【配套K12】2018年高考数学总复习第十章计数原理概率第1讲分类加法计数原理与分步乘法计数原理学案
- 格式:doc
- 大小:154.50 KB
- 文档页数:6
作业本理2018届高三数学一轮复习第十章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理夯基提能作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高三数学一轮复习第十章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理夯基提能作业本理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高三数学一轮复习第十章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理夯基提能作业本理的全部内容。
作业本理第一节分类加法计数原理与分步乘法计数原理A组基础题组1。
某电话局的电话号码为139××××××××,若前六位固定,后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B。
25 C.32 D.602。
从集合{1,2,3,4,…,10}中,选出5个元素组成子集,使得这5个元素中任意两个元素的和都不等于11,则这样的子集有( )A.32个B。
34个C。
36个D。
38个3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A。
40 B。
16 C。
13 D。
104。
已知集合M={1,—2,3},N={—4,5,6,—7},从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个数为()A。
18 B。
10 C。
16 D。
145。
设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B 中元素的个数是( )A。
第1讲分类加法计数原理与分步乘法计数原理最新考纲 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识梳理1.分类加法计数原理完成一件事有两类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.诊断自测1.判断正误(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.() 解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案(1)×(2)√(3)√(4)×2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6B.5C.3D.2解析5个人中每一个都可主持,所以共有5种选法.答案 B3.(选修2-3P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种解析需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种).答案 D4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).答案325.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作答). 解析分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.答案206.(2015·广东卷改编)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言________条;若每两个同学互通一次电话,那么共通________次电话(均用数字作答).解析第1位同学给余下的39位同学各写一条留言,共39条留言;依次下去,第40位同学给余下的39位同学各写一条留言,共39条留言,故全班共写了40×39=1 560条毕业留言.显然互通一次电话的次数为12×1 560=780.答案 1 560780考点一分类加法计数原理【例1】(1)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又。
《2018年高考数学分类汇编》第十篇:计数原理、统计、概率一、选择题1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p33.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .B .C .D .4.【2018全国三卷5】的展开式中的系数为A .10B .20C .40D .805.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A .0.7B .0.6C .0.4D .0.36.【2018浙江卷7】设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小二、填空题1.【2018全国一卷15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)2.【2018天津卷10】在5(x -的展开式中,2x 的系数为 .30723=+112114115118522x x ⎛⎫+ ⎪⎝⎭4x p X 2.4DX =()()46P X P X =<=p =3.【2018江苏卷3.】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.【2018江苏卷6】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .5.【2018浙江卷14】二项式81)2x的展开式的常数项是___________. 6.【2018浙江卷16】16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)7.【2018上海卷3】在7)1(x +的二项展开式中,2x 项的系数为 .(结果用数值表示)8.【2018上海卷9】9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示) 三、解答题1.【2018全国一卷20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立. (1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?2.【2018全国二卷18】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.y y t t 1217,,…,ˆ30.413.5y t =-+t 127,,…,ˆ9917.5y t =+3.【2018全国三卷18】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。
