初中费马点模型,费马点最值问题的解法
- 格式:pdf
- 大小:419.86 KB
- 文档页数:4
模型介绍对于费马点问题,大家已经见得比较多了,相信都能熟练解决,如果所求最值中三条线段的系数有不为1的情况,我们把这类问题归为加权费马点问题,费马点问题属于权为1的特殊情况.加权费马点问题解决方法类似,也是通过旋转进行线段转化,只不过要根据系数的情况选择不同的旋转或放缩方法.【类型一单系数类】当只有一条线段带有不为1的系数时,相对较为简单,一般有两种处理手段,一种是旋转特殊角度,一种是旋转放缩.【类型二多系数类】其实当三条线段的三个系数满足勾股数的关系时,都是符合加权费马点的条件的.经过尝试,我们会发现,以不同的点为旋转中心,旋转不同的三角形得到的系数是不同的,对于给定的系数,我们该如何选取旋转中心呢?我们总结了以下方法:☑1.将最小系数提到括号外;☑2.中间大小的系数确定放缩比例;☑3.最大系数确定旋转中心(例如最大系数在PA前面,就以A为旋转中心),旋转系数不为1的两条线段所在的三角形.例题精讲【例1】.已知,如图在△ABC中,∠ACB=30°,BC=5,AC=6,在△ABC内部有一点D,连接DA、DB、DC,则DA+DB+DC的最小值是.解:如图,过点C作CE⊥CD,且CE=CD,连接DE,将△ADC绕点C逆时针旋转90°得到△FEC,连接FB,过点F作FH⊥BC,交BC的延长线于H,∵CE⊥CD,CE=CD,∴DE=CD,∵将△ADC绕点C逆时针旋转90°得到△FEC,∴EF=AD,∠ACF=90°,CF=AC=6,∴DA+DB+DC=DB+EF+DE,∴当点F,点E,点D,点B共线时,DA+DB+DC有最小值为FB,∵∠FCH=180°﹣∠ACF﹣∠ACB=60°,∴∠CFH=30°,∴CH=CF=3,FH=CH=3,∴BF===,故答案为:.变式训练【变式1-1】.如图,P是边长为2的等边△ABC内的一点,求PA+PB+PC的最小值.解:如图,将△ABP扩大倍,并绕点B逆时针旋转90°至△EBD,连接PD,CE,作EF⊥CB于F,∵△EBD∽△ABP,∴,∴BE=AB=2,BD=,DE=AP,∴PD==2PB,∴当C、P、D、E共线时,PC+PD+DE最小,即:PC+2PB+PA最小为CE,在Rt△BEF中,BE=2,∠EBF=180°﹣∠ABE﹣∠ABC=180°﹣90°﹣60°=30°,∴EF=,BF=2•cos30°=2=3,在Rt△CEF中,EF=,CF=BF+BC=3+2=5,∴CE===2,∵PA+PB+PC=(+2PB+PC),=CE=.∴(PA+PB+PC)最小【变式1-2】.已知:AC=4,BC=6,∠ACB=60°,P为△ABC内一点,求BP+2AP+PC的最小值.解:如图将△ACP绕点A逆时针旋转90°,并使各边扩大倍至△AC′P′,∴PP′=2AP,P′C′=PC,AC′=AC=4,∴BP+2AP+PC=BP+PP′+P′C′≥BC′,∴当B、P、P′、C′共线时,BP+2AP+PC最小,作BE⊥AC于E,作C′D⊥AB,交BA的延长线于D,在Rt△ABE中,CE=BC=3,BE=BC=3,∴AE=AC﹣CE=1,∴AB==2,由△ABE∽△C′AD得,==,∴,∴C′D=,AD=,∴BD=AB+AD=,∴BC′====,∴BP+2AP+PC的最小值为:.【变式1-3】.如图,正方形ABCD的边长为4,点P是正方形内部一点,求PA+2PB+PC的最小值.解:延长DC到H,使得CH=2BC=8,则BH=4,在∠CBH的内部作射线BJ,使得∠PBJ=∠CBH,使得BJ=BP,连接PJ,JH,AH.∵∠PBJ=∠CBH,==,∴=,∴△JBP∽△HBC,∴∠BPJ=∠BCH=90°,∴PJ===2PB,∵∠PBC=∠JBH,=,∴△PBC∽△JBH,∴==,∴HJ=PC∴PA+2PB+PC=PA+PJ+HJ,∵PA+PJ+JH≥AH,∴PA+2PB+PC≥=4,∴PA+2PB+PC的值最小,最小值为4.1.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求PA+PB+PC的最小值.解:(1)若△ABC每个角小于120°时,只需将△BPC绕点B按逆时针旋转60°得到△BP′C′,易知此时有BP=PP′,PC=P′C′,从而PA+PB+PC=AP+PP′+P′C′≥AC′=,当A、P′、P、C′四点共线时取等号,最小值为;(2)若有一个角大于120°时,此时以该点为中心,以180°减去该角大小为旋转角进行旋转,①∠A≥120°时,当P点与A重合时,PA+PB+PC最小,最小值为a+;②∠C≥120°时,当P点与C重合时,PA+PB+PC最小,最小值为a+.故答案为:或a+.2.求的最小值.解:因为=,则对于点T(x,x),A(0,1),,,,,可知y=TA+TB+TC.容易验证△ABC是中心为(0,0)、边长为的等边三角形.根据费马点原理,当T在O点处时、TA+TB+TC有最小值,y min=3.3.已知:等腰Rt△ABC中,∠ACB=90°,AC=BC=1,D是△ABC的费马点(∠ADC=∠BDC=∠ADB =120°),求AD+BD+CD的值.