13-,0),R 2(1,0)和点R 3(12,0).FEDC BA北京昌平区2011-2012年中考数学模拟题一、选择题(共8道小题,每小题4分,共32分)1.3-的倒数是 A . 3-B .3C .13-D .132.第29届北京奥运会火炬接力活动历时130天,传递行程约为137 000km .用科学记数法表示137 000是 A .1.37×105 B .13.7×104 C .1.37×104 D .1.37×103 3. 已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是 ( )A .外离B .外切C .内切D .相交4. 某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众” .小明给此直播节目发了一条短信,他成为“幸运观众”的概率是 A .15000 B .1500 C .150D .1105.如图,AB ∥CD ,BE 交CD 于点F ,∠B=45°,∠E=21°则的∠D 为A. 21°B. 24°C. 45°D. 66° 6. 如图所示圆柱的左视图是( ).A .B .C .D .7.某居民小区开展节约用水活动,对该小区200户家庭用水情况统计分析,3月份比2月份节约用水情况如下表所示:节水量(立方米) 1 1.5 2 户数2012060则3月份平均每户节水量为A. 1.5立方米B. 2 立方米C. 1.8立方米D. 1.6立方米 8. 如图, A 、B 、C 、D 为O 的四等分点,动点P 从圆心O 出发,沿O C D O --- 路线作匀速运动,设运动时间为t (秒),∠APB=y (度),则下列图象中表示y 与t 之间函数 关系最恰当的是二、填空题(共4道小题,每小题4分,共16分)第8题图AB C DOP B .ty 045 90 D .t y 045 90 A .ty45 90 C .ty 045 90OE D CBA9.若分式11x x -+的值为0,则x 的值为 . 10.分解因式:2m n n -= _______ .11.如图,在△AOB 中,∠AOB=90,OA=OB=22,以点O 为圆心的圆与AB相切于点C ,则图中阴影部分的面积是______________.12.填在下面三个田字格内的数有相同的规律,根据此规律,请填出图4中的数字.图1 图2 图3 图4三、解答题(共5道小题,共25分)13.(本小题满分5分)计算 : 101122sin 60()(3.14)5π-+-+-.14.(本小题满分5分)解不等式:7-3x < 2(x -4),并把解集在数轴上表示出来. 15.(本小题满分5分)解方程组: 33,24x y x y -=⎧⎨-=-⎩16.(本小题满分5分)已知:如图,A B ⊥BE 于点B ,DE ⊥BE 于点E ,F 、C 在BE 上,AC 、DF 相交于点G ,且AB =DE ,BF =CE .求证: GF =GC . 17.(本小题满分5分) 先化简, 再求值:222621·4432x x x x x x x +---++-, 其中2x =-. 四、解答题(共2道小题,共10分)18.(本小题满分5分)已知:如图,在直角梯形ABCD 中,AD BC ∥,90A ∠=,10BC CD ==,4sin 5C =. ⑴ 求直角梯形ABCD 的面积;⑵ 点E 是BC 边上一点,过点E 作EF ⊥DC 于点F. 求证AB CE EF CD ⋅=⋅. 19.(本小题满分5分)已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A . (1)求证: BC 是⊙O 的切线;(2)若OC ∥AD ,OC 交BD 于E,BD=6,CE=4,求AD 的长.ADCFBE 第18题图 C BA OFEDCB A 五、列方程(组)解应用题(本小题满6分)20. 在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电,该地供电局组织电工进行抢修。
2012年通州区初三年级第一次统一练习数 学 试 卷一、选择题(每题只有一个正确答案,共8个小题,每小题4分,共32分)1.2-的绝对值是( )A .2± B .2 C .12 D .12-2.北京交通一卡通已经覆盖了全市的地面公交、轨道交通和部分出租车及停车场.据北京市交通委透露,北京市政交通一卡通卡发卡量目前已经超过280 000 000张,用科学记数法表示280 000 000正确是( )A .2.8×107 B .2.8×108 C .2.8×109 D .0.28×10103.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,9,10,10,8,8,这组数据的众数与中位数分别为( ) A .9与8B .8与9C .8与8.5D .8.5与94.某地区准备修建一座高AB =6m 的过街天桥,已知天 桥的坡面AC 与地面BC 的夹角∠ACB 的余弦值为45,则坡面AC 的长度为( )A .8 B .9 C .10D .125.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是( ) A .甲队率先到达终点 B .甲队比乙队多走了200米路程 C .乙队比甲队少用0.2分钟D .比赛中两队从出发到2.2秒时间段, 乙队的速度比甲队的速度快6.一只蚂蚁要在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是( ) A .12 B .13 C .14 D .167.如图,BD 是⊙O 的弦,点C 在BD 上,以BC 为边作等边三角形△ABC ,点A 在圆内,且AC 恰好经过点O ,其中BC =12,OA =8,则BD 的长为( )A .20B .19C .18D .168.如图,在平行四边形ABCD 中,AC = 4,BD = 6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E ,F .设BP=x ,EF=y ,则能大致反映y 与x 之间关系的图象为( )A B CDD CBAODECBA二、填空题(共4道小题,每题4分,共16分)9.分解因式:24ax a -= . 10.若分式224x x -+的值为0,则x 的值为 .11.已知一圆锥的底面半径是1,母线长是4,则圆锥侧面展开图的面积是 .12.已知如图,△ABC 和△DCE 都是等边三角形,若△ABC 的边长为1,则△BAE 的面积是 .四边形ABCD 和四边形BEFG 都是正方形,若正方形ABCD 的边长为4,则△F AC 的面积是 . ……如果两个正多边形ABCDE …和BPKGY …是正n (n ≥3)边形,正多边形ABCDE …的边长是2a ,则△KCA 的面积是 .(结果用含有a 、n 的代数式表示)三、解答题:(13题-16题每题5分,共20分)13.计算:()20112sin 45 3.14832π---︒+-+⎛⎫⎪⎝⎭.14.解不等式组251345x x +>-⎧⎨⎩≤,并写出它的整数解.15.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BAC DAE ∠=∠,求证:△ABD ≌△ACE .16.已知0132=++a a ,求4)(2)12(22+--+a a a 的值.四、解答题:(共6道小题,每题5分,共30分)17.2012年3月30日,对于北京球迷来说是一个美妙的夜晚:在篮球比赛中,北京篮球队战胜了广东篮球队,最终夺得了男篮总冠军;在足球比赛中,北京国安队战胜了天津泰达队.据统计两场比赛大约共有60000人到达现场观看比赛,其中观看足球比赛的人数比观看篮球比赛的人数的2倍还多6000人,求观看篮球和足球比赛的观众大约各有多少人?18.已知如图,在△ABC 中,AB =AC ,∠ABC =α,将△ABC 以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE , 点B 、A 、E 恰好在同一条直线上,连结CE .(1)则四边形DBCE 是_______形(填写:平行四边形、矩形、菱形、正方形、梯形) (2)若AB =AC =1,BC =3,请你求出四边形DBCE 的面积.EBACDP HGA E D C E FA B D C ABE D C G B F调查统计表 050 100 150 200 250 300 不了解 了解很少 基本了解 了解学生人数了解情况我区初三学生对中考电视讲座随机抽样19.如图,一次函数1y k x b =+的图象与反比例函数2k y x=(0)x > 的图象交于()1,3A ,(3,)B a 两点. (1)求12k k 、的值; (2)求△ABO 的面积.20.如图,在△ABC 中,AB =AC ,以AB 边的中点O 为圆心,线段OA 的长为半径作圆,分别交BC 、AC 边于点D 、E ,DF ⊥AC 于点F ,延长FD 交AB 延长线于点G .(1)求证:FD 是⊙O 的切线.(2)若BC =AD =4,求tan GDB ∠的值.21.为了使初三学生在中考中取得好成绩,我区组织了初三中考复习电视讲座,并且就初三学生对中考复习电视讲座了解程度随机抽取....了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据统计图中所提供的信息解答下列问题:(1)我区参加随机抽取....问卷调查的学生有________名; (2)补全条形统计图;(3)我区今年初三有近5000名初三学生,请你根据调查的数据计算一下,我区大约有多少名初三学生对中考电视讲座达到基本了解以上(含基本了解)程度?(4)为了让更多的学生更好的了解该讲座,使中考复习电视讲座发挥其应有的作用,我区举办了两期专栏宣传之后又进行了一次调查,结果发现每期专栏宣传使学生达到基本了解程度以上(含基本了解)的平均增长率是50%,请你求出两期专栏宣传之后学生对此电视讲座达到基本了解以上程度(含基本了解)的人数.GFEDC BAO我区初三学生对中考电视讲座了解情况随机抽样调查统计了解很少50%基本了解30%22.小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l 的同侧有A 、B 两点,请你在直线l 上确定一点P ,使得P A+PB 的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A 关于直线l 的对称点A′.②连结A′B ,交直线l 于点P . 则点P 为所求.请你参考小明的作法解决下列问题:(1)如图1,在△ABC 中,点D 、E 分别是AB 、AC 边的中点,BC =6,BC 边上的高为4,请你在BC 边上确定一点P ,使得△PDE 的周长最小.①在图1中作出点P .