5延性设计
- 格式:ppt
- 大小:1.23 MB
- 文档页数:74
金属性质教学设计〔共5篇〕第1篇:化学金属的性质教学设计一、教学设计理念本课题是初中化学的重点内容,教学中能培养学生多方面的才能,也能表达化学学科的很多特点。
在课题1介绍金属的物理性质的根底上,本课题侧重介绍金属的化学性质,重点介绍金属与氧气反响,金属与酸反响以及金属与其他金属的化合物溶液的反响,以及对金属活动性顺序的探究。
本课题主要以学生的内容为根底,以实验探究为打破口,引导学生采取分类研究、比照分析^p 的方法认识置换反响,归纳总结金属的有关反响规律,并通过对规律的应用,到达落实知识、形成才能的目的。
学生己初步具备了一定的观察问题、分析^p 问题和解决问题的才能,对事物的认识正处于从感性到理性的转变时期,实验是激发他们学习兴趣的好方法。
学生在前一阶段的学习中已经做过镁条、铁丝等在氧气中反响的实验,为加深学生的感性认识,特意让学生补做铜片与氧气反响的实验,重点说明大多数金属都能与氧气反响,但反响的难易和剧烈程度不同,由此也可在一定意义上反响金属的活泼程度;如镁、铝比拟活泼,铁、铜次之,金属不活泼。
教材的重点放在对金属活动顺序的探究上,教学过程采用问题引入—实验探究—分析^p 总结—应用规律的形式。
通过对实验事实的分析^p ,由学生归纳总结得出置换反响的特点,并通过对某些金属活动性的比拟,进而引出金属活动性顺序。
结合生活中的实例,学生能应用置换反响和金属活动性顺序解释一些与日常生活有关的化学问题,使学生学以致用。
二、教学目的分析^p 知识与技能:〔1〕知道镁、铁、铝、铜等常见金属与氧气的反响。
〔2〕初步认识常见金属与盐酸、稀硫酸的置换反响,以及与金属的化合物溶液的置换反响,能用置换反响解释一些与日常生活有关的化学问题。
〔3〕能用金属活动性顺序对有关的置换反响进展简单地判断,并能利用金属活动性顺序解释一些与日常生活有关的化学问题。
过程与方法:(1)体验和学习利用控制实验条件进展科学探究的方法,学会运用控制实验条件探究金属活动性顺序。
框架结构设计要点框架结构设计要点(供参考)⼀、框架结构的特点、适⽤范围1、框架结构的特点1)建筑平⾯布置灵活,使⽤空间⼤。
2)延性较好。
3)整体侧向刚度较⼩,⽔平⼒作⽤下侧向变形较⼤(呈剪切型)。
所以建筑⾼度受到限制。
4)⾮结构构件破坏⽐较严重。
(这是由于变形过⼤,⾮结构构件会破坏⽐较严重)2、框架结构的适⽤范围1)框架结构体系是介于砌体结构与框架-剪⼒墙结构之间的可选结构体系。
框架结构设计应符合安全适⽤、技术先进、经济合理、⽅便施⼯的原则(结构设计原则)。
2)⾮抗震设计时⽤于多层及⾼层建筑。
抗震设计时⼀般情况下框架结构多⽤多层及⼩⾼层建筑(7度区以下)。
3)框架结构由于其抗侧刚度较差,因此在地震区不宜设计较⾼的框架结构。
在7度(0.15g)设防区,对于⼀般民⽤建筑,层数不宜超过7层,总⾼度不宜超过28⽶。
在8度(0.3g)设防区,层数不宜超过5层,总⾼度不宜超过20⽶。
超过以上数据时虽然计算指标均满⾜规范要求,但是不经济。
⼆、框架结构平、⽴⾯布置要点1、为了保证框架结构的抗震安全,结构应具有必要的承载⼒、刚度、稳定性、延性及耗能等性能。
设计中应合理地布置抗侧⼒构件,减少地震作⽤下的扭转效应;平⾯布置宜规则、对称,并应具有良好的整体性;结构的侧向刚度宜均匀变化,竖向抗侧⼒构件的截⾯尺⼨和材料强度宜⾃下⽽上逐渐减⼩(不应在同⼀层同时改变构件的截⾯尺⼨和材料强度),避免抗侧⼒结构的侧向刚度和承载⼒突变。