解:如图以BC为边作等边△BCE,连接DE,∴CE=BC,∠CEB=∠BCE=CBE=60°,∵∠BDC=120°,∴点E、B、C、D共圆,∴∠CDE=∠CBE=60°,∵∠ADC=120°,∴∠ADC+∠CDE=180°,∴A、D、E共线,在DE上截取DF=CD,∴△ADF是等边三角形,∴∠BCE=∠DCF=60°,CF=CD,∴∠DCB=∠FCE,∴△CEF≌△CBD(SAS),∴EF=BD,∵∠ADE+∠ADB=60°+120°=180°,∴AD+CD+BD=AD+DF+EF=AE,在△ACE中,CE=AC=1,∠ACE=∠ACB+∠BCE=90°+60°=150°,作EG⊥AC于G,在Rt△CGE中,∠GCE=180°﹣∠ACE=30°,∴GE==,CG=CE•cos30°=,在Rt△AGE中,AG=AC+CG=1+=,GE=,∴===.4.如图,在△ABC中,∠ACB=60°,AC=6,BC=4,点P是△ABC内的一点.则PA+PB+PC的最小值是2.解:如图,将△ACP绕点C顺时针旋转90°至△ECD,连接PD,BE,作EF⊥BC,交BC的延长线于点F,∴PD=PC,DE=PA,∴PA+PB+PC=PA+PD+DE,∴当B,P,D,E共线时,PA+PB+PC最小,最小值为BE的长,在Rt△CEF中,∠ECF=180°﹣∠ACB﹣∠ACE=180°﹣60°﹣90°=30°,CE=AC=4,∴EF=4°=2,CF=4°=4=6,∴BF=BC+CF=12,在Rt△BEF中,BE===2,∴PA+PB+PC最小值,为2,故答案为:2.5.法国数学家费马提出:在△ABC内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA+PB+PC的值为费马距离.经研究发现:在锐角△ABC中,费马点P满足∠APB=∠BPC =∠CPA=120°,如图,点P为锐角△ABC的费马点,且PA=3,PC=4,∠ABC=60°,则费马距离为7+2.解:如图:∵∠APB=∠BPC=∠CPA=120,∠ABC=60°,∴∠1+∠3=60°,∠1+∠2=60°,∠2+∠4=60°,∴∠1=∠4,∠2=∠3,∴△BPC∽△APB∴=,即PB2=12∴PB=2.∴PA+PB+PC=7+2故答案为:7+2.6.已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CPA=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则PA+PB+PC=5;若AB=2,BC=2,AC=4,P为△ABC的费马点,则PA+PB+PC=2.解:如图,过A作AD⊥BC,垂足为D,过B,C分别作∠DBP=∠DCP=30°,则PB=PC,P为△ABC的费马点,∵AB=AC=,BC=2,∴,∴,∴PD=1,∴,∴,∴PA+PB+PC=5;②如图:∵AB=2,BC=2,AC=4,∴AB2+BC2=16,AC2=16,∴AB2+BC2=AC2,∠ABC=90°,∵,∴∠BAC=30°,将△APC绕点A逆时针旋转60°,由旋转可得:△APC≌△AP'C',∴AP'=AP,PC=P'C',AC=AC',∠CAC'=∠PAP'=60°,∴△APP′是等边三角形,∴∠BAC'=90°,∵P为△ABC的费马点,即B,P,P',C'四点共线时候,PA+PB+PC=BC',∴PA+PB+PC=BP+PP'+P'C'=BC'==,故答案为:5,.7.数学上称“费马点”是位于三角形内且到三角形三个顶点距离之和最短的点.现定义:菱形对角线上一点到该对角线同侧两条边上的两点距离最小的点称为类费马点.例如:菱形ABCD,P是对角线BD上一点,E、F是边BC和CD上的两点,若点P满足PE与PF之和最小,则称点P为类费马点.(1)如图1,在菱形ABCD中,AB=4,点P是BD上的类费马点①E为BC的中点,F为CD的中点,则PE+PF=4.②E为BC上一动点,F为CD上一动点,且∠ABC=60°,则PE+PF=2.(2)如图2,在菱形ABCD中,AB=4,连接AC,点P是△ABC的费马点,(即PA,PB,PC之和最小),①当∠ABC=60°时,BP=.②当∠ABC=30°时,你能找到△ABC的费马点P吗?画图做简要说明,并求此时PA+PB+PC的值.解:(1)①取AB的中点E',连接PE',∵四边形ABCD是菱形,∴BC=AB=CD,∠ABP=∠CBP,∵点E,E'分别是AB,BC的中点,∴BE=BE',在△BEP和△BE'P中,,∴△BEP≌△BE'P(SAS),∴PE=PE',∴PE+PF=PE'+PF,∴当E'、P、F三点共线时,PE+PF最小值为E'F的长,∵AE'=DF,AE'∥DF,∴四边形AE'FD是平行四边形,∴E'F=AB=4,∴PE+PF=4,故答案为:4;②由①知PE+PF=E'F,若E、F为动点,则E'F的最小值为AB与CD之间的距离,∴过点C作CH⊥AB于H,在Rt△BCH中,sin∠CBH=,∴CH=2,∵点P是BD上的类费马点∴PE+PF的最小值为2;故答案为:2;(2)①如图2,将△BPC绕点B顺时针旋转60°得△BP'C',连接PP',∴BP=BP',PC=P'C',∠PBP'=60°,∴△BPP'是等边三角形,∴PP'=PB,∴PA+PB+PC=PA+PP'+P'C',∴当P、P'在线段AC'上时,PA+PB+PC最小值为AC'的长,∴连接AC',AC'与BD的交点为P点,∵AB=BC=4,∠ABC=120°,∴∠BAP=∠ABP=30°,AC'=4,∴AP=BP,同理BP'=CP',∴BP=AC'=;故答案为:;②如图3,将△BPC绕点B顺时针旋转60°得△BP'C',连接PP',∴BP=BP',PC=P'C',∠PBP'=60°,∠CBC'=60°,∴△BPP'是等边三角形,∴PP'=PB,∴PA+PB+PC=PA+PP'+P'C',∴当P、P'在线段AC'上时,PA+PB+PC最小值为AC'的长,且点P是△ABC内部的费马点,∵∠ABC'=90°,AB=BC'=4,∴AC'=,∴此时PA+PB+PC的最小值为4.8.