(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出△PDE 周长的最小值 . (2)如图2在矩形ABCD 中,AB =4,BC =6,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且EF =1,当四边形CGEF 的周长最小时,请你在图2中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF 周长的最小值 .五、解答题(共3道小题,23、24题每题7分,25题8分,共22分) 23.已知二次函数2248y x ax a =-+-+(1)求证:无论a 为任何实数,二次函数的图象与x 轴总有两个交点. (2)当x ≥2时,函数值y 随x 的增大而减小,求a 的取值范围. (3)以二次函数2248y x ax a =-+-+图象的顶点A 为一个顶点作该二次函数图象的内接正三角形AMN (M ,N 两点在二次函数的图象上),请问:△AMN 的面积是与a 无关的定值吗?若是,请求出这个定值;若不是,请说明理由.lA BlP ABA'图1EDA B CA B D CG图1 图2 O xy24.已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD =2.(1)求a的值.(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.(3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.25.已知四边形ABCD,点E是射线BC上的一个动点(点E不与B、C两点重合),线段BE的垂直平分线交射线AC于点P,联结DP,PE.(1)若四边形ABCD是正方形,猜想PD与PE的关系,并证明你的结论.(2)若四边形ABCD是矩形,(1)中的PD与PE的关系还成立吗?(填:成立或不成立).(3)若四边形ABCD是矩形,AB=6,cos∠ACD=35,设AP=x,△PCE的面积为y,当AP>12AC时,求y与x之间的函数关系式.B CA DA DB C12年初三数学中考模拟试卷答案2012.5一、选择题:(每题4分,共32分)1. B2. B3. C4. C.5. C6. B.7. A.8. A 二、填空题:(每题4分,共16分)9.)12)(12(+-x x a ;10. 2.; 11.π4;12.43,8,n a ︒360sin 22或(n n n n a )2(90cos )2(90sin 42-︒⨯-︒⋅)三、解答题:(每题5分,4道小题,共20分)13.解:()82114.345sin 23102+-+︒-⎪⎭⎫ ⎝⎛--π 原式= 2129++- ..... ............................................................(4分)= 10 .................................................................(5分) 14. 解:解不等式152>+x得:2->x ;…………………………………………………..(2分) 解不等式543≤-x得:3≤x ……………………………………………………….(4分) ∴32≤<-x ,∴满足不等式组的整数解为1-,0,1,2,3.................................................................(5分)15. 解:D AE B A C ∠=∠..........................................................................(3分) ∴D A B EAC ∠=∠ .....................................................................(4分)在AEC ∆和ADB ∆中⎪⎩⎪⎨⎧=∠=∠=AC AB EAC DAB AE AD∴AEC ∆≌ADB ∆(SAS ) .............................................................(5分)16.解:4)(2)12(22+--+a a a42214422++-++=a a a a ................................................(1分)5622++=a a .....................................................(2分) ()5322++=a a .....................................................(3分)EB ACD0132=++a a∴132-=+a a.....................................................(4分)∴原式=3 .....................................................(5分)四、解答题:(每题5分,5道小题,共25分)17.解:设现场观看篮球比赛的观众大约有x 人,现场观看足球比赛的观众大约有y人, ........... (1分)根据题意得: ⎩⎨⎧=-=+6000260000x y y x ....................................................(3分)解得:⎩⎨⎧==4200018000y x ..........................................(4分)答:现场观看篮球比赛的观众大约有18000人,现场观看足球比赛的观众大约有42000人......................(5分)18. (1)是 梯 形..............................................(1分) (2)过点A 做BC AF ⊥于点F ,过点D 做BC DH ⊥于点H ..............................................(2分) AC AB = =1 23==∴FC BF ∴23c o s =α ︒=∠30ABC ,︒=∠∴60DBC ..............................................(3分)将ABC ∆以点B 为旋转中心逆时针旋转α度角(︒<<︒900α),得到BDE ∆ A B C ∆∴≌DBE ∆ 1==∴DE BD23s i n=⋅∠=∴BD DBH DH ..............................................(4分) DBCE 梯形S ∴43323)3(121+=+=..............................................(5分)FH D EBCA19. 解: (1) 反比例函数2k y x=(0)x >的图象过()3,1A ),3(a B 两点. 3312=⨯=∴k ,133==a ..............................................(1分) ∴)1,3(B ......................... ..................(2分) 一次函数b x k y +=1的图象过()3,1A ,)1,3(B 两点梯形S ∴⎩⎨⎧=+=+13311b k b k 解得:4,11=-=b k ..............................................(3分) (2)设一次函数4+-=x y 与y 轴交于C 点则C 点坐标为)4,0( ..............................................(4分)63421=⨯⨯=∴∆BOC S , 21421=⨯⨯=∴∆AOCS 426=-=-=∴∆∆∆AO C BO C ABO S S S ..............................................(5分)20.证明:(1)连接OD ..............................................(1分)AC AB =ABC C ∠=∠∴ OD OB =ABC ODB ∠=∠∴ODB C ∠=∠∴ ..............................................(2分) AC OD //∴ AC DF ⊥OD DF ⊥∴于点D∴FD 是O ⊙的切线. ..............................................(3分) (2)AB 为⊙O 的直径 BC AD ⊥∴AC AB =,4==AD BC 2==∴BD CD21tan =∠∴CAD ..............................................(4分) OD DF ⊥ ,BC AD ⊥︒=∠+∠=∠+∠∴90C CDF C CAD CAD CDF ∠=∠∴CAD CDF GDB ∠=∠=∠21tan =∠∴GDB ..............................................(5分)CGFEDC BAO21.解: (1)全区参加随机抽取问卷调查的学生有_500__名;.........(1分)(2)补全条形统计图;.. .........................................(3分)(3)我区有近5000名初三学生,那么有2000名学生对中考复习电视讲座达到基本了解以上(含基本了解)程度. ..................................(4分)(4)通过两期专栏宣传后,全区初三学生对中考复习电视讲座达到基本了解以上(含基本了解)程度有:4500%)501(20002=+人 ...........................(5分)22. 解:(1) 8=∆PDE C .............................................(1分).............................................(2分)(2)如图,作G 关于AB 的对称点M , 在CD 上截取CH =1,然后连接HM 交AB 于E , 接着在EB 上截取EF =1,那么E 、F 两点即可满足使四边形CGEF 的周长最小.∴GEFC 四边形C =GE +EF +FC +CG =6+310.............................................(3分) .............................................(5分)23. 解:(1) 16)2(43216422+-=+-=∆a a a无论a 为何实数16)2(42+-=∆a 0> …………………………(1分) ∴抛物线与x 轴总有两个交点……………………………………(2分)P D'D EAB C 图2F E MGCDA BH 我区初三学生对中考电视讲座随机抽样调查统计表050100150200250300不了解了解很少基本了解了解了解情况学生人数(2)8422+-+-=a ax x y84)(22+-+--=a a a x y ……………………………………(3分) ∴由题意得,2≤a (只写<或=其一,不给分) ……………(4分) (3)解法一:以二次函数8422+-+-=a ax x y 图象的顶点A 为一个顶点作该二次函数图象的内接正三角形AMN (M ,N 两点在二次函数的图象上), 这个正三角形的面积只与二次函数图形的开口大小有关。