第1节分类加法计数原理与分步乘法计数原理基础巩固(时间:30分钟)1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( C )(A)40 (B)16 (C)13 (D)10解析:分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.故选C.2.如图所示,从甲地到乙地有3条公路可走,从乙地到丙地有2条公路可走,从甲地不经过乙地到丙地有2条水路可走.则从甲地经乙地到丙地和从甲地到丙地的走法种数分别为( A )(A)6,8 (B)6,6 (C)5,2 (D)6,2解析:从甲地经乙地到丙地,分两步:第1步,从甲地到乙地,有3条公路;第2步,从乙地到丙地,有2条公路.根据分步乘法计数原理,有3×2=6种走法.从甲地到丙地,分两类:第1类,从甲地经乙地到丙地,有6种走法;第2类,从甲地不经过乙地到丙地,有2条水路,即有2种走法.根据分类加法计数原理,有6+2=8种走法.故选A.3.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去何工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有( C )(A)16种(B)18种(C)37种(D)48种解析:三个班去四个工厂不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37种.故选C.4.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( B ) (A)60 (B)48 (C)36 (D)24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,6个对角面构成的“平行线面组”有6×2=12(个).故共有36+12=48(个).故选B.5.如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间电路不通,则焊接点脱落的不同情况有( C )(A)9种(B)11种(C)13种(D)15种解析:按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.故选C.6.(2016·青岛模拟)如图所示的五个区域中,中心区域是一幅图画,现在要求在其余四个区域中涂色,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( C )(A)64 (B)72 (C)84 (D)96解析:分成两类:A和C同色时有4×3×3=36种;A和C不同色时有4×3×2×2=48种,则一共有36+48=84种.故选C.7.三边长均为正整数,且最大边长为11的三角形的个数是.解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,…,11,有11个三角形;当y取10时,x可取2,3,…,10,有9个三角形;…;当y取6时,x只能取6,只有1个三角形.所以所求三角形的个数为11+9+7+5+3+1=36.答案:368.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.解析:A={1}时,B有23-1种情况;A={2}时,B有22-1种情况;A={3}时,B有1种情况;A={1,2}时,B有22-1种情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案:17能力提升(时间:15分钟)9.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( B )(A)18个(B)15个(C)12个(D)9个解析:依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15个.故选B.10.(2017·玉林市模拟)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为( A )(A)6种(B)12种(C)18种 (D)24种解析:因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6, 7,8任一个,余下两个数字按从小到大只有一种方法.共有2×3=6种结果.故选A.11.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有( D )(A)6种(B)8种(C)12种(D)48种解析:从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),游览三个景区的顺序有3×2×1=6(种),每个景区游览方向有2种.因而所求的不同游览线路有3×16=48种.故选D.12.(2017·铜川模拟)从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是.解析:从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故所求奇数的个数为3×3×2=18.答案:1813.在某运动会的百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.所以安排方式有4×3×2=24种.第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120种.所以安排这8人的方式有24×120=2 880种.答案:2 88014.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.答案:108。
1.1 分类加法计数原理与分步乘法计数原理 3课堂导学三点剖析一、“分类”与“分步”是区分两个计数原理的唯一标准【例1】某同学有若干本课外参考书,其中外语5本,数学6本,物理2本,化学3本,他欲带参考书到图书馆看书.(1)若从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若外语、数学、物理和化学参考书各带一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?思路分析:(1)中“带一本参考书”应运用加法原理;(2)中“各带一本参考书”应运用乘法原理;(3)中“第2本不同学科的书”应分情况讨论,具有综合性.解析:(1)要完成的事是“带一本参考书”,由于无论带哪一学科的书都完成了这件事,因此是分类问题,应用加法原理得5+6+2+3=16(种)不同的带法.(2)要完成的事是“外语、数学、物理和化学各带一本”.因此,选一个学科中的一本书只完成了这件事的一部分,只有几个学科的书都选定了之后,才完成这件事,因此是分步计数问题,应用乘法原理,有5×6×2×3=180(种)不同的带法.(3)要完成的事是“带2本不同学科的书”,因此要分情况考虑,即先考虑是带哪两个学科的书,如带外语、数学各一本,则选一本外语书或选一本数学书都只完成了这一件事的一部分,因此要用乘法原理,即有5×6=30种选法.同样地,外语、物理各选一本,有5×2=10种选法.选外语、化学各一本有5×3=15种选法……,从而上述每种选法都完成了这件事.因此这些选法种数之间还应用加法原理,共有5×6+5×2+5×3+6×2+6×3+2×3=91(种) 二、两个计数原理的综合应用——分类和分步的先后问题【例2】从1到200的自然数中,各个数位上都不含数字8的自然数有多少个?