函数单调性和奇偶性
- 格式:pdf
- 大小:464.19 KB
- 文档页数:5
函数的奇偶性与单调性函数的奇偶性与单调性是数学中的重要概念,它们能够帮助我们更好地理解和分析函数的特征和行为。
本文将介绍函数的奇偶性和单调性的基本概念,并探讨二者之间的关系。
一、函数的奇偶性在数学中,函数的奇偶性是指函数在对称轴上的性质。
一个函数可以是奇函数或偶函数,或者既不是奇函数也不是偶函数。
1. 奇函数如果对于函数f(x),对于任意x,有f(-x) = -f(x),则称该函数为奇函数。
简单来说,奇函数的特点是关于原点对称,即函数图像关于原点对称。
奇函数的典型例子是正弦函数sin(x)和正切函数tan(x)等:- sin(-x) = -sin(x)- tan(-x) = -tan(x)2. 偶函数如果对于函数f(x),对于任意x,有f(-x) = f(x),则称该函数为偶函数。
简单来说,偶函数的特点是关于y轴对称,即函数图像关于y轴对称。
偶函数的典型例子是余弦函数cos(x)和双曲余弦函数cosh(x)等:- cos(-x) = cos(x)- cosh(-x) = cosh(x)3. 既不是奇函数也不是偶函数对于一些函数,既不满足奇函数的特性,也不满足偶函数的特性,此时我们称该函数为既不是奇函数也不是偶函数。
二、函数的单调性函数的单调性是指函数在定义域上的取值变化趋势。
一个函数可以是单调递增的、单调递减的,或者既不是单调递增也不是单调递减。
1. 单调递增如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≤ f(x2),则称该函数在定义域上是单调递增的。
单调递增函数的典型例子是线性函数y = kx (k > 0)和指数函数y = a^x (a > 1)等。
2. 单调递减如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≥ f(x2),则称该函数在定义域上是单调递减的。
单调递减函数的典型例子是线性函数y = kx (k < 0)和指数函数y = a^x (0 < a < 1)等。
函数单调性与奇偶性1. 函数的单调性在数学中,函数的单调性是指函数在定义域上的增减性质。
具体地说,一个函数被称为是递增的(或非递减的),如果对于任意的 x1 和 x2(x1 < x2)都满足f(x1) <= f(x2);一个函数被称为是递减的(或非递增的),如果对于任意的 x1 和x2(x1 < x2)都满足 f(x1) >= f(x2);一个函数被称为是严格递增的,如果对于任意的 x1 和 x2(x1 < x2)都满足 f(x1) < f(x2);一个函数被称为是严格递减的,如果对于任意的 x1 和 x2(x1 < x2)都满足 f(x1) > f(x2)。
函数的单调性对于函数图像的形状有着重要的影响。
当一个函数递增时,其图像会从左下方向右上方倾斜;当一个函数递减时,其图像会从左上方向右下方倾斜。
严格递增和严格递减是指函数图像不会出现水平的平行线段。
2. 函数的奇偶性函数的奇偶性描述了函数图像关于坐标轴的对称性。
具体地说,一个函数被称为是奇函数,如果对于任意的 x,都满足 f(-x) = -f(x);一个函数被称为是偶函数,如果对于任意的 x,都满足 f(-x) = f(x)。
此外,如果一个函数既不是奇函数也不是偶函数,则被称为是既非奇也非偶函数。
奇函数的图像关于原点对称,即如果点 (x, y) 在函数图像上,则点 (-x, -y) 也在函数图像上;偶函数的图像关于 y 轴对称,即如果点 (x, y) 在函数图像上,则点 (-x, y) 也在函数图像上。
既非奇也非偶函数的图像不具备对称性。
3. 函数单调性与奇偶性的关系对于一个函数而言,其单调性与奇偶性有一定的关系。
如果一个函数是奇函数,则它可能是严格递增的或严格递减的;如果一个函数是偶函数,则它可能是递增的或递减的。
但需要注意的是,一个函数的单调性并不决定它的奇偶性,也就是说,递增(或递减)函数可以是奇函数、偶函数或既非奇也非偶函数。
函数的奇偶性与单调性一、基本概念(1)函数的奇偶性:前提:函数的定义域原点对称..........。
()()()(),x D f x f x f x f x ∈-=-=-任意则为偶函数;若,则为奇函数。
变式:()()()()()()0;10f x f x f x f x f x --±==±=的情况单独验证(整体性质)(2)函数的单调性:(局部性质)()()()()()12121212,,,x x D x x f x fx f x D f x fx D ∈<<>任意若能得到,则在上为增函数;得到,则在上为减函数。