2、框架结构宜设计成双向梁柱刚架体系以承受纵横两个⽅向的地震作⽤或风荷载。
特殊情况下也可以采⽤⼀向为刚架,另⼀向为铰接排架的结构体系。
但在铰接排架⽅向应设置⽀撑或抗震墙,以保证结构的承载⼒、刚度和稳定。
3、抗震设计的框架结构,不宜采⽤单跨框架。
如果不可避免的话,可设计为框架-剪⼒墙结构,多层建筑也可仅在单跨⽅向设置剪⼒墙。
后者框架结构部分的抗震等级应按框架结构选⽤,⽽剪⼒墙部分的抗震等级应按框架-剪⼒墙结构选⽤。
中学化学实验教学设计5篇中学化学实验教学设计1教学目标知识与技能:认识燃烧的条件和灭火的原理。
过程与方法:1、通过探究燃烧的条件,认识探究问题的方法2、认识对比实验在化学学习中的作用。
3、体会运用归纳、概括等方法对信息进行分析得出结论的科学方法。
情感态度与价值观:1、利用化学知识解释生活中的问题,使学生对化学保持强烈的好奇心和探究欲。
2、增强日常生活中防范灾害的意识,并注意采取安全措施。
教学重点:1、认识燃烧的条件。
2、认识灭火的原理。
教学方法:实验探究、小组讨论。
课前准备:大烧杯镊子、药匙、试管、胶塞、红磷白磷热水。
中学化学实验教学设计2教学目标知识与技能1、认识金属材料与人类生活和社会发展的密切关系。
2、了解常见金属的物理性质及合金的特点。
3、了解物质的性质与用途的关系。
过程与方法1、学习运用观察、实验等方法获取信息。
2、学习运用比较、分析、归纳等方法对获取的信息进行加工。
情感、态度与价值观1、进一步培养学生对生活中的化学现象的好奇心和探究欲,激发学习化学的兴趣。
2、树立事物是普遍联系的观点,逐步形成合理使用物质的观念。
3、树立为社会进步而学习化学的志向。
教学重难点重点1、金属材料的物理性质。
2、物质性质与用途的关系。
难点1、培养学生运用探究方法得出相关结论的能力。
2、提高学生综合分析问题的能力。
教学工具投影仪、金属制品(如曲别针、铝箔、铜丝、水龙头等)、金属制品的挂图(如飞机、坦克、轮船等)、铁架台(带铁圈)、大小形状相同的金属片(铁片、铜片、铝片)、干电池、小灯泡、导线、酒精灯、火柴、砂纸。
教学过程一、新课导入在上学期我们已经学习了碳、氧等非金属的性质和用途。
但是在一百多种元素中约有80%为金属元素,这些金属元素在生产和生活中有着非常重要和广泛的用途。
本单元我们将学习一些常见金属的性质、用途和冶炼方法等。
二、新课教学1、展示一些金属制品(如订书钉、铝箔、铜丝电线、不锈钢水龙头等)和金属制品的图片(如火箭、坦克、轮船等)。
高层混凝土建筑抗震结构设计关键要素探究摘要:随着社会的发展,城市发展步伐的逐渐加快及城市人口的逐渐增加,我国城镇化建设过程中土地资源紧张问题越发严峻,城市建筑数量越来越多。
在现代化建筑工程建设期间,由于建筑工程自身具有一定的特殊性,再加上较为密集的居住密度,导致城市建筑对抗震设计水平有着较高的要求。
主要针对于建筑结构设计过程中抗震结构设计的特点、现如今存在的问题、如何合理改善的策略等方面进行分析,希望可以起到参考的作用。
关键词:高层混凝土建筑;抗震结构设计;关键要素引言高层混凝土结构是当今建筑最常见的结构形式之一,其耐久性、耐火性均较好,适应灾害能力强,总体表现较好,是建筑工程可持续发展首选结构类型。