分析:由题设条件要先分类,第一类考虑一位数中有多少不含数字8的自然数;第二类考虑两位数中有多少个不含数字8的自然数,此类中又要分个数和十位数两步,即要分步;第三类考虑三位数中有多少个不含数字8,也要分个位、十位、百位三步.故应先用分类计数原理,在每一类中需要分步的再用分步计数原理求解.解析:由题意分三类解决,第一类:一位数中有8个大于0且不含数字8的自然数.第二类:两位数中有多少不含数字8的自然数,此类需要分两步,第一步:个位上除8之外有9种选法,第二步:十位数上除0和8之外有8种选法,要根据分步计数原理,得第二类数中有8×9=72(个)数符合要求.第三类:三位数中有多少不含数字8的自然数,此类需要分两个小类,一类是百位数为1的三位数,此类需分三步,第一步:个位上除8之外有9种选法;第二步:十位数上除8之外有9种选法;第三步:百位数为1,有1种选法.根据分步计数原理,得此类数中有9×9=81(个)数符合要求.另一类是百位数为2的三位数,即200,就是1个,由分类计数原理得此时第三类的三位数中有81+1=82(个)不含数字8的自然数.故先用分类计数原理再结合分步计数原理,得从1到200的自然数中各个数位上都不含数字8的自然有N=8+72+82=162(个).三、用两个计数原理解题时,要注意化归思想和分类讨论思想的使用【例3】求与正四面体四个顶点距离之比为1∶1∶1∶2的平面的个数.解析:设正四面体的顶点为A,B,C,D,到这四个点距离之比为1∶1∶1∶2的平面α有两类:(1)点A ,B ,C 在平面α的同侧,有2个(如图).①21111111===DC CC DB BB DA AA ②21111111===DC CC DB BB DA AA (2)点A ,B ,C 在平面α的两侧,有6个(如图).①⎪⎪⎩⎪⎪⎨⎧====12111111111CC BC CD AD DB BB DA AA ②⎪⎪⎩⎪⎪⎨⎧===211111111DC CC CB BB CA AA③⎪⎪⎩⎪⎪⎨⎧===211111111DC AC CB AB BA AA ④⎪⎪⎩⎪⎪⎨⎧====21111111111DC CC DD BD CB AB BA AA⑤⎪⎪⎩⎪⎪⎨⎧===211111111DCBCBBCBBAAA⑥⎪⎪⎩⎪⎪⎨⎧====21111111111DCCCDDADBBCBBAAA转换点A,B,C,D,共可得4×8=32个平面.各个击破【类题演练1】已知集合M={-3,-2,-1,0,1,2},P(a,b)是平面上的点,a,b∈M:(1)P(a,b)可表示平面上多少个不同的点?(2)P(a,b)可表示多少个坐标轴上的点?解析:(1)完成这件事分成两个步骤:a的取法有6种,b的取法也有6种,∴P点个数为:N=6×6=36(个)(2)完成这件事可分三类:x轴上(不含原点)有5个;y轴上(不含原点)有5个;既在x轴上,又在y轴上的点即原点也适合,∴共有N=5+5+1=11(个)【变式提升1】甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种.这两厂生产的收音机仅从外壳的形状和颜色看,共有多少种不同的品种?解析:分两类:一类是甲厂生产的有3×4种,一类是乙厂生产的有4×5种,根据加法原理共有3×4+4×5=32种.【类题演练2】将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点颜色不同;如果只有红、黄、蓝、绿、黑5种颜色可供使用,求不同的染色方法总数.解析:如图所示,四棱锥P-ABCD中,第一步先将侧面PAB上的三点P、A、B染色,由于只有5种颜色且具有同一条棱上的两端点颜色不同,再分三个步骤共有5×4×3=60(种)染法.其次,当P、A、B用三种不同的颜色染好后,不妨设分别染的是P红、A黄、B蓝.若点C 染黄色,则D可染蓝、绿、黑,即有3种染法.若点C染绿色,则D可染蓝、黑,即有2种染法.若点C染黑色,则D可染蓝、绿,即有2种染法.故第二步C和D还有7种染法.最后,由分步计数原理,得共有60×7=420(种)染法.【变式提升2】同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配方式有( )A.6种B.9种C.11种D.23种解析:记四人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他的三人之一收到.故有3种分配方式;以乙收到为例,其他人收到卡片的情况可分为两类:第一类:甲收到乙送出的卡片,这时,丙、丁只有互送卡片一种分配方式.第二类:甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别为丙和丁送出的),对于每一种情形,丁收到卡片的方式只有一种.因此,根据分类与分步计数原理,得不同的分配方式数为:3×(1+2)=9.答案:B【类题演练3】在坐标平面上画出63条直线:y=b,y=x 3+2b,y=x 3-+2b,其中b=-10,-9,-8, …,-1,0,1,…8,9,10,这些直线将平面切成若干个等边三角形,其中边长为32的等边三角形有多少个?解析:6条最外面的直线围成一个边长为320的正六边形,穿过原点O 的三条直线将这六边形分成6个边长为320的等边三角形.因为每个这样的大三角形的边长是小三角形边长32的10倍,且每个大三角形被分成102个小三角形,所以正六边形内部共有边长为32的小三角形为6×102=600(个).另外,与正六边形每条边相邻的外部都有10个边长为32的小三角形(如图).故边长为23的等边三角形的个数为N=6×102+6×10=660.【变式提升3】某赛季足球比赛的计分规则是:胜一场,得3分;平一场得1分;负一场是0分.一球队打完15场,积33分.若不考虑顺序,该队胜、负、平的情形共有( )A.3种B.4种C.5种D.6种解析:设该队胜x 场,平y 场,负z 场,则x,y,z 是非负整数,且)2()1(.333,15⎩⎨⎧=+=++y x z y x 因为不考虑胜、平、负的顺序,所以问题转化为求此方程组的不同非负整数解的组数.由②得,y=3(11-x),代入①式,得z=2(x-9).由0≤y≤15,0≤z≤15,可知⎩⎨⎧≤-≤≤-≤.5.790,5110x x 因为x 是非负整数,所以这个不等式的解为9≤x ≤11,即x 最多只能取9,10,11三个值,对应的y 值也只能取6,3,0三个值,对应的z 值也只能取0,2,4三个值.从而①②组成的方程组有且只有三组的非负整数解,选A.。