2012年北京各城区一模试题汇编第8题汇总:1.(12海淀一模)2.(12西城一模)对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6- C.2,6 D .2-,63.(12丰台一模)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .E PC’A DBCA 、CA第8题图D7.(12延庆一模) 将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG8.(12房山一模) 如图,梯形ABCD 中,AB ∥CD ,∠A =30°,∠B =60°,AD =32,CD =2,点P 是线段AB 上一个动点,过点P 作PQ ⊥AB 于P ,交其它边于Q ,设BP 为x ,△BPQ 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ).xy 6312O xy 6312O A Bxy 6312O xy 6312O C D9.(12密云一模)在正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A 面上画有粗线,那么将 图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是10.(12通州一模)如图,在平行四边形ABCD中,AC = 4,BD = 6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.设BP=x,EF=y,则能大致反映y与x之间关系的图象为()A B C D11.(12顺义一模)12.(12东城一模)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是A B C D13.(12朝阳一模)已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是 A .a x < B .b x > C .b x a << D .a x <或b x >第12题汇总:1.(12海淀一模)2.(12西城一模)如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .3.(12丰台一模)在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .ADCB4.(12石景山一模)一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .5.(12昌平一模)己知□ABCD 中,AD =6,点E 在直线AD 上,且DE =3,连结BE 与对角线AC 相交于点M ,则MCAM= .6.(12平谷一模)abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是_____________;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且2993abcd abc ab a ---=那么,这个四位数是_____________.7.(12延庆一模) 将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是111122663263323第1排第2排第3排第4排第5排8.(12房山一模)如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC = 8,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直作下去,得到了一组线段CA 1,A 1C 1,C 1A 2,A 2C 2,…,A n C n ,则A 1C 1= ,A n C n = .9.(12密云一模)在∠A (0°<∠A <90°)的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n (n 为正整数),如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = (用含n 的式子表示).10.(12通州一模)已知如图,△ABC 和△DCE 都是等边三角形,若△ABC 的边长为1,则△BAE 的面积是 .四边形ABCD 和四边形BEFG 都是正方形,若正方形ABCD 的边长为4,则△FAC 的面积是 .……如果两个正多边形ABCDE …和BPKGY …是正n (n ≥3)边形,正多边形ABCDE …的边长是2a ,则△KCA 的面积是 .(结果用含有a 、n 的代数式表示)ABCA 1A 2A 3A 4A 5 C 1 23 4 5 12题图第12题图E11.(12顺义一模)12.(12东城一模) 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .13.(12朝阳一模)如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数).第22题汇总: 1.(12海淀一模)A2.(12西城一模)阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为;(2) 如图3,若在正六边形ABCDEF内有一点P,且P A=132,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1 图3CB A D3.(12丰台一模) 将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼 成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4),矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则所有满足条件的k 的值为 .图1 图2 图3图4 备用P E FDAPE FD A4.(12石景山一模)生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中.(1)将,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示).5.(12昌平一模) 问题探究:(1)如图1,在边长为3的正方形ABCD 内(含边)画出使∠BPC =90°的一个点P ,保留作图痕迹;(2)如图2,在边长为3的正方形ABCD 内(含边)画出使∠BPC =60°的所有的点P ,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD ,AB =3,BC =4,在矩形ABCD 内(含边)画出使∠BPC =60°,且使△BPC 的面积最大的所有点P ,保留作图痕迹.图① 图② 图③图3图2图1A DCBABCDD CBA图1图26.(12平谷一模)如图①,在矩形ABCD 中,将矩形折叠,使点B 落在AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F .然后再展开铺平,则以B E F 、、为顶点的BEF △称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕BEF △”一定是一个________三角形;(2)如图②,在矩形ABCD 中,24AB BC ==,,当它的“折痕BEF △”的顶点E 位于边AD 的中点时,画出这个“折痕BEF △”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,24AB BC ==,.当点F 在OC 上时,在图③中画出该矩形中面积最大的“折痕BEF △”,并直接写出这个最大面积.7.(12延庆一模)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC 中,AD ⊥BC ,BD=4,DC=6,且∠BAC=45°,求线段AD 的长.图3小红是这样想的:作△ABC 的外接圆⊙O ,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O 点作OE ⊥BC 于E ,作OF ⊥AD 于F ,在Rt △BOC 中可以求出⊙O 半径及 OE ,在Rt △AOF 中可以求出AF,最后利用AD=AF+DF 得以解决此题。