【问题情境】如图1,在△ABC中,∠A=120°,AB=AC,BC=5,则△ABC的外接圆的半径值为5.【问题解决】如图2,点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.【问题解决】如图3,正方形ABCD是一个边长为3cm的隔离区域设计图,CE为大门,点E在边BC上,CE=cm,点P是正方形ABCD内设立的一个活动岗哨,到B、E的张角为120°,即∠BPE=120°,点A、D为另两个固定岗哨.现需在隔离区域内部设置一个补水供给点Q,使得Q到A、D、P三个岗哨的距离和最小,试求QA+QD+QP的最小值.(保留根号或结果精确到1cm,参考数据≈1.7,10.52=110.25).解:(1)如图1,作△ABC的外接圆O,作直径AD,连接OB,∵AB=AC,∴AO⊥BC,∠BAO=60°,∵OA=OB,∴△OBA是等边三角形,∴AB=OA=OB,设AD与BC交于点E,BE=BC=,在直角三角形ABE中,∵sin∠BAO=,∴sin60°==,∴AB=5,∴OA=5,故答案为:5;(2)如图2,∵∠BPC=90°,∴点在以BC为直径的圆上,设圆心为点O,则OP=BC=2,∴O,P,A三点线时AP最小,在直角三角形ABO中,AO==2,∵PO=2,∴AP的最小值为:AO﹣PO=2﹣2;(3)如图3,设∠BPE所在圆的圆心为点O,根据(1)可得∠BPE所在圆的半径为=2,以点D为旋转中心,将△DQA顺时针旋转60°,得到△DFN,当N,F,Q,P,O共线时,QA+QD+QP最小,过点N作NG⊥AB交BA的延长线于点G,连接AN,则△AND是等边三角形,过点O作OM⊥GN于M 交BC于点H,连接OB,∵四边形ABCD是正方形,∴AD∥BC∥GN,∴OH⊥BC,∵BE=2,∴BH=,∴OH==1,∵AD=DN,∠ADN=60°,∴△AND是等边三形,且AN=3,∠NAD=60°,∴∠GAN=30°,∴GN=AN sin30°=,AG=AN cos30°=,∴OM=OH+AB+AG=+1+3=+3,MN=GN﹣BH=﹣=,∴ON==≈11,∴QA+QD+QP最小值为:11﹣2=9(cm).9.已知△ABC为等边三角形,边长为4,点D、E分别是BC、AC边上一点,连接AD、BE,且AE=CD.(1)如图1,若AE=2,求BE的长度;(2)如图2,点F为AD延长线上一点,连接BF、CF,AD、BE相交于点G,连接CG,已知∠EBF=60°,CE=CG,求证:BF+GE=2CF;(3)如图3,点P是△ABC内部一动点,顺次连接PA、PB、PC,请直接写出PA+PB+2PC的最小值.(1)解:∵△ABC是等边三角形,∴BC=AC=AB=4,∠ABC=60°,∵AE=2,∴CE=AE=2,∴BE⊥AE,∴∠AEB=90°,∴BE===2;(2)证明:如图1,作DH∥CG交BE于H,作DT∥AC交BE于T,∴∠THD=∠EGC,∠DTH=∠CEG,∠BDH=∠GCD,∵CE=CG,∴∠EGC=∠CEG,∴∠THD=∠DTH,∴DH=DT,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠CAD=∠ABE,AD=BE,∵∠CAD+∠BAD=∠BAC=60°,∴∠ABE+∠BAD=60°,∴∠BGF=∠ABE+∠BAD=60°,∵∠EBF=60°,∴△GBF是等边三角形,∴BF=BG,∠GBF=60°,∴∠ABC=∠GBF,∴∠ABC﹣∠EBC=∠GBF﹣∠EBC,即:∠ABG=∠CBF,∴△ABG≌△CBF(SAS),∴AG=CF,∵∠BGF=∠ACB=60°,∠EGD+∠BGF=180°,∴在四边形EGDC中,∠CEG+∠CDG=180°,∵∠BHD+∠DHT=180°,∠DHT=∠CGE=∠CEG,∴∠BHD=∠CDG,在△BDH和△GCD中,,∴△BDH≌△GCD(AAS),∴DH=CD,∴DT=DH=CD=AE,∵DT∥AC,∴∠EAG=∠TDG,∠AEG=∠DTG,∴△AEG≌△DTG(ASA),∴AG=DG,∴AD=2AG,∴BE=AD=2AG=2CF,∴BG+GE=2CF,∴BF+GE=2CF;(3)如图2,将△BPC绕点B顺时针旋转60°至△BDE,延长BD至F,使DF=BD,延长BE至G,使EG=BE,连接FG,连接AG,∴GF=2DE=2CP,PF=,∴AP+=AP+PF+FG,∴当点A、P、F、G共线时,AP+PF+FG最小为AG,作GH⊥AB交AB的延长线于H,在Rt△BHG中,BG=2BE=2BC=8,∠GBH=180°﹣∠ABC﹣∠CBE=60°,∴BH=8•cos60°=4,GH=8•sin60°=4,∴AH=AB+BH=8,∴AG===4,∴AP+PF+FG最小为:4,=4,∴(AP+)最小∵PA+PB+2PC=(PA+PB+2PC),=4.