第1讲分类加法计数原理与分步乘法计数原理基础巩固题组(建议用时:25分钟)一、选择题1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( )A.30个B.42个C.36个D.35个解析∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案 C2.某校举行乒乓球赛,采用单淘汰制,要从20名选手中决出冠军,应进行比赛的场数为( )A.18B.19C.20D.21解析因为每一场比赛都有一名选手被淘汰,即一场比赛对应一个失败者,要决出冠军,就要淘汰19名选手,故应进行19场比赛.答案 B3.(2017·舟山市质检)有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则有几种不同的选择方式( )A.24B.14C.10D.9解析第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式,第二类:选2套连衣裙中的一套服装有2种选法.∴由分类加法计数原理,共有12+2=14(种)选择方式.答案 B4.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( )A.9B.14C.15D.21解析当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).答案 B5.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为( )A.3B.5C.9D.12解析只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种).答案 C6.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24B.18C.12D.6解析从0,2中选一个数字0,则0只能排在十位,从3,5,7中选两个数字排在个位与百位,共有C23A22=6种;从0,2中选一个数字2,则2排在十位,从3,5,7中选两个数字排在个位与百位,共有C23A22=6种;2排在百位,从3,5,7中选两个数字排在个位与十位,共有C23A22=6种;由分类加法计数原理可知共有6+6+6=18种.答案 B7.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个B.34个C.36个D.38个解析将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个.故选A.答案 A8.(2016·全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9解析由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.答案 B二、填空题9.(2016·西安质检)如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个(用数字作答). 解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12(个).答案1210.如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案4011.(2016·长沙二模)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有________种.解析先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·2·1=12(种)不同的排列方法.答案1212.从-1,0,1,2这4个数中任选3个不同的数作为函数y=ax2+bx+c的系数,则可组成不同的二次函数共有________个,其中不同的偶函数共有________个(用数字作答).解析a,b,c的一组不同的取值对应着一个不同的二次函数.第1步,确定a(a≠0)的值,有3种方法;第2步,确定b的值,有3种方法(这时,b可取0);第3步,确定c的值,有2种方法.故可组成3×3×2=18个不同的二次函数.若二次函数为偶函数,则b=0,这时只需确定a,c的值,分两步完成,共有3×2=6个不同的偶函数.答案18 613.有六名同学报名参加三个智力竞赛项目(不一定六名同学都能参加),(1)每人恰好参加一项,每项人数不限,则有________种不同的报名方法;(2)每项限报一人,且每人至多参加一项,则有________种不同的报名方法;(3)每项限报一人,但每人参加的项目不限,则有________种不同的报名方法(用数字作答). 解析(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).答案 (1)729 (2)120 (3)216能力提升题组(建议用时:15分钟)14.如图,矩形的对角线把矩形分成A ,B ,C ,D 四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法(用数字作答).解析 区域A 有5种涂色方法;区域B 有4种涂色方法;区域C 的涂色方法可分2类:若C 与A 涂同色,区域D 有4种涂色方法;若C 与A 涂不同色,此时区域C 有3种涂色方法,区域D 也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案 26015.(2017·绍兴市调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.279 解析 0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案 B16.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对解析 与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对.正方体的12条面对角线共有12×8=96(对),且每对均重复计算一次,故共有962=48(对). 答案 C17.一个旅游景区的游览线路如图所示,某人从P 点处进,Q 点处出,沿图中线路游览A ,B ,C 三个景点及沿途风景,则不重复(除交汇点O 外)的不同游览线路有________种(用数字作答).解析 根据题意,从点P 处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知共有6×4×2=48种不同游览线路.答案 4818.(2017·浙江名校协作体联考)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,...,191,202, (999)则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法,中间两位一样,有10种填法,共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.结合计数原理,知有9×10n种填法.答案(1)90 (2)9×10n。