()()()()1212121200f x f x fx f x D D x x x x --><--变式:,函数在上为增函数,,则函数在上为减函数。
y f x ±±⨯⨯⨯±=注:1.关于奇偶性,两函数的公共定义域存在且关于原点对称的前提下奇奇=奇函数,偶偶=偶函数,奇奇=偶函数,偶偶=偶函数,奇偶=奇函数奇偶=非奇非偶函数2.关于单调性:增+增=增函数,减+减=减函数,增-减=增函数,减-增=减函数;在的函数值全为正数(全为负数)的前提下,=减函数,=增函数增减()113.复合函数奇偶性与单调性的结论:()()()()()()(),,y fx y g x y g x y f x yf g x y fx y g x =====⎡⎤⎣⎦==的值域与的定义域有公共部分,则函数存在,其中是外层函数,是内层函数。
内偶外偶、内偶外奇、内奇外偶均为偶函数,只有内奇外奇才为奇函数。
内增外增、内减外减均为增函数,内增外减、内减外增均为减函数。
(3)函数的凹凸性(局部性质):()[]()()()[]()[]()121212,,,,,,22,f x f x x x y f x x a b x x f y f x a b a b ++⎛⎫=∈≠<= ⎪⎝⎭若任意都有则称在上为凹函数如图1,2;反之则称它在上为凸函数如图3,4。
函数的单调性知识要点1、函数单调性定义:如果对于任意的 x 1、x 2∈(a,b),当x 1<x 2时,都有f (x 1)<f (x 2)〔或f (x 1)>f (x 2)〕,那么就说f (x )在这个区间(a,b)上是增函数(或减函数),(a,b)叫这个函数的单调递增(或递减)区间,说f (x )在这一区间上具有(严格的)单调性。
2、函数单调性指的是某个区间上的性质,是定义域中的一部分;要说函数是增函数则必须在整个定义域内递增;函数在每个区间上递增也未必是增函数,如正切函数,y = -1/x 等;3、复合函数单调性:同增异减4、判断函数单调性的方法:①定义法,即比较法;②图象法;③复合函数单调性判断法则;6、一些常用的结论:①在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数②函数(0)k y x k x=+>是奇函数,在(,-∞和)+∞上递增;在)⎡⎣和(0上是递减,进而可确定k y ax x =+型函数的的单调区间。
题型归类题型一:判断或证明函数的单调性例1 利用单调性的定义证明函数3()1f x x =-+在(-∞,+∞)上是减函数。
变式训练:讨论函数y =x +a x,(a >0)的单调性。
题型二:利用单调性求参数的值或取值范围例2(2004湖南)若f (x )= -x 2+2ax 与1)(+=x a x g 在区间[1,2]上都是减函数,则a 的值范围是题型三:函数单调性的应用例3 已知函数)(x f 的定义域是),0(+∞。
当1>x 时,,0)(>x f 且).()()(y f x f xy f +=(1) 求)1(f ;(2)证明)(x f 在定义域上是增函数;(3)如果1)31(-=f ,求满足不等式2)21()(≥--x f x f 的x 的取值范围。
函数的单调性与奇偶性一、函数的单调性初中时我们学过,对于一次函数y=x+1,y随着x的增大而增大,我们称之为增函数;y=-x+l,y随着x的增大而减小,我们称之为减函数。
那么如何定义呢?用数学符号语言如何叙述呢?1.定义:一般地,设函数f(x)的定义域为D:在定义域内的某个区间上任取x1,x2,且x1<x2,若都有f(x1)<f(x2),则称f(x)是单调增函数;在定义域内的某个区间上任取x1,x2,且x1<x2,若都有f(x1)>f(x2),则称f(x)是单调减函数;若函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有单调性,这一区间叫做y=f(x)的单调区间。
理解:初中的说法是描述性的语言,通俗易懂;而高中的定义体现了自变量的变化关系决定因变量的变化关系。
分为两个层次,一是在哪个范围上研究,二是符号语言是怎么样的。
今后学习奇偶性,周期性都是这样定义的。
注:(1)单调函数是对整个定义域而言的,单调性是一个局部概念,是针对定义域内某个区间而言的,通常谈到单调性都会注明单调区间。
(2)单调区间能写闭区间的最好写闭区间,若在区间的端点处没有定义,则写成开区间。
比如,反比例函数不是单调函数,但是它在(-∞,0)上是减函数,在(0,+∞)上也是减函数。
我们把(-∞,0)和(0,+∞)叫的单调减区间。
若表示为(-∞,0)∪(0,+∞)是不对的。
如右图所示的函数,单调区间是R,它是单调函数。