∴(PA+PB+2PC)最小10.如图1,D、E、F是等边三角形ABC中不共线三点,连接AD、BE、CF,三条线段两两分别相交于D、E、F.已知AF=BD,∠EDF=60°.(1)证明:EF=DF;(2)如图2,点M是ED上一点,连接CM,以CM为边向右作△CMG,连接EG.若EG=EC+EM,CM=GM,∠GMC=∠GEC,证明:CG=CM.(3)如图3,在(2)的条件下,当点M与点D重合时,若CD⊥AD,GD=4,请问在△ACD内部是否存在点P使得P到△ACD三个顶点距离之和最小,若存在请直接写出距离之和的最小值;若不存在,试说明理由.(1)证明:如图1,∵△ABC是等边三角形,∴AC=AB,∠ACB=60°,∴∠CAF+∠DAB=60°,∵∠EDF=60°,∴∠DAB+∠ABD=60°,∴∠CAF=∠ABD,∵AF=BD,∴△ACF≌△BAD(SAS),∴EF=DF;(2)证明:如图2,由(1)知,EF=DF,∠EDF=60°,∴△DEF是等边三角形,∴∠DEF=60°,在EF上截取EN=EM,连接MN,∴CN=CE+EN=CE+EM=EG,∴△EMN是等边三角形,∴∠CNM=60°,∵∠GMC=∠GEC,∠α=∠β,∴∠NCM=∠EGM,∵CM=GM,∴△NCM≌△EGM(SAS),∴∠MEG=∠CNM=60°,∴∠CEG=180°﹣∠MEG﹣∠FED=60°,∴∠GME=∠GEC=60°,∵CM=GM,∴△CMG是等边三角形,∴CG=CM;(3)解:如图3,由(1)(2)知,△DEF和△CDG是等边三角形,∴∠CFD=60°,CD=GD=4,∵CD⊥AD,∴∠CDF=90°,∴AD=CF==,将△DPC绕点D顺时针旋转60°至△DQG,连接AG,∴AD=DQ,CP=QG,∴△PDQ是等边三角形,∴PD=PQ,∴AP+PD+CP=AP+PQ+QG,∴当A、P、Q、G共线时,AP+PD+CP最小=AG,作GH⊥AD于H,在Rt△DGH中,GH=DG=2,DH=DG=2,∴AH=AD+DH=+2=,∴AG===,∴AP+PD+CP的最小值是.11.(1)知识储备①如图1,已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.②定义:在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.(2)知识迁移①我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:如图2,在△ABC的外部以BC BCD及其外接圆,根据(1)的结论,易知线段AD的长度即为△ABC的费马距离.②在图3中,用不同于图2的方法作出△ABC的费马点P(要求尺规作图).(3)知识应用①判断题(正确的打√,错误的打×):ⅰ.任意三角形的费马点有且只有一个√;ⅱ.任意三角形的费马点一定在三角形的内部×.②已知正方形ABCD,P是正方形内部一点,且PA+PB+PC的最小值为,求正方形ABCD的边长.(1)①证明:在PA上取一点E,使PE=PC,连接CE,∵△ABC是等边三角形,∴∠APC=∠ABC=60°,又∵PE=PC,∴△PEC是正三角形,∴CE=CP,∠ACB=∠ECP=60°,∴∠ACE=∠BCP,又∵∠PBC=∠PAC,BC=AC,∴△ACE≌△BCP(ASA),∴AE=PB,∴PB+PC=AE+PE=AP;(2)①如图2,得:PA+PB+PC=PA+(PB+PC)=PA+PD,∴当A、P、D共线时,PA+PB+PC的值最小,∴线段AD的长度即为△ABC的费马距离,故答案为:AD;②过AB和AC分别向外作等边三角形,连接CD,BE,交点即为P.(过AC或AB作外接圆视作与图2相同的方法,不得分).(3)①ⅰ.(√);ⅱ.当三角形有一内角大于或等于120°时,所求三角形的费马点为三角形最大内角的顶点(×)(故答案为:i,√,ii,×;②解:将△ABP沿点B逆时针旋转60°到△A1BP1,如图5,过A1作A1H⊥BC,交CB的延长线于H,连接P1P,易得:A1B=AB,PB=P1B,PA=P1A1,∠P1BP=∠A1BA=60°,∵PB=P1B,∠P1BP=60°,∴△P1PB是正三角形,∴PP1=PB,∵PA+PB+PC的最小值为,∴P1A1+PP1+PC的最小值为,∴A1,P1,P,C在同一直线上,即A1C=设正方形的边长为2x,∵∠A1BA=60°,∠CBA=90°,∴∠1=30°,在Rt△A1HB中,A1B=AB=2x,∠1=30°,得:A1H=x,BH=,在Rt△A1HC中,由勾股定理得:,解得:x1=1x2=﹣1(舍去)∴正方形ABCD的边长为2.12.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如点P为锐角△ABC的费马点.且∠ABC=60°,PA=3,PC=4,求PB的长.(2)如图(2),在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出与S△ABD的和,S△BCE与S△ACF的和是否相等.△ABC的费马点,并探究S△ABC解:(1)∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,∴=∴PB2=PA•PC=12,∴PB=2;(2)证明:在BB'上取点P,使∠BPC=120°.