第十章计数原理、概率、随机变量及其分布[深研高考·备考导航]为教师授课、学生学习提供丰富备考资源[五年考情]综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型看:一般有1~2个客观题,1个解答题;从考查分值看,占10~22分,基础题主要考查对基础知识和基本方法的应用意识,中档题主要考查转化与化归思想及运算求解能力.2.从考查知识点看:主要考查计数原理、排列与组合、二项式定理、随机事件的概率、古典概型与几何概型、离散型随机变量及其分布列、离散型随机变量的均值与方差.3.从命题思路上看:(1)计数原理、排列组合与古典概型相结合考查.(2)几何概型与线性规划、定积分等知识相结合考查.(3)随机事件的概率、离散型随机变量及其分布列、离散型随机变量的均值与方差和统计知识交汇考查.(4)相互独立事件、二项分布、超几何分布、正态分布、实际问题等其他知识交汇考查.[导学心语]1.全面系统复习,深刻理解知识本质(1)重视计数原理、二项式定理的理解,深刻把握排列组合、随机事件、古典概型、几何概型、离散型随机变量及其分布列、条件概率、二项分布、离散型随机变量的均值与方差、正态分布等概念,研究事件的概率,注意该事件的特征,用适当的概率模型求解.(2)注意各类概率公式和概率模型的理解和应用,掌握其适用条件和用法.2.抓住重点、针对训练通过对近5年全国卷高考试题分析,可以预测,在2017年,本章问题考查的重点是:(1)计数原理、二项式定理、古典概型、几何概型.(2)离散型随机变量及其分布列、期望与方差.做针对性训练,通过小题强化概率各种题型的计算,通过解答题训练巩固离散型随机变量及分布列问题.3.重视转化与化归思想的应用研究计数原理、概率、随机变量及其分布列问题,转化与化归思想贯穿始终,首先需要将实际问题转化为相应的计数问题、排列组合问题、概率计算问题、离散型随机变量的分布列与均值、方差等的计算问题,其次将概率的计算转化为计数问题、长度或面积的计算问题,将求分布列问题转化为概率的计算问题,将复杂事件的概率计算转化为简单事件的概率计算.第一节分类加法计数原理与分步乘法计数原理[考纲传真] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()[答案](1)×(2)√(3)√(4)×2.(教材改编)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10D.6D[从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.]3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有()A.30个 B.42个C.36个D.35个C[∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.]4.(2016·全国卷Ⅱ)如图10-1-1,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()图10-1-1A.24 B.18C.12D.9B[分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路程.]5.现有4种不同的颜色要对如图10-1-2所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有________种.图10-1-248[按A→B→C→D顺序分四步涂色,共4×3×2×2=48种不同的着色方法.](1)经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有() A.4种 B.6种C.10种D.16种(2)(2017·青岛二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b =0有实数解的有序数对(a,b)的个数为()【导学号:01772376】A.14 B.13C.12D.10(1)B(2)B[(1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),甲乙丙乙甲甲乙甲丙甲同理,甲先传给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3=6种传递方法.(2)①当a=0时,有x=-b2,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.∴有序数对(a,b)共有4+4+3+2=13个.][规律方法] 1.第(2)题常见的错误:(1)想当然认为a≠0;(2)误认为a≠b.2.分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.[变式训练1]从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6D.8D[以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.]6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有()A.C26·45种 B.A26·54种C.C26·A45种 D.C26·54种(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.(1)D(2)120[(1)有两个年级选择甲博物馆共有C26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C26×54种.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120种.][规律方法] 1.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.2.在第(1)题中,除仅有两个年级选择甲博物馆外,其余4个年级易错误认为有45种选择方法.导致错选A项.[变式训练2](1)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x ∈A∩B,y∈A∪B},则A*B中元素的个数为________.(2)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________.(用数字作答)(1)10(2)8[(1)易知A∩B={0,1},A∪B={-1,0,1,2,3},∴x有2种取法,y有5种取法,由分步乘法计数原理,A*B的元素有2×5=10个.(2)第1步把甲、乙分到不同班级有A22=2种分法.第2步分丙、丁:①丙、丁分到同一班级有2种分法,②丙、丁分到两个不同的班级有A22=2种分法.由计数原理,不同的分法为2×(2+2)=8种.]M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有________个.【导学号:01772377】(2)如图10-1-3,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.图10-1-3(1)17(2)260[(1)当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以满足题意的“子集对”共有7+3+1+3+3=17(个).(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法,所以共有5×4×4+5×4×3×3=260种涂色方法.][规律方法] 1.(1)注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)注意对于较复杂的两个原理综合应用的问题,可恰当地画出示意图或列出表格,使问题形象化、直观化.2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成,第(2)题中,由于共边的区域不同色,从而是按区域A与区域C是否同色分类处理的.