平谷区2011~2012学年度第二学期初三第一次统一考试 数 学 试 卷 (120分钟)2012.5一、选择题(本题共8个小题,每小题4分,共32分)在下列各题的四个备选答案中,只有一个是正确的. 1.2-的相反数是 A.2B.2-C.21 D .21-2.2010年上半年,平谷区旅游发展状况良好,全区住宿业收入约为 95 200 000元,将95 200 000用科学记数法表示为A .80.95210⨯ B.79.5210⨯ C .695.210⨯ D .595210⨯ 3.如右图,1120280CD AB ∠=︒∠=︒∥,,,则E ∠的度数为 A .120° B.80° C .60° D .40° 4.将右面这四张卡片正面朝下混在一起,从中任意选取一张,这张卡片上的数字是3的概率是A .23 B .12 C .13 D .145.如图,已知点E F 、分别是ABC △中AC AB 、边的中点, BE CF 、相交于点G ,2FG =,则CG 的长为A .2B .3C .4D .5 6. 下列分解因式正确的是A .2244(4)a a a ++=+ B .()24222a b a b -+=-C .()22211a a a -+=- D .()2242a a -=-7. 某中学初三(1)班对本班甲、乙两名学生10次数学测验的成绩进行统计,得到两组数据,其方差分别为220.0020.03ss ==乙甲、,则下列判断正确的是A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙的成绩一样稳定D .无法确定哪一名同学的成绩更稳定8.如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是AFECBGBAFCDE二、填空题(本题共16分,每小题4分) 9.函数14y x =-中自变量x 的取值范围是 . 10.如图,AB 是O ⊙的直径,弦DC 与AB 相交于点E ,若50ACD ∠=°,则DAB ∠=_____________.1.把代数式225x x --配方,化为2()x h k -+的形式,则h k -= .12.abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是_____________;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且 2993abcd abc ab a ---=那么,这个四位数是_____________.三、解答题(本题共30分,每小题5分)13.()︒-+--⎪⎭⎫ ⎝⎛-60sin 21220125101.14.求满足不等式组63213x x x -≥⎧⎪+⎨->-⎪⎩0,.的整数解. 15.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB DE =,BC EF ∥, 求证:AC =DF .16.先化简,再求值:21()(9)33x x x x -⋅-+-,其中x 满足2480.x x --= 17.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A财政补贴351元,又知B 型洗衣机售价比A (1)A 型洗衣机和B 型洗衣机的售价各是多少元?(218.如图,点C (1,0)是x 轴上一点,直线PC 交于点P ,且∠PCB =30°,PC 的垂直平分线交x BC =4,(1)求双曲线和直线PC 的解析式;(2)设'P 点是直线PC 上一点,且点'P 与点P 关于点四、解答题(本题共20分,第小题5分)19.如图,直角梯形纸片ABCD 中,AD BC ∥,90A ∠=°,30C ∠=°.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且8BF CF ==.(1)求BDF ∠的度数; (2)求AB 的长.20.如图,O ⊙的直径AB 与弦CD (不是直径)相交于点E , 且CE DE =,过点B 作CD 的平行线交AD 延长线于点F . (1)求证:BF 是O ⊙的切线;(2)连结BC ,若O ⊙的半径为4,3sin 4BCD ∠=,求CD 的长.21.根据北京市统计局2012年2相关数据,绘制统计图如下:请你根据以上信息解答下列问题:(1)我市海关进出口总额年增长最多的是 年; (2)求2006-2010年北京地区海关进出口总额的年平均增长率;(3)求我市2010年进口总额是多少亿美元(结果保留整数),并补全条形统计图. 22.如图①,在矩形ABCD 中,将矩形折叠,使点B 落在AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F .然后再展开铺平,则以B E F 、、为顶点的BEF △称为矩形ABCD 的“折痕三角形”.图 1图 2(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕BEF △”一定是一个________三角形;(2)如图②,在矩形ABCD 中,24AB BC ==,,当它的“折痕BEF △”的顶点E 位于边AD 的中点时,画出这个“折痕BEF △”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,24AB BC ==,.当点F 在OC 上时,在图③中画出该矩形中面积最大的“折痕BEF △”,并直接写出这个最大面积.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--,这两个二次函数图象中的一条..与x 轴交于A 、B 两个不同的点. (1)试判断哪个二次函数的图象经过A 、B 两点(写出判断过程); (2)若A 点坐标为(1-,0),求点B 的坐标;(3)在(2)的条件下,设点C 是抛物线上的一点,且△ABC 的面积为10,直接写出点C的坐标24.如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O . (1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且 ∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系, 并证明.25.已知抛物线2142y x bx =-++上有不同的两点E 2(3,1)k k +-+和F 2(1,1)k k ---+(2k ≠-). (1)求抛物线的解析式. (2)如图,抛物线2142y x bx =-++与x 轴和y 轴的正 半轴分别交于点A 和B ,M 为AB 的中点,∠PMQ 在AB 的 同侧以M 为中心旋转,且∠PMQ =45°,MP 交y 轴于点C , MQ 交x 轴于点D .设AD 的长为m (m >0),BC 的长为n , 求n 和m 之间的函数关系式.(3)当m ,n 为何值时,∠PMQ 的边过点F .BAFCDE平谷区2011~2012学年度第二学期初三第一次统一考试 数学试卷参考答案及评分参考 2012.5一、选择题(本题共8个小题,每小题4分,共32分)二、填空题(本题共16分,每小题4分)13.解:原式=2323215⨯-+-……………………………………………………….4分 =34+………………………….…………………………………………5分14. 630213x x x -≥⎧⎪+⎨->-⎪⎩, . 解: 解不等式①,得x ……………………………………………………….1 分解不等式②,得 12x >-.………………………………...………………………………. 2分 ∴ 这个不等式组的解集为 122x -<≤. ………………………...………………………4分∴ 这个不等式组的整数解为0,1,2. ……………………….....………………………5分 15.证明:∵ BC ∥EF ,∴ACB DFE =∠∠..............................................................2分 在ABC △和DEF ∆中,AB DE A D ACB DFE =⎧⎪∠=∠⎨⎪∠=∠⎩,,, ......................................................3分 ABC DEF ∴△≌△. ···················································································· 4分 AC DF ∴=. ······························································································ 5分 16. 解:原式=(133x x x -+-)(x +3)(x -3) ...............................................................................1分 =x (x -3)-(x +3) ..................................................................................................2分 =x 2-3x -x -3 =x 2-4x -3 ...............................................................................................................3分∵ 2248048x x x x --=∴-=,...........................................................................................4分∴原式=5..................................................................................................................................5分17.解:(1)设A型洗衣机的售价为x元,B型洗衣机的售价为y元. ……………….1分则据题意,可列方程组5001313351.y xx y-=⎧⎨%+%=⎩,…………………………………………3分解得11001600.xy=⎧⎨=⎩,……………………………………………………………………..4分∴A型洗衣机的售价为1100元,B型洗衣机的售价为1600元.(2)小王实际付款为:1600(113)1392.-%=(元).∴小王购买洗衣机实际付款1392元.….......................……………………………….5分18.解:作P A⊥x轴于A∵点B在PC的垂直平分线上,∴BC=BP=4.∵∠PCB=30°,∴∠BPC=∠PCB=30°.∴∠ABP=60°.在Rt△P AB中,sin604PA PB=⋅︒==.1cos604 2.2AB PB=⋅︒=⨯=∴(5P-.∴k=-∴yx=-. …………………………………………………………………………3分设直线PC的解析式为y kx b=+∵直线PC经过点C(1,0),(52)P-,∴0,5k bk b+=⎧⎪⎨-+=⎪⎩3kb⎧=-⎪⎪∴⎨⎪=⎪⎩∴y x=+………………………………………………………………………….4分(2)P’(7,-………………….………………………………………………………....5分A 四、解答题(本题共20分,每小题5分) 19.解:(1)∵ 30BF CF C ==,∠°,∴ ∠FBC =30°. ….…….…………..................................…………………………1分 由折叠可知:30EBF CBF ==∠∠°. ……………….........…...........................………..2分 ∴ 60BFD =∠°. 在BFD △中,180BDF BFD EBF =--∠°∠∠90=°...…..............................………………………3分 (2)过点D 作DM CB ⊥,垂足为M ,易知DM AB =.