连接AP,再在PB'上截取PE=PC,连接CE.∠BPC=120°,∴∠EPC=60°,∴△PCE为正三角形,∴PC=CE,∠PCE=60°,∠CEB'=120°.∵△ACB'为正三角形,∴AC=B′C,∠ACB'=60°,∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∴∠PCA=∠ECB′,∴△ACP≌△B′CE,∴∠APC=∠B′EC=120°,PA=EB′,∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点.∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=PA+PB+PC.(3)如下图,作CP平分∠ACB,交BC的垂直平分线于点P,P点就是费马点;证明:过A作AM∥FC交BC于M,连接DM、EM,∵∠ACB=60°,∠CAF=60°,∴∠ACB=∠CAF,∴AF∥MC,∴四边形AMCF是平行四边形,又∵FA=FC,∴四边形AMCF是菱形,∴AC=CM=AM,且∠MAC=60°,∵在△BAC与△EMC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△BAC≌△EMC,∵∠DAM=∠DAB+∠BAM=60°+∠BAM∠BAC=∠MAC+∠BAM=60°+∠BAM∴∠BAC=∠DAM在△ABC和△ADM中AB=AD,∠BAC=∠DAM,AC=AM∴△ABC≌△ADM(SAS)故△ABC≌△MEC≌△ADM,在CB上截取CM,使CM=CA,再连接AM、DM、EM(辅助线这样做△AMC就是等边三角形了,后边证明更简便)易证△AMC为等边三角形,在△ABC与△MEC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△ABC≌△MEC(SAS),∴AB=ME,∠ABC=∠MEC,又∵DB=AB,∴DB=ME,∵∠DBC=∠DBA+∠ABC=60°+∠ABC,∠BME=∠BCE+∠MEC=60°+∠MEC,∴∠DBC=∠BME,∴DB∥ME,即得到DB与ME平行且相等,故四边形DBEM是平行四边形,∴四边形DBEM是平行四边形,+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF,∴S△BDM+S△ABD=S△BCE+S△ACF.即S△ABC13.(1)阅读证明①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC 的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图2,已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA.(2)知识迁移根据(1)的结论,我们有如下探寻△ABC(其中∠A,∠B,∠C均小于120°)的费马点和费马距离的方法:第一步:如图3,在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上取一点P0,连接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+ P0D;第三步:根据(1)①中定义,在图3中找出△ABC的费马点P,线段AD的长度即为△ABC的费马距离.(3)知识应用已知三村庄A,B,C构成了如图4所示的△ABC(其中∠A,∠B,∠C均小于120°),现选取一点P 打水井,使水井P到三村庄A,B,C所铺设的输水管总长度最小.求输水管总长度的最小值.解:(1)如图2,延长BP至E,使PE=PC.∵在等边△ABC中,∴∠EPC=∠BAC=60°,∵PC=PE,∴△PCE为等边三角形,∴PC=PE,∠PCE=60°,∴∠BCP+∠PCE=∠ACB+∠BCP,∴∠ACP=∠BCE,∵在△ACP和△BCE中,,∴△ACP≌△BCE(SAS).∴AP=BE=BP+PE=BP+PC;(2)由(1)得出:第一步:如图3,在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上取一点P0,连接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+P0D;第三步:根据(1)①中定义,在图3中找出△ABC的费马点P,线段AD的长度即为△ABC的费马距离.故答案为:P0D;AD.(3)如图4,以BC为边在△ABC的外部作等边△BCD,连接AD.∴AD的长就是△ABC的费马距离.可得∠ABD=90°∴AD==5(km).∴输水管总长度的最小值为5千米.15.如图,在平面直角坐标系xOy中,点B的坐标为(0,2),点D在x轴的正半轴上,∠ODB=30°,OE为△BOD的中线,过B、E两点的抛物线与x轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边△OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P为△ABO内的一个动点,设m=PA+PB+PO,请直接写出m的最小值,以及m取得最小值时,线段AP的长.