[变式训练3](2017·厦门市联考)用a代表红球,b代表蓝球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取,“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)B.(1+a5)(1+b+b2+b3+b4+b5)C.(1+a)5(1+b+b2+b3+b4+b5)D.(1+a5)(1+b5)A[分两步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有1+a+a2+a3+a4+a5种不同的取法.第二步,5个无区别的蓝球都取出或都不取出,则有1+b5种不同取法.由分步乘法计数原理,共有(1+a+a2+a3+a4+a5)(1+b5)种取法.][思想与方法]1.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.2.涉及加法与乘法原理的混合问题一般是先分类再分步.3.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[易错与防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.。
第十章计数原理第1讲分类加法计数原理与分步乘法计数原理一、选择题1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种.48种C.24种 D.12种解析先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.答案 A2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( ).A.400种 B.460种C.480种 D.496种解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.答案 C3.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加“围棋苑”,则不同的参加方法的种数为( ).A.72 B.108 C.180 D.216解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,故共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180种参加方法.答案 C4.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )A.8种 B.9种C.10种 D.11种解析分四步完成,共有3×3×1×1=9种.答案 B5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ).A.300种B.240种C.144种D.96种解析甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有C46A44-C12A35=240.答案 B6.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有( ).A.12种 B.24种 C.30种 D.36种解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C24×2×2=24(种).答案 B二、填空题7.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.答案2408.数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案129.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理得共有“好数”C13+C13C13=12个.答案1210.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)答案 21;43三、解答题11.如图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.12.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限内的点?(3)P可以表示多少个不在直线y=x上的点?解(1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=6×6=36(个).(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得N=3×2=6个.(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得N=6×5=30个.13.现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类,A中每一元素都与1对应,有1种方法;第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12种方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12种方法.所以不同的f共有1+12+6+12=31(个).。
第1讲分类加法计数原理与分步乘法计数原理最新考纲 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识梳理1.分类加法计数原理完成一件事有两类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.诊断自测1.判断正误(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案(1)×(2)√(3)√(4)×2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为( )A.6B.5C.3D.2解析5个人中每一个都可主持,所以共有5种选法.答案 B3.(选修2-3P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24种B.30种C.36种D.48种解析需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种). 答案 D4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).答案325.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作答).解析分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.答案206.(2015·广东卷改编)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言________条;若每两个同学互通一次电话,那么共通________次电话(均用数字作答).解析第1位同学给余下的39位同学各写一条留言,共39条留言;依次下去,第40位同学给余下的39位同学各写一条留言,共39条留言,故全班共写了40×39=1 560条毕业留言.