由(1)可知DBF △是直角三角形,且30DBF =∠°. 8BF CF ==,142DF BF ∴==4812DC DF FC ∴=+=+=.………………....4分 ∵ Rt CMD △中,30C =∠°,162DM DC ∴==,6AB DM ∴==.…………….……………………………………………………………….5分 20.(1)证明:AB 是O ⊙的直径,CE DE =,AB CD ∴⊥.………............……………………………1分 90AED ∴∠=°. ∵ CD BF ∥,90ABF AED ∴∠=∠=°.BF ∴是O ⊙的切线.………………………………………2分 (2)解:连结BD . ∵ AB 是O ⊙的直径, 90ADB ∴∠=°.……………………......................………3分∵ 3sin 4C ∠=,∠A =∠C ,sin BD AB A ∴=⋅∠sin AB C =⋅∠3864=⨯=.AD ∴==……………………………………………………4分 ∵ 1122ABD S AB DE AD BD ==△··,AD BD DE AB ∴==·2CD DE ∴==………………………….............………………………………5分21.(1)2008. ...............................................................................................................1分%6.21510854021412226==+-++=x . …………………………………..2分(2)()()555%4011664484-+⨯+=2148×1.4-555≈2452(亿美元). ..……4分 答:我市2010年进口总额约为2452亿美元.22.解:(1)等腰.………………1分(2)如图①连结BE ,画BE 的中垂线交BC 于点F ,连结EF ,BEF △是矩形ABCD 的一个折痕三角形.折痕垂直平分BE ,2AB AE ==,∴点A 在BE 的中垂线上,即折痕经过点A . ∴四边形ABFE 为正方形. 2BF AB ∴==.∴()20F ,.…….…….…….……………….…...3分 (3)当F 在边BC 上时,如图②所示.12BEF ABCD S S △矩形≤即当F 与C 重合时,面积最大为4.………………5分五、解答题 (本题共22分,第23题7分,第24题7分,第25题8分)23.解:令221=02m x mx +-+, ∵ 22211()41202m m m +∆=--⨯⨯=--<, ∴ 函数2212m y x mx +=-+的图象与x 轴不相交.........1分令 22202m x mx +--=, ∵ 22222()41()3402m m m +∆=--⨯⨯-=+>, ∴ 函数2222m y x mx +=--的图象与x 轴有两个不同的交点.∴ 图象经过A 、B 两点的二次函数为2222m y x mx +=--................................................3分(2)将A (1-,0)代入2222m y x mx +=--,整理,得 220m m -=.解方程,得 02m m ==,或.当m =0时,21y x =-.令210x -=,解得 121,1x x =-=.此时,点B (1,0).................4分当m =2时,223y x x =--.令2230x x --=,解得 341,3x x =-=.此时,点B (3,0)..................................................................................5分 (3)点C 的坐标为:;(;(4,5);(2,5)-......................................7分 24.(1)222AE AF EF += ……………….…...1分 (2) 线段AE 、BF 和EF 之间的数量关系:222EF BF AE =+……….…….…................................................................………….…...2分证明:过O 作OH ⊥OF ,交AD 于点H ,连结HE . ...............................………….…..3分 ∵∠1=45°,∠AOB 90=︒,∴∠2+∠3=∠2+∠4=45°.∴∠3=∠4.由正方形性质可知,OA =OB ,∠5=∠6=45°.∴△AOH ≌△BOF . ...........................................................4分 ∴BF =AH ,OF =OH . .....……………………………5分 在△EOH 和△EOF 中,45,,OE OE EOH EOF HO FO =⎧⎪∠=∠=︒⎨⎪=⎩∴△EOH ≌△EOF .∴EF =EH . ……………............……………………………………………………6分 在Rt △AEH 中, ∵ 222AE AH EH +=∴222EF BF AE =+……………………..............……………………………………7分25.解:(1)抛物线2142y x bx =-++的对称轴为122bx b =-=⎛⎫⨯- ⎪⎝⎭…...........1分∵ 抛物线上不同两个点E 2(3,1)k k +-+和F 2(1,1)k k ---+的纵坐标相同,∴ 点E 和点F 关于抛物线对称轴对称,则 (3)(1)12k k b ++--==,且k ≠-2.∴ 抛物线的解析式为2142y x x =-++. ………………………………………..2分(2)抛物线2142y x x =-++与x 轴的交点为A (4,0),与y 轴的交点为B (0,4).∴ AB=AM =BM=.………………………………………………………..3分在∠PMQ 绕点M 在AB 同侧旋转过程中,因为∠MBC =∠DAM =∠PMQ =45°. 在△BCM 中,∠BMC +∠BCM +∠MBC =180°,所以∠BMC +∠BCM =135°. 在直线AB 上,∠BMC +∠PMQ +∠AMD =180°,所以∠BMC +∠AMD =135°. ∴ ∠BCM =∠AMD .故 △BCM ∽△AMD .H∴BC BM AM AD =,即m =,8n m =. 故n 和m 之间的函数关系式为8n m =(m >0).………………………………………..4分(3)∵ F 2(1,1)k k ---+在2142y x x =-++上,∴ 221(1)(1)412k k k ---+--+=-+.化简得,2430k k -+=,∴ k 1=1,k 2=3.即F 1(-2,0)或F 2(-4,-8).………………………………………………………..5分 ①MF 过M (2,2)和F 1(-2,0),设MF 为y kx b =+,则 2220.k b k b +=⎧⎨-+=⎩, 解得 121.k b ⎧=⎪⎨⎪=⎩, ∴ 直线MF 的解析式为112y x =+. 直线MF 与x 轴交点为(-2,0),与y 轴交点为(0,1). 若MP 过点F (-2,0),则n =4-1=3,m =83; 若MQ 过点F (-2,0),则m =4-(-2)=6,n =43.……………………………….6分 ②MF 过M (2,2)和F 1(-4,-8),设MF 为y kx b =+,则 2248.k b k b +=⎧⎨-+=-⎩, 解得 534.3k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴ 直线MF 的解析式为5433y x =-.直线MF 与x 轴交点为(45,0),与y 轴交点为(0,43-).若MP 过点F (-4,-8),则n =4-(43-)=163,m =32;若MQ 过点F (-4,-8),则m =4-45=165,n =52.……………………......…..8分故当118,33,m n ⎧=⎪⎨⎪=⎩ 226,4,3m n =⎧⎪⎨=⎪⎩ 333,2163m n ⎧=⎪⎪⎨⎪=⎪⎩,或4416,552m n ⎧=⎪⎪⎨⎪=⎪⎩,时,∠PMQ 的边过点F .。
昌平区2011—2012学年第二学期初三年级第一次统一练习数学2012.5考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考试编号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将本试卷和答题卡一并交回.一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.15的相反数是 A .5B .5-C .15D . 15-2.方程组⎩⎨⎧=+=-422y x y x 的解是A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==2y xD .⎩⎨⎧==02y x3.2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗”,预计可容纳8万人,分为两层,上层是55000个 临时座位.将55000用科学记数法表示为A . 55×103B . 0.55×105C . 5.5×104D . 5.5×1034.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠B =32°,则∠D 的度数为A .32°错误!未找到引用源。
B .68°错误!未找到引用源。
C .74°错误!未找到引用源。