解:(1)过E作EG⊥OD于G(1分)∵∠BOD=∠EGD=90°,∠D=∠D,∴△BOD∽△EGD,∵点B(0,2),∠ODB=30°,可得OB=2,;∵E为BD中点,∴∴EG=1,∴∴点E的坐标为(2分)∵抛物线经过B(0,2)、两点,∴,可得;∴抛物线的解析式为;(3分)(2)∵抛物线与x轴相交于A、F,A在F的左侧,∴A点的坐标为∴,∴在△AGE中,∠AGE=90°,(4分)过点O作OK⊥AE于K,可得△AOK∽△AEG∴∴∴∴∵△OMN是等边三角形,∴∠NMO=60°∴;∴,或;(6分)(写出一个给1分)(3)如图;以AB为边做等边三角形AO′OA为边做等边三角形AOB′;易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);∵OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∴△AOE≌△B′OB;∴∠B′BO=∠AEO;∵∠BOP=∠EOP′,而∠BOE=60°,∴∠POP'=60°,∴△POP′为等边三角形,∴OP=PP′,∴PA+PB+PO=AP+OP′+P′E=AE;=AE=;即m最小如图;作正△OBE的外接圆⊙Q,根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;∴∠PBE+∠POE=180°,∠BPO+∠BEO=180°;即B、P、O、E四点共圆;易求得Q(,1),则H(,0);∴AH=;由割线定理得:AP•AE=OA•AH,即:AP=OA•AH÷AE=×÷=.故:m可以取到的最小值为当m取得最小值时,线段AP的长为.(如遇不同解法,请老师根据评分标准酌情给分)15.问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,△ABC是边长为1的等边三角形,P为△ABC内部一点,连接PA、PB、PC,求PA+PB+PC 的最小值.折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将△BPA绕点B逆时针旋转60°至△BP'A',连接PP'、A'C,记A′C与AB交于点D,易知BA'=BA=BC=1,∠A'BC=∠A'BA+∠ABC=120°.由BP'=BP,∠P'BP=60°,可知△P'BP 为正三角形,有PB=P'P.故.因此,当A'、P'、P、C共线时,PA+PB+PC有最小值是.学以致用:(1)如图3,在△ABC中,∠BAC=30°,AB=4,CA=3,P为△ABC内部一点,连接PA、PB、PC,则PA+PB+PC的最小值是5.(2)如图4,在△ABC中,∠BAC=45°,,P为△ABC内部一点,连接PA、PB、PC,求的最小值.(3)如图5,P是边长为2的正方形ABCD内一点,Q为边BC上一点,连接PA、PD、PQ,求PA+PD+PQ 的最小值.解:(1)如图3中,将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,在Rt△EAB中,BE==5,∵PA+PB+PC=EF+FP+PB≥BE,∴PA+PB+PC≥5,∴PA+PB+PC的最小值为5.故答案为5.(2)如图4中,将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.在Rt△EAH中,∵∠H=90°,∠EAH=45°,AE=AB=2∴EH=AH=2,在Rt△EHC中,EC==∵PA+PB+PC=FP+EF+PC≥CE,∴PA+PB+PC≥,∴PA+PB+PC的最小值为.(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,作EH⊥BC于H,交AD于G.∵PA+PD+PQ=EF+FP+PQ≥EH,易知EG=AE•sin60°=,GH=AB=2,∴EH=2+,∴PA+PD+PQ≥+2,∴PA+PD+PQ的最小值为+2.16.在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P作PH⊥AR于点H,过点P作PQ∥x轴交抛物线于点Q,过点P作PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M作MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.解(1)∵y=ax2+bx﹣8与y轴的交点为C,令x=0,y=﹣8∴点C(0,﹣8)∴OC=8∵OC=2OA,OB=3OA∴OA=4,OB=12∴A(﹣4,0)B(12,0)将点A代入直线解析式可得0=﹣4k+解得k=∴y=x+将点A和点B代入抛物线中解得a=,b=﹣∴y=x2﹣x﹣8(2)设点P的坐标为(p,p2﹣p﹣8)﹣=4∴抛物线的对称轴为直线x=4∴点Q(8﹣p,)∴PQ=2p﹣8∵PK=2PQ∴PK=4p﹣16如图1所示,延长PK交直线AR于点M,则M(p,)∴PM=﹣()=∵∠PHM=∠MH′A,∠HMP=∠AMH′∴∠HPM=∠MAH′∵直线解析式为y=,令x=0,y=.