显然互通一次电话的次数为12×1 560=780.答案 1 560 780考点一分类加法计数原理【例1】 (1)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有( )A.4种B.6种C.10种D.16种(2)(2017·温州十校联考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14B.13C.12D.10解析(1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),同理,甲先传给丙时,满足条件有3种踢法. 由分类加法计数原理,共有3+3=6种传递方法.(2)①当a =0,有x =-b2,b =-1,0,1,2有4种可能;②当a ≠0时,则Δ=4-4ab ≥0,ab ≤1,(ⅰ)若a =-1时,b =-1,0,1,2有4种不同的选法; (ⅱ)若a =1时,b =-1,0,1有3种可能; (ⅲ)若a =2时,b =-1,0,有2种可能. ∴有序数对(a ,b )共有4+4+3+2=13(个). 答案 (1)B (2)B规律方法 分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a =0这一类.【训练1】 (1)如图,从A 到O 有________种不同的走法(不重复过一点).(2)若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________(用数字作答).解析 (1)分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 共2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 共2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法. (2)当m =1时,n =2,3,4,5,6,7共6个 当m =2时,n =3,4,5,6,7共5个; 当m =3时,n =4,5,6,7共4个; 当m =4时,n =5,6,7共3个;当m =5时,n =6,7共2个,故共有6+5+4+3+2=20个. 答案 (1)5 (2)20 考点二 分步乘法计数原理【例2】 (1)(2017·郑州二模)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( ) A.10种B.25种C.52种D.24种(2)定义集合A 与B 的运算A *B 如下:A *B ={(x ,y )|x ∈A ,y ∈B },若A ={a ,b ,c },B ={a ,c,d,e},则集合A*B的元素个数为________(用数字作答).解析(1)每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.(2)显然(a,a),(a,c)等均为A*B中的关系,确定A*B中的元素是A中取一个元素来确定x,B中取一个元素来确定y,由分步计数原理可知A*B中有3×4=12个元素.答案(1)D (2)12规律方法(1)在第(1)题中,易误认为分5步完成,错选B.(2)利用分步乘法计数原理应注意:①要按事件发生的过程合理分步,即分步是有先后顺序的.②各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.【训练2】 (1)把3封信投到4个信箱,所有可能的投法共有( )A.24种B.4种C.43种D.34种(2)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数为________(用数字作答).解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.由分步乘法计数原理可得共有43种方法.(2)易知A∩B={0,1},A∪B={-1,0,1,2,3},∴x有两种取法,y有5种取法.由分步乘法计数原理,A*B的元素有2×5=10(个).答案(1)C (2)10考点三两个计数原理的综合应用【例3】(1)(2015·四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个(2)(2017·杭州七校联考)如图所示,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________(用数字作答).解析(1)由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34个=48(个),故比40 000大的偶数共有72+48=120(个).选B.(2)按区域1与3是否同色分类:①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.②区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法.由分类加法计数原理,不同的涂色种数为24+72=96.答案(1)B (2)96规律方法(1)①注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.②注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.第(2)题中,相邻区域不同色,是按区域1与3是否同色分类处理.【训练3】 (1)如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )A.240B.204C.729D.920(2)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).解析(1)若a2=2,则百位数字只能选1,个位数字可选1或0“凸数”为120与121,共2个.若a2=3,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).∴所有凸数有2+6+12+20+30+42+56+72=240(个).(2)由题意知本题是一个分类计数问题,共有8种不同的类型,当有3个键同时按下,有C310种结果,当有4个键同时按下,有C410种结果,…,以此类推,根据分类加法计数原理得到共有C310+C410+C510+…+C1010=C010+C110+C210+…+C1010-(C010+C110+C210)=210-(1+10+45)=968.答案(1)A (2)968[思想方法]1.应用两个计数原理的难点在于明确分类还是分步.在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.2.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,完成了所有步骤,恰好完成任务,当然步与步之间要相互独立,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[易错防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.。