若去掉点(0,1),则单调区间是(-∞,0)∪(0,+∞)。
例1.证明函数在[0,+∞)上是增函数。
分析:判断函数在某一区间上的单调性,从图象上观察是一种常用而又较为粗略的方法,严格证明,需要从单调函数的定义入手。
证明:设x1≥0,x2>0,且x1<x2,则,∵0≤x1<x2, ∴x1-x2<0,∴f(x1)-f(x2)<0 即f(x1)<f(x2)由定义知,在[0,+∞)上是增函数。
函数的单调性与奇偶性①增函数的定义:如果函数f(x)在区间(a,b )上有定义,对于任意的x 1,x 2(a,b ),当x 1<x 2时,都有f(x 1)<f(x 2),那么函数f(x)在区间(a,b )上严格递增。
即函数f(x)在区间(a,b )上是增函数。
函数f(x)在区间(a,b )上严格递增,其图像是上升的。
②减函数的定义:如果函数f(x)在区间(a,b )上有定义,对于任意的x 1,x 2(a,b ),当x 1<x 2时,都有f(x 1)>f(x 2),那么函数f(x)在区间(a,b )上严格递减。
即函数f(x)在区间(a,b )上是减函数。
函数f(x)在区间(a,b )上严格递减,其图像是下降的。
注意:(1)函数的单调性离不开区间。
(2)单调函数是指在定义域上单调递增或单调递减的函数例1、用函数单调性的定义证明(1)在上是增函数。
(2)在上是减函数。
【课堂练习】1、证明在上是增函数。
∈∈32)(2++-=x x x f )41,(-∞1)(3+-=x x f ,0)(-∞x x xf 4)(+=),2(+∞2、证明在上是减函数。
例2、指出下列函数的单调区间(先考虑函数的定义域,再确定要研究的区间)(1) (2)例3、求复合函数的单调性(1) (2)X k b 1 . c o m注意某些判断函数单调性的逆向思维例4:已知函数在上是减函数,求实数的取值范围。
问题:如果该函数的递增区间是,怎样求解。
4)(2-=x xx f ,2)2(-11+=x y 123+-=x x y 245x x y --=1||-=x y 122--=ax x y )41,(-∞a )41,(-∞例5、求对勾函数)0k (>+=x k x y 的单调区间,画这些函数的图象。
问题:已知函数在上是增函数,求实数的取值范围。
奇函数、偶函数的定义: 奇函数:如果函数f(x)对于定义域内的任意x 的值,都有f(-x)=-f(x),那么函数f(x)是奇函数。
函数的奇偶性与单调性1.函数的奇偶性的定义: 如果对于函数f(x)的定义域内任意一个x, (1)都有f(-x)= ,那么称函数f(x)为奇函数;{或f(-x)+f(x)=0} (2)都有f(-x)= ,那么称函数f(x)为偶函数.{或f(-x)-f(x)=0}2.函数的奇偶性的性质:(1)奇、偶函数的定义域关于 对称; (2)若奇函数的定义域包含数0,则f(0)= (3)奇函数的图象关于 对称; (4)偶函数的图象关于 对称. 3.函数单调性的定义:如果函数f(x)对区间D 内的任意,,当<时, (1)都有f()<f(),则称f(x)是区间D 上的 函数; (2)都有f()>f(),则称f(x)是区间D 上的 函数.1、下列函数中,在其定义域上既是奇函数又是增函数的为( )A. B. C. D.2、下列函数既不是奇函数,也不是偶函数,且在上单调递增的是( )A. B. C. D.3、下列函数中,既是偶函数又在上单调递增的是( )A .B .C .D .1x 2x 1x 2x 1x 2x 1x 2x (0,)+∞1y x =+21y x =-+||1y x =+12xy =-4、 函数的递减区间是__________.5、 函数,设,则有( ) A. B. C.D. 6、已知偶函数在上单调递增,且,则满足的的取值范围是( ) A.B. C. D.7、已知f (x )是定义在R 上的奇函数,当x≥0时,f (x )=+2x ,若f ()>f (a ),则实数a 的取值范围是( )A. (﹣∞,﹣1)∪(2,+∞)B. (﹣2,1)C. (﹣1,2)D. (﹣∞,﹣2)∪(1,+∞)8当 时,,则的取值范围是( )9且满足对任意的实数成立,则实数的取值范围是( ) A. B. C. D.10、 函数 在上是增函数,则的范围是_____.2x 22a -12x x ≠a 12x x ≠a ()48,[)48,()1+∞,()18,。
函数的表示方法
列表法,解析法,图像法。
用的最多的是解析法
例1:若12)f x x ,求(x)f
【解析】另1,1t
x t
例2:1
1x
f
x
x
,求()f x 同例1,注意t 的取值范围