∴OE=∵OA=4根据勾股定理得∴AE=∴cos∠EAO==∴cos∠HPM===∴PH=∵I=PH﹣PQ∴I=()﹣(2p﹣8)=﹣(p﹣5)2+85∴当p=5时,I取最大值此时点P(5,)∴PQ=2,PK=如图2所示,连接QK,以PQ为边向下做等边三角形PQD,连接KD,在KD取I,使∠PID=60°,以PI为边做等边三角形IPF,连接IQ∵IP=PF,PQ=PD,∠IPQ=∠FPD∴△IPQ≌△FPD∴DF=IQ∴IP+IQ+IK=IF+FD+IK=DK,此时m最小过点D作DN垂直于KP∵∠KPD=∠KPQ+∠QPD=150°∴∠PDN=30°∵DP=PQ=2∴DN=1,根据勾股定理得PN=在△KDN中,KN=5,DN=1,根据勾股定理得KD=2∴m的最小值为2(3)设NM与x轴交于点J∵AM=13,cos∠MAJ=∴AJ=12,根据勾股定理得MJ=5∵OA=4,∴OJ=8∴M(8,5)当x=8时,代入抛物线中,可得y=﹣8∴N(8,﹣8),MN=13在△AJN中,根据勾股定理得AN=4∵点D为x轴上的动点,根据翻折,MN′=13,所以点N′在以M为圆心,13个单位长度为半径的圆上运动,如图3所示①当N′落在AN的垂直平分线上时tan∠MNA==∴tan∠MGJ=,∵MJ=5∴JG=,根据勾股定理得MG=∵MD1为∠GMJ的角平分线∴∴D1J=∴D1(,0)∵MD4也为角平分线∴∠D1MD4=90°根据射影定理得MJ2=JD1•JD4∴JD4=∴D4(,0)②当AN=AN′时D2与点A重合∴D2(﹣4,0)∵MD3为角平分线∴∴JD3=∴D3(,0)综上所述D1(,0),D2(﹣4,0),D3(,0),D4(,0).。
专题67 费马点中三线段模型与最值问题【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.费马点问题解题的核心技巧:旋转60° 构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题【模型展示】问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!【精典例题】1、如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将∠ABG 绕点B 逆时针旋转60°得到∠EBF ,当AG+BG+CG 取最小值时EF 的长( )A . 2B .C . 3D . 3【答案】D【详解】解:如图,∠将∠ABG绕点B逆时针旋转60°得到∠EBF,∠BE=AB=BC,BF=BG,EF=AG,∠∠BFG是等边三角形.∠BF=BG=FG,.∠AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∠当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF∠BC交CB的延长线于F,∠∠EBF=180°-120°=60°,∠BC=4,∠BF=2,,在Rt∠EFC中,∠EF2+FC2=EC2,∠∠CBE=120°,∠∠BEF=30°,∠∠EBF=∠ABG=30°,∠EF=BF=FG,∠EF=13, 故选:D .2、如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,MG =O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________【答案】【详解】如图,将∠MOG 绕点M 逆时针旋转60°,得到∠MPQ ,显然∠MOP 为等边三角形,∠,OM +OG =OP +PQ ,∠点O 到三顶点的距离为:ON +OM +OG =ON +OP +PQ ,∠当点N 、O 、P 、Q 在同一条直线上时,有ON +OM +OG 最小,此时,∠NMQ =75°+60°=135°,过Q 作QA∠NM 交NM 的延长线于A ,则∠MAQ=90°,∠∠AMQ =180°-∠NMQ=45°,∠MQ =MG =∠AQ =AM =MQ•cos45°=4,∠NQ ==故答案为:3、如图,四边形 ABCD 是菱形,A B =6,且∠ABC =60° ,M 是菱形内任一点,连接AM ,BM ,CM ,则AM +BM +CM 的最小值为________.【答案】【详解】将∠BMN 绕点B 顺时针旋转60度得到∠BNE ,∠BM =BN ,∠MBN =∠CBE =60°,∠MN=BM∠MC=NE∠AM +MB +CM =AM +MN +NE .当A 、M 、N 、E 四点共线时取最小值AE .∠AB =BC =BE =6,∠ABH =∠EBH =60°,∠BH ∠AE ,AH =EH ,∠BAH =30°,∠BH =12AB =3,AH =∠AE =2AH =故答案为4、如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.【详解】如图将∠ABP绕点A顺时针旋转60°得到∠AMG.连接PG,CM.∠AB=AC,AH∠BC,∠∠BAP=∠CAP ,∠PA=PA ,∠∠BAP∠∠CAP (SAS ),∠PC=PB ,∠MG=PB ,AG=AP ,∠GAP=60°,∠∠GAP 是等边三角形,∠PA=PG ,∠PA+PB+PC=CP+PG+GM ,∠当M ,G ,P ,C 共线时,PA+PB+PC 的值最小,最小值为线段CM 的长,∠AP+BP+CP 的最小值为,∠∠BAM=60°,∠BAC=30°,∠∠MAC=90°,∠AM=AC=2,作BN∠AC 于N .则BN=12AB=1,CN=25、如图,四边形ABCD 是正方形,∠ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.∠ 求证:∠AMB∠∠ENB ;∠ ∠当M 点在何处时,AM +CM 的值最小;∠当M 点在何处时,AM +BM +CM 的值最小,并说明理由;∠ 当AM +BM +CM 的最小值为13 时,求正方形的边长.【答案】(1)∠AMB∠∠ENB ,证明略。