D .84°5.一名警察在高速公路上随机观察了6辆汽车的车速,记录如下:车序号 1 2 3 4 5 6 车速(千米/时)1008290827084则这6辆车车速的众数和中位数是 A .84,90B .85,82C .82,86D .82,836.三张卡片上分别画有等腰直角三角形、等边三角形和菱形,从这三张卡片中随机抽取一张,则取到的卡片上的图形是中心对称图形的概率是E DC BAA.13B.23C.12D.17. 若关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是A .a <2且a ≠0 B.a >2 C.a <2且a ≠1 D.a <-2 8.如图,已知□ABCD 中,AB =4,AD =2,E 是AB 边上的一动点(与点A 、B 不重合),设AE =x ,DE 的延长线交CB 的延长线于点F ,设BF =y ,则下列图象能正确反映y 与x 的函数关系的是DC B AFEDC BA二、填空题(共4道小题,每小题4分,共16分)9有意义,则x 的取值范围为 . 10.分解因式: 244x y xy y -+= . 11.符号f 表示一种运算,它对一些数的运算结果如下:(1)0)1(=f ,1)2(=f ,2)3(=f ,3)4(=f ,… (2)2)21(=f ,3)31(=f ,4)41(=f ,5)51(=f ,… 利用以上规律计算:1()(2012)2012f f -= . 12.己知□ABCD 中,AD =6,点E 在直线AD 上,且DE =3,连结BE 与对角线AC 相交于点M ,则MCAM= . 三、解答题(共6道小题,每小题5分,共30分)13.计算:101()2cos30(1)3π--︒+-.14.解不等式组:12(2)3.x x x -⎧⎨+⎩≥0,>15.计算:22142m m m+--.16.如图,已知△ABC 和△ADE 都是等边三角形,连结CD 、BE .求证:CD =BE .ED CBA17.已知260x x --=,求代数式22(1)(1)10x x x x ---+的值.18.如图,在□ABCD 中,AB =5,AD =10,cos B =35,过BC 的中点E 作EF ⊥AB ,垂足为点F ,连结DF ,求DF 的长.F ED CBAD OBCAEP 四、解答题(共4道小题,每小题5分,共20分)19.如图,已知直线P A 交⊙O 于A 、B 两点,AE 是⊙O 的直径,C 为⊙O 上一点,且AC 平分∠P AE ,过点C 作CD ⊥P A 于D .(1) 求证:CD 是⊙O 的切线;(2) 若AD :DC =1:3,AB =8,求⊙O 的半径.20.某周六上午8:O0小明从家出发,乘车1小时到郊外某基地参加社会实践活动.在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小明离家的路程y (千米)与x (小时)之间的函数图象如图所示. (1)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时; (2)求线段CD 所表示的函数关系式,不用写出自变量x 的取值范围;(3)问小明能否在中午12:00前回到家?若能,请说明理由;若不能,请算出中午12:00时他离家的路程.DA OBC)y (千米)28302010121.为了更好地利用“大课间”加强学生的体育锻炼,调动学生运动的积极性,某校围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对在校学生进行了随机抽样调查,得到一组数据,绘制如下的统计图表:各年级学生人数统计表:(1)该校对多少名学生进行了抽样调查?(2)请分别在图1和图2中将“抖空竹”部分的图形补充完整;(3)已知该校九年级学生比八年级学生多20人,请你补全上表,并利用样本数据估计全校学生中最喜欢踢毽子运动的人数约为多少?图1抽样调查学生最喜欢的运动项目的人数统计图%各运动项目的喜欢人数占抽样总人数百分比统计图抖空竹跳绳40%踢毽子 20%其它 10%图222. 问题探究:(1)如图1,在边长为3的正方形ABCD 内(含边)画出使∠BPC =90°的一个点P ,保留作图痕迹; (2)如图2,在边长为3的正方形ABCD 内(含边)画出使∠BPC =60°的所有的点P ,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD ,AB =3,BC =4,在矩形ABCD 内(含边)画出使∠BPC =60°,且使△BPC 的面积最大的所有点P ,保留作图痕迹.图3图2图1A DCBABCDD CBA五、解答题(共3道小题,第23小题6分,第24,25小题各8分,共22分) 23.已知关于x 的方程(k +1)x 2+(3k -1)x +2k -2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值;(3)若抛物线y =(k +1)x 2+(3k -1)x +2k -2与x 轴的两个交点之间的距离为3,求k 的值.24. 如图,已知抛物线2y ax bx c =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得△P AC 的周长最小,并求出点P 的坐标;(3)若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE ∥PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,S △PDE =19S 四边形ABMC .25. 如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,直线MN 经过点O ,设锐角∠DOC =∠ ,将△DOC 以直线MN 为对称轴翻折得到△D ’OC ’,直线A D ’、B C ’相交于点P .(1)当四边形ABCD 是矩形时,如图1,请猜想A D ’、B C ’的数量关系以及∠APB 与∠α的大小关系; (2)当四边形ABCD 是平行四边形时,如图2,(1)中的结论还成立吗?(3)当四边形ABCD 是等腰梯形时,如图3,∠APB 与∠α有怎样的等量关系?请证明.图3图2图1D BANC'OMPD'D CBAN C'O MPD'D'PMOC'NA BCD昌平区2011—2012学年第二学期初三年级第一次统一练习数学试卷参考答案及评分标准 2012.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=321-+ ……………………… 4分 =4 ……………………… 5分 14.解:1?2(2)3.x x x -⎧⎨+⎩≥0, ①>②由①得x ≥1. ……………………… 2分 由②得x <4. ……………………… 4分 所以原不等式组的解集为1≤x <4. ……………………… 5分 15.解:原式=22142m m m --- ……………………… 1分=22(2)(2)(2)(2)m m m m m m +-+-+-=22(2)(2)m m m m --+-=2(2)(2)m m m -+-. ……………………… 4分=12m + . ……………………… 5分 16.证明:∵ △ABC 和△ADE 都是等边三角形,∴ AB =AC ,AE =AD ,∠DAE =∠CAB , ∵ ∠DAE -∠CAE =∠CAB -∠CAE , ∴ ∠DAC =∠EAB ,ED CBA∴ △ADC ≌△AEB . ……………………… 4分 ∴ CD =BE . ……………………… 5分17.解:22(1)(1)10x x x x ---+ 原式=x (x 2-2x +1)-x 3+x 2+10=x 3-2x 2+x -x 3+x 2+10 =-x 2+x +10=-(x 2-x )+10. ……………………… 3分∵ 260x x --=, ∴ 26x x -=,∴ 原式=4. ……………………… 5分 18.解:延长DC ,FE 相交于点H .∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =CD ,AD =BC . ……………………… 1分 ∴ ∠B =∠ECH ,∠BFE =∠H . ∵ AB =5,AD =10, ∴ BC =10,CD =5. ∵ E 是BC 的中点,∴ BE =EC =152BC =. ∴ △BF E ≌△CHE . ……………………… 3分 ∴ CH =BF ,EF=EH . ∵ EF ⊥AB ,∴∠BFE =∠H =90°.在Rt △BFE 中, ∵ cos B =BF BE =35, ∴ BF =CH =3.∴ EF4,DH =8. 在Rt △FHD 中,∠H =90°,∴ 222DF FH DH =+=28+28=2×28.∴ DF……………………… 5分 四、解答题(共4道小题,每小题5分,共20分) 19. (1)证明:连结OC .∵ OC =OA ,∴ ∠OAC = ∠OCA . ∵ AC 平分∠P AE , ∴ ∠DAC = ∠OAC , ∴ ∠DAC = ∠OCA , ∴ AD ∥OC .HABC D EF∵ CD ⊥P A ,∴ ∠ADC = ∠OCD =90°, 即 CD ⊥OC ,点C 在⊙O 上,∴ CD 是⊙O 的切线. ……………………… 2分 (2)解:过O 作OE ⊥AB 于E . ∴ ∠OEA =90.° ∵ AB =8,∴ AE =4. ……………………… 3分 在Rt △AEO 中,∠AEO =90°,∴ AO 2=42+OE 2.∵ ∠EDC = ∠OEA =∠DCO =90°, ∴ 四边形DEOC 是矩形, ∴ OC =DE ,OE =CD . ∵ AD:DC =1:3,∴ 设AD =x ,则DC =OE =3x ,OA =OC =DE =DA +AE =x +4,∴ (x +4)2=42+(3x )2,解得 x 1=0(不合题意,舍去),x 2=1. 则 OA =5.∴ ⊙O 的半径是5. ……………………… 5分 20. 解:(1) 30 , 56 ; ……………………… 2分 (2) y =-56x +235.2 (3.7≤x ≤4.2) ……………………… 4分 (3)不能.小明从家出发到回家一共需要时间:1+2.2+2÷4×2=4.2(小时),从8:00经过4.2小时已经过了12:00,∴ 不能再12:00前回家,此时离家的距离:56×0.2=11.2(千米). ………………… 5分 21.解:(1)80÷40%=200(名)答:该校对200名学生进行了抽样调查. ………………… 1分 (2)………………… 3分(3)120+180+200=500(名) 500×20%=100(名)答:全校学生中最喜欢踢毽子活动的人数约为100名. ………………… 5分30图2 其它10% 踢毽子20%跳绳40%抖空竹各运动项目的最喜欢人数占抽样总人数百分比统计图%抽样调查学生最喜欢的运动项目的人数统计图图122. 解:(1)如图1,画出对角线AC 与BD 的交点即为点P . ………………… 1分 注:以BC 为直径作上半圆(不含点B 、C ),则该半圆上的任意一点即可. (2)如图2, 以BC 为一边作等边△QBC , 作△QBC 的外接圆⊙O 分别与AB ,DC 交于点 M 、N , 弧MN 即为点P 的集合. ………………… 3分 (3)如图3, 以BC 为一边作等边△QBC , 作△QBC 的外接圆⊙O 与AD 交于点 P 1、P 2 , 点P 1、P 2即为所求. ………………… 5分五、解答题(共3道小题,第23小题6分,第24,25小题各8分,共22分) 23.解:(1)当1k =-时,方程44x --=0为一元一次方程,此方程有一个实数根;当1k ≠-时,方程2(1)(31)22k x k x k ++-+-=0是一元二次方程,△=(3k -1)2-4(k +1)(2k -2)=(k -3)2.