例3:已知()f x 是一次函数,且(())41f f x x
,求()f x 【解析】待定系数法,()
(0)f x kx b k
例4:已知()f x 满足1
()
31f x f
x
x
,求()f x
例5:设()f x 为R 上的函数,且(0)
1f ,对任意实数,x y 都有
()()(21)f x
y f x y x y
,求()f x
函数的单调性
定义:()y f x ,定义域为A ,区间I A
单调增函数:任意12,x x I ,12x x ,12()()f x f x
单调减函数:任意12,x x I ,1
2x x ,12()()f x f x 注意点:
①单调区间可以是整个定义域,也可以是定义域的子集,是局部性质 ②函数的单调区间可以包括端点,也可以不包括端点 ③对于具体的函数来讲,有的函数有单调区间,有的没有
④函数在若干个区间上分别有单调性时,单调区间之间一般不能用"∪",而是用“和” ⑤记住常见函数的单调性
,
,0
()(0,0)
0,
,b a
b a
b f x ax
a b
x
b a
b a
⑥否定单调性:举反例
⑦判断单调性:定义法,直接法,图像法
例1:求()(0)m
f x x
m x
的单调区间(单调性重点掌握例1)
解:设1
2x x
1212
1
2
1212
1
21212
()()
()11
()()m m f x f x x x x x m x x x x x x x x m x x
设任意12,[,
)x x m ,且1
2x x
12
12
1
2
12121
212
12
120,0,0
1
()()()()0
()
()
m x x x x x x x x m
f x f x x x x x m x x f
x f x
(x)m
f x
x 在)上单调增,另外3个情况可以用同理解决 结论:(x)(0)m
f x m x
(,],[,0),(0,],[,)m m m m
例2:已知(x)2
a a
f x
x
在(1,)单调增,求a 的范围
例3:求2(x)1f x 的单调区间
【解析】若(x)y g ,[a,b],[m,n]x u 都有单调性,则函数(g(x))y f 在[a,b]x 也有单调性
(x),(),(g(x))
(x),(),(g(x))(x),(),(g(x))
(x),(),(g(x))
g f u f g f u f g f u f g f u f (同号得正异号得负)
函数的奇偶性
定义:(x)y f ,定义域A ,任意x A
偶函数:(x)(x)f f
奇函数:(x)(x)f f
注意点:
①定义域A 内的任意x ②定义域关于原点对称 ③判断奇偶性先看定义域 ④(x)
f c (c 为常数)
(定义域对称)是偶函数; (x)0f 时,(x)f 既是奇函数,也是偶函数
⑤若奇函数的定义域中有0,必有(0)0f ,即该函数的图像过原点 ⑥奇函数的图像关于原点中心对称,偶函数的图像关于y 轴对称
⑦奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反 ⑧两偶函数在公共定义域的和差积商(分母不为0)还是偶函数 两奇函数在公共定义域的和差为奇函数,积商为偶函数
一奇一偶函数在公共定义域内的和差既不是奇函数,也不是偶函数;积商为偶函数或奇函数
例1:判断奇偶性 (1)1(x)(x 1)
1x
f x
(2)22(x)11f x x
(3)22(x 0)
(x)
(x 0)
x x f x x (4)2
1(x)22
x f x
【解析】先判断定义域是否对称,然后再做题
例2:已知函数(x)y f 在R 上为奇函数,且在(0,
)上是增函数,判断(x)f 在
(
,0)的单调性,并证明
解:单调增
证明:设任意1
20x x ,则210x x
(x)f 在(0,
)单调增 12(x )()f f x (x)f 为R 上的奇函数
1212(x )()(x )()f f x f f x (x)f 在(,0)上单调增
例3:已知偶函数(x)f 在[0,)单调增,解不等式2(2x 5)
(2)f f x
【解析】2(2x 5)
(2)f f x
例4:设函数(x)f ,对任意,x y R 都有(x y)
(x)()f f f y 。
当0x 时,
(x)0f ,且(1)2f
(1)求证(x)f 为奇函数 (2)求函数(x)f 在[3,3]上的最值
例5:设函数(x)f 定义域为{0}A x x R x 且,
满足121212
()
()()(,)f x x f x f x x x A
(1)求证(1)(1)0f f (2)求证(x)f 为偶函数
(3)若已知函数在(0,
)上是增函数,解不等式(x)(x 1)0f f。