所以混凝土结构被广泛应用于高层建筑,对建筑物整体抗震性能有着直接影响。
专业性技术人员应着重分析高层混凝土结构抗震设计问题,这样有利于从根本上确保高层混凝土建筑抗震设防合理性,为日后可持续发展提供便利。
1建筑抗震结构设计的特点首先,建筑抗震结构设计必须要针对结构受力情况进行监测分析。
由于建筑结构无论从整体柔韧性上还是整体承载力方面,都需要综合考量受力的稳定与均衡,而这对建筑在较大震动情况下是否可以保持稳定造成了一些影响。
因此,在实际结构设计期间,必须要对建筑受力状态进行综合考量分析,对结构与连接点的连接情况进行有效监督检测,这样才能够保证一旦发生地震,也不会对建筑造成较大的能量冲击。
这样一来,就可以保证建筑在地震当中始终维持受力平衡,避免主体结构因此而受损[1]。
其次,建筑抗震结构设计必须要考虑到轴向变形问题,高层建筑工程承担的竖向荷载量比较大,不仅存在一些轴向变形问题,还可能会对连续梁的弯矩造成一些影响,进而导致在负弯矩值变小的同时增大正弯矩值。
因此,在抗震结构设计的过程中,必须要对轴向变形情况进行准确计算,从而准确调整下料长度,避免剪力与位移造成较大影响。
最后,建筑抗震结构设计还需要考虑到结构的延展性,结构延展属于建筑设计期间的一项重要指标,一些中低层建筑延展性比较小,而高层建筑延展性比较大,这导致在地震发生之后,高层建筑出现变形的几率也更大[2]。
力学性能的五个指标力学性能是指材料在受力作用下的变形和破坏的特性。
在工程领域中,力学性能的评估是非常重要的,它直接影响着材料的可靠性和安全性。
本文将介绍力学性能的五个主要指标:强度、韧性、硬度、刚性和延展性。
1. 强度强度是材料抵抗外部应力破坏的能力。
常见的强度指标有屈服强度、抗拉强度和抗压强度等。
屈服强度是指材料在受力后开始发生塑性变形的应力值,抗拉强度和抗压强度分别表示材料在拉伸和压缩过程中承受的最大应力。
强度指标的高低直接反映了材料的机械强度,能够评估材料在受力时的稳定性和耐久性。
2. 韧性韧性是指材料在受力过程中能够吸收较大能量而不发生破坏的能力。
它代表了材料的抗破坏能力和承受外力后的变形能力。
通常,韧性指标包括延伸率和断裂韧性。
延伸率是指材料在拉伸过程中发生塑性变形前的变形量,而断裂韧性则表示材料在破坏前能够吸收的能量。
韧性指标的高低可以评估材料在受力下的变形程度和抗震性能。
3. 硬度硬度是指材料抵抗外界压力的能力。
它反映了材料的耐磨性和抗刮擦能力。
硬度可以通过硬度试验来表征,常见的硬度试验有布氏硬度试验、洛氏硬度试验和维氏硬度试验等。
硬度指标的高低可以评估材料的耐磨性、耐腐蚀性和耐磨损性。
4. 刚性刚性是指材料在受力时难以发生形变的性质。
它反映了材料的刚性和不可塑性。
刚性可以通过弹性模量来评估,弹性模量表示材料在受力下的应变程度。
刚性指标的高低可以评估材料在受力时的变形程度和稳定性。
5. 延展性延展性是指材料在受力下能够延展或伸长的性质。
它描述了材料的可塑性和可加工性。
延展性可以通过伸长率来评估,伸长率表示材料在断裂前拉伸变形的程度。
延展性指标的高低可以评估材料的可加工性和可塑性。
总之,强度、韧性、硬度、刚性和延展性是评估材料力学性能的重要指标。
不同应用领域对这五个指标的要求不同,因此在选用材料时需要根据具体应用场景来综合考虑这些指标的优劣。
在工程设计和材料选择过程中,合理利用这些指标可以提高产品的质量和可靠性。