∵(k -3)2≥0,即△≥0,∴ k 为除-1外的任意实数时,此方程总有两个实数根. ……………………… 2分 综上,无论k 取任意实数,方程总有实数根. (2)13(3)2(1)k k x k -±-=+,x 1=-1,x 2=421k -+. ∵ 方程的两个根是整数根,且k 为正整数,∴ 当k =1时,方程的两根为-1,0; 当k =3时,方程的两根为-1,-1.∴ k =1,3. ……………………… 4分 (3)∵ 抛物线y =(k +1)x 2+(3k -1)x +2k -2与x 轴的两个交点之间的距离为3,∴,12x x -=3,或21x x -=3.当12x x -=3时,k =-3;当21x x -=3时,k =0.综上,k =0,-3. ……………………… 6分24. 解:(1)∵ 抛物线2y ax bx c =++(0a ≠)A (-1,0)、B (3,0)C (0,3)三点,∴ 933030a b a b ++=⎧⎨-+=⎩,解得 12a b =-⎧⎨=⎩.∴ 抛物线的解析式为223y x x =-++,顶点M 为(1,4). ……………… 2分B B A(2)∵ 点A 、B 关于抛物线的对称轴对称,∴ 连结BC 与抛物线对称轴交于一点,即为所求点P . 设对称轴与x 轴交于点H ,∵ PH ∥y 轴,∴ △PH B ∽△CBO .∴ PH BH CO BO=.由题意得BH =2,CO =3,BO =3,∴ PH =2.∴ P (1,2). ……………………… 5分 (3)∵ A (-1,0)B (3,0),C (0,3),M (1,4), ∴ S 四边形ABMC =9.∵ S 四边形ABMC =9S △PDE , ∴PDE S ∆=1. ∵ OC =OD ,∴∠OCB =∠OBC = 45°.∵ DE ∥PC ,∴∠ODE =∠OED = 45°. ∴ OD =OE =3-m .∵ S 四边形PDOE =9322m -, ∴ S △PDE = S 四边形PDOE - S △DOE =21322m m -+(0<m <3). ∴213122m m -+=.解得,m 1=1, m 2=2. ……………………… 8分25.解:图3图2图1D CBANC'OMPD'D CBAN C'O MPD'D'PM OC'NA BCD(1) A D ’=B C ’,∠APB =∠α. …………………… 2分 (2) A D ’=B C ’ 仍然成立,∠APB =∠α不一定成立. …………………… 3分 (3)∠APB =180°-∠α. …………………… 4分 证明:如图3,设OC ’,PD ’交于点E .∵ 将△DOC 以直线MN 为对称轴翻折得到△D ’OC ’, ∴ △DOC ≌△D ’OC ’,∴ OD =OD ’, OC =OC ’,∠DOC =∠D ’OC ’. ∵ 四边形ABCD 是等腰梯形,∴ AC =BD ,AB =CD, ∠ABC = ∠DCB . ∵ BC =CB ,∴ △ABC ≌△DCB .E∴∠DBC=∠ACB.∴OB=OC,OA=OD.∵∠AOB=∠COD=∠C’O D’,∴∠BOC’ =∠D’O A.∵OD’=OA,OC’=OB,∴△D’OC’≌△AOB,∴∠OD’C’=∠OAB.∵OD’=OA,OC’=OB,∠BOC’ =∠D’O A,∴∠OD’A =∠OAD’=∠OBC’=∠OC’ B.∵∠C’EP=∠D’EO,∴∠C’PE=∠C’OD’=∠COD=∠α.∵∠C’PE+∠APB=180°,∴∠APB=180°-∠α.……………………8分。
(3) 设抛物线21y x px q =++的顶点为M ,与 y 轴的交点为E ,抛物线221y x px q =+++ 顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.(2012通州)23.已知二次函数2248y x ax a =-+-+(1)求证:无论a 为任何实数,二次函数的图象与x 轴总有两个交点. (2)当x ≥2时,函数值y 随x 的增大而减小,求a 的取值范围. (3)以二次函数2248y x ax a =-+-+图象的顶点A 为一个顶点作该二次函数图象的内接正三角形AMN (M ,N 两点在二次函数的图象上),请问:△AMN的面积是与a 无关的定值吗?若是,请求出这个定值;若不是,请说明理由. (2012房山)23. 已知:关于x 的方程()0322=-+-+k x k x ⑴求证:方程()0322=-+-+k x k x 总有实数根;⑵若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值;⑶在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围. 证明:⑴解:⑵ ⑶(2012密云)23.已知:1x 、2x 分别为关于x 的一元二次方程2220mx x m ++-=的两个实数根.(1) 设1x 、2x 均为两个不相等的非零整数根,求m 的整数值; (2)利用图象求关于m 的方程1210x x m ++-=的解. (2012丰台)23.已知:关于x 的一元二次方程:22240x mx m -+-=. (1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能够不变,得到图形C 1,将图形C 1向右平移一个单位,得到图形C 2,当直线y=x b +(b <0)与图形C 2恰有两个公共点时,写出b 的取值范围. (2012石景山)23.已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直线1l :12--=x my 经过点A ,求抛物线C 的函数解析式; (3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得到直线2l :b kx y +=,设直线2l 与y 轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.(2012海淀)23.已知关于x 的方程 03)13(2=+++x m mx . (1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P ),(11y x 与Q ),(21y n x +在(2)中抛物线上 (点P 、Q 不重合), 且y 1=y 2, 求代数式81651242121++++n n n x x 的值.(2012平谷)23.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--,这两个二次函数图象中的一条..与x 轴交于A 、B 两个不同的点.(1)试判断哪个二次函数的图象经过A 、B 两点(写出判断过程);(2)若A 点坐标为(1-,0),求点B 的坐标;(3)在(2)的条件下,设点C 是抛物线上的一点,且△ABC 的面积为10,直接写出点C 的坐标(2012门头沟)23.已知:关于x 的一元二次方程02)21(22=-++-k x k x 有两个实数根. (1)求k 的取值范围;(2)当k 为负整数时,抛物线2)21(22-++-=k x k x y 与x 轴的交点是整数点,求抛物线的解析式;(3)若(2)中的抛物线与y 轴交于点A ,过A 作x 轴的平行 线与抛物线交于点B ,连接OB ,将抛物线向上平移n 个单位, 使平移后得到的抛物线的顶点落在△OAB 的内部(不包括 △OAB 的边界),求n 的取值范围. (2012昌平)23.已知关于x 的方程(k +1)x 2+(3k -1)x +2k -2=0. (1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值;(3)若抛物线y =(k +1)x 2+(3k -1)x +2k -2与x 轴的两个交点之间的距离为3,求k 的值.(2012燕山)23.已知:如图,在直角坐标系xOy 中,直线y=2x 与函数y=x2的图象在第一象限的交于A 点,AM ⊥x 轴,垂足是M ,把线段OA 的垂直平分线记作l ,线段AN 与OM 关于l 对称. (3)抛物线22(41)3y x m x m m =-+++与x 轴交于点A 、B ,与y 轴交于点C ,当m 取(2)中符合题意的最小整数时,将此抛物线向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边界),求n 的取值范围(直接写出答案即可).(2012朝阳) 23. 阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长. 小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题 得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.图① 图②(2012怀柔)23.已知:关于x 的方程2(1)(1)20a x a x --++=.(1)a 取何整数值时,关于x 的方程2(1)(1)20a x a x --++=的根都是整数;(2)若抛物线y=2(1)(1)20a x a x --++=的对称轴为x =-1,顶点为M ,当k 为何值时,一次函数13y kx k =+的图象必过点M.解:(2012大兴)23.在平面直角坐标系xOy 中,O 为坐标原点,已知抛物线221(2) 1.4y x k x k =-+++ (1)k 取什么值时,此抛物线与x 轴有两个交点? (2)此抛物线221(2)14y x k x k =-+++与x 轴交于A ()12(,0),0x B x 、 两点(点A 在点B 左侧),且123x x +=,求k 的值.。
1.生 3. 须 知 1. 2. 3. 4. 5. 6. 7. 8. 2012年北京市朝阳区初三一模试卷数学本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟.在试卷和答题纸上认真填写学校名称、班级和姓名.试题答案一律填涂或书写在答题纸上,在试卷上作答无效. 在答题纸上,作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 考试结束,请将本试卷、答题纸和草稿纸一并交回. 、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个计算:2 ,9 =() A. 1 B . 3 我市深入实施环境污染整治, 某经济开发区的 吨.将167000用科学记数法表示为() A. 167 103 B . 16.7 104 已知,如图, A. 40 因式分解 A. x C. 3 D. 5 40家化工企业中已关停、整改 C. 1.67 105 D. 0.167 是符合题意的. 32家,每年排放的污水减少了 167000106AD 与BC 相交于点 B . 50° O, AB// CD 如果/ B = 20°,/ D = 40°,那么/C. BOD 为()60°D. 70° 9的结果是(B . xC . D. x 10 如图,是由一些相同的小正方体搭成的几何体的三视图, A. 2个 B . 3个 C . 搭成这个几何体的小正方体的个数有 4个 D. 6个 已知抛一枚均匀硬币正面朝上的概率为A. B. C. D. 1 ,下列说法正确的是() 2次正面朝上 连续抛一枚均匀硬币 2次必有连续抛一枚均匀硬币 10次都可能正面朝上 大量反复抛一枚均匀硬币,平均每 100次出现下面朝上50次 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的 如图,AB 是O O 的直径,AB= 4, AC 是弦,AC= 2 3 , / AOC 为() A. 120° B. 130° C. 140° 如图,在△ ABC 中,/ ACB= 90°, AC= BC= 2. E 、 EH L AB 于点H,设AE= x , GH h y ,下面能够反映 D F 分别是射线AC CB 上的动点,且 y 与x 之间函数关系的图象是() 150°AE= BF EF 与AB 交于点G每小题4分)二、填空题(本题共16分,护―3自变量的取值范围是 _____________ .k点P 在双曲线y — (k 0)上,点P (1,2)与点P 关于y 轴对称,则此双曲线的解析式为x11 .如图,线分别与边 AB, AC 交于点M N 若OM MN 则点M 的坐标为12.如图,点 A , A, A, A,…,A 在射线 OA 上,点 B , R, B ,…,B —1 在射线 OB 上,且 AB // A 2B 2// AB ?// …// A n —1B n —1,AB // AE 2// AiB? / …// A>E n —1, △ A A 2B1 ,△ A 2A 3B 2,…,△ A —1AB —1 为阴影三角形,若△ ABB ,A ABB 3 的面积分别 为1、4,则厶AAB 的面积为 ________________ ;面积小于201115. 已知:如图, A 点坐标为 3, 0 , B 点坐标为0, 3 .2(1) 求过A , B 两点的直线解析式; (2) 过B 点作直线BP 与x 轴交于点P ,且使OP 2OA ,求 ABP 的面积.(2)解方程组x 2y 3x 2y9.函数y10.如图, 在平面直角坐标系中,等边三角形ABC 的顶点B, C 的坐标分别为(1,0),(3,0),过坐标原点 O 的一条直的阴影三角形共有、解答题(本题共30分,每小题5分)(⑹.13.计算:2 112 4si n60个.16. 如图,分别以Rt △ ABC勺直角边AC及斜边AB向外作等边△ ACD等边△ ABE已知/ BA& 30o, EFl AB,垂足为F,连结DF.(1)求证:AC= EF;(2)求证:四边形ADFE1平行四边形.17 .先化简: x2x 3 —3i(i 3);若结果等于2,求出相应x的值. 4x 9 2 2x 3 318.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?四、解答题(本题共20分,每小题19 .某批发商以每件50元的价格件T恤.第一个月以单价80 售出了200件;第二个月如果变,预计仍可售出200件,批加销售量,决定降价销售,根查,单价每降低1元,可多售件,但最低单位应高于购进的5分)购进800元销售,单价不发商为增据市场调出10价格;第A4 ' 血窗书(制)二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元(1)填表(不需要化简)时间第一个月第二个月清仓时单价(元)80▲40销售量(件)200▲▲(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?20.如图,等腰梯形ABCDh AD/ BC AD= AB= CD= 2,/ C= 60°, M是BC的中点.(1)求证:△ MD(是等边三角形;(2)将厶MD(绕点M旋转,当MD即MD )与AB交于一点E, M(C即MC )同时与AD交于一点F时,点E, F和点A构成厶AEF试探究△ AEF的周长是否存在最小值•如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.21. 如图,已知△ ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为弧CF的中点,连接BE交AC于点M,AD ABC的角平分线,且AD BE,垂足为点H .(1)求证:AB是半圆O的切线;(2)若AB 3,BC 4,求BE 的长.22.已知:如图1,矩形ABCDK AB= 6,BC= 8,E、F、G H分别是AB BC CD DA四条边上的点(且不与各边顶点重合),设m^ A聊BO CDF DA探索m的取值范围.(1)__________________________________________________________________ 如图2,当E、F、G H分别是AB BC CD DA四边中点时,m= ____________________________________________________________(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图1中补全小贝同学翻折后的图形;②m的取值范围是______________ .五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知一元二次方程 x + ax + a — 2= 0.(1) 求证:不论a 为何实数,此方程总有两个不相等的实数根;(2) 设a v 0,当二次函数y = x 2+ ax + a — 2的图象与x 轴的两个交点的距离为时,求出此二次函数的解析式; (3)在(2)的条件下,若此二次函数图象与 x 轴交于A B 两点,在函数图象上是否存在点P,使得△ PAB 的面积为 色丄3,2 若存在求出P 点坐标,若不存在请说明理由.24. 如图,在△ ABC 中,点 D 是 BC 上一点,/ B =Z DA = 45° (1) 如图1,当/ C = 45。
(六)三角形
五年中考试题(07—11)
(07北京)3.如图,Rt ABC △中,90ACB ∠=°,DE 过点C 且平行于
若35BCE ∠=°,则A ∠的度数为( ) A .35° B .45° C .55° D .65° (
08北京)
11
.如图,在ABC △中,D E ,分别是AB AC ,的中点,
若2cm DE =,则BC
= cm .
(10北京)3.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于
A . 3
B . 4
C . 6
D . 8
(07北京)16.已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,.
求证:AB CD =.
(08北京)15. 已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥
,AB CE =,BC ED =.
求证:AC CD =.
(09北京)15. 已知:如图,在△ABC 中,∠ACB=90
,CD AB ⊥于点
D,点E 在 AC 上,CE=BC,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB=FC
(10北京)15.已知:如图,点A B C D 、、、在同一条直线上,
EA AD ⊥, F D A D
⊥,AE DF =,AB DC =. 求证:ACE DBF ∠=∠.
(11北京)16.如图,点A 、C 、B 、D 在同一条直线上,BE //DF ,
A F ∠=∠,A
B FD =. 求证:AE F
C =.
C
B A C
O D P C
A
E D B A C
E D
B
(11北京)19.如图,在△ABC 中,90ACB ∠=︒,D 是
BC 的中点,DE BC ⊥,CE ∥AD .若AC=2,CE=4,求四边形ACEB 的周长.
12年一模试题
(东城)3.如图,已知//,,33AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是 A.16︒ B. 33︒ C. 49︒ D. 66︒
(昌平)4.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠B =32°,则∠D 的度数为 A .32° B .68° C .74° D .84°
(朝阳)3.在ABC △中,280A B ∠=∠=
,则C ∠等于 A. 40° B. 60°
C. 80°
D. 120°
(门头沟)4. 如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 A. 55° B. 60° C.65° D. 70°
(东城)16. 如图,点B C F E 、、、在同一直线上,12∠=∠,BF EC =,要使ABC ∆≌
DEF ∆,还需添加的一个条件是 (只需写出一个即可),并加以证明. (昌平)16.如图,已知△ABC 和△ADE 都是等边三角形,连结CD 、BE .求证:CD =BE .
(朝阳)15.已知:如图,C 是AE 的中点,∠B=∠D ,BC ∥DE . 求证:AB=CD
E D C B
A
E
D C B
A
B
F
E A
C
D
B
(房山)15.已知:E 是△ABC 一边BA 延长线上一点,且AE =BC ,过点A 作AD ∥BC ,且使
AD =AB ,联结ED .E A
D
C
B
求证:AC =DE .
(丰台)16.已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF .
(海淀)15. 如图,AC //FE , 点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE .
(通州)15.如图,在△ABC 和△ADE 中,AB =AC ,AD =
BAC DAE ∠=∠,
求证:△ABD ≌△ACE .
(燕山)15. 如图,点F 在线段AB 上,AD ∥BC ,AC 交DF 于点E ,∠BAC=∠ADF ,AE=BC.
求证:△ACD 是等腰三角形.
(西城)15.如图,在△ABC 中,AB=CB ,∠ABC=
上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE (1) 求证:△ABE ≌△CBD ;
(2) 若∠CAE=30º,求∠BCD 的度数.。