几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离. 易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。
八年级解题模型之费马点【知识梳理】费马点的定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。
它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
费马点的性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值快速求解:费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值【例题精讲】例题1. 已知:△ABC是锐角三角形,G是三角形内一点。
∠AGC=∠AGB=∠BGC=120°.求证:GA+GB+GC的值最小.证明:将△BGC逆时针旋转60°,连GP,DB.则△CGB≌△CPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。
∵∠AGC=120°, ∠CGP=60°.∴A、G、P三点一线。
∵∠CPD=120°, ∠CPG=60°.∴G、P、D三点一线。
∴AG、GP、PD三条线段同在一条直线上。
∵GA+GC+GB=GA+GP+PD=AD.∴G点是等腰三角形内到三个顶点的距离之和最小的那一点例题2. 已知正方形ABCD内一动点E到A、B、C26解 如图2,连接AC ,把△AEC 绕点C 顺时针旋转60°,得到△GFC ,连接EF 、BG 、A G , 可知△EFC 、△AGC 都是等边三角形,则EF =CE .又FG =AE ,∴AE +BE +CE = BE +EF +FG .∵ 点B 、点G 为定点(G 为点A 绕C 点顺时针旋转60°所得). ∴ 线段BG 即为点E 到A 、B 、C 三点的距离之和的最小值,此时E 、F 两点都在BG 上. 设正方形的边长为a ,那么 BO =CO =22a ,GC 2a , GO =62a . ∴ BG=BO +GO =22a +62a . ∵ 点E 到A 、B 、C 26∴22a +62a 26a =2. 注 本题旋转△AEB 、△BEC 也都可以,但都必须绕着定点旋转,读者不妨一试.例题3. 如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.600mDACPB H【解答】3500600+,线段A 1E 为最短.【举一反三】1.如图,P 是边长为1的等边ABC ∆内的任意一点,求t PA PB PC =++的取值范围.P 1EA 1P解:将BPC ∆绕点B 顺时针旋转60°得到''BP C ∆, 易知'BPP ∆为等边三角形.从而''''PA PB PC PA PP P C AC ++=++≥ (两点之间线段最短),从而3t ≥.过P 作BC 的平行线分别交AB AC 、于点M N 、, 易知MN AN AM ==.因为在BMP ∆和PNC ∆中, PB MP BM <+①, PC PN NC <+②。
第十三讲二次函数--费马点最值必备知识点费马点:三角形内的点到三个顶点距离之和最小的点【结论】如图,点M 为锐角△ABC 内任意一点,连接AM 、BM 、CM ,当M 与三个顶点连线的夹角为120°时,MA+MB+MC的值最小【证明】以AB 为一边向外作等边三角形△ABE ,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .∵△ABE 为等边三角形,∴AB =BE ,∠ABE =60°.而∠MBN =60°,∴∠ABM =∠EBN .在△AMB 与△ENB 中,∵,∴△AMB ≌△ENB (SAS ).连接MN .由△AMB ≌△ENB 知,AM =EN .∵∠MBN =60°,BM =BN ,∴△BMN 为等边三角形.∴BM =MN .∴AM +BM +CM =EN +MN +CM .知识导航此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点。
点P 为锐角△ABC 内任意一点,连接AP 、BP 、CP ,求xAP+yBP+zCP 最小值解决办法:第一步,选定固定不变线段;第二步,对剩余线段进行缩小或者放大。
如:保持BP 不变,xAP+yBP+zCP=)(y CP yz BP AP y x ++,如图所示,B 、P 、P 2、A 2四点共线时,取得最小值。
例:点P 为锐角△ABC 内任意一点,∠ACB=30°,BC=6,AC=5,连接AP 、BP 、CP ,求3AP+4BP+5CP 的最小值【分析】将△APC 绕C 点顺时针转90°到△A 1P 1C ,过P 2作P 1A 1的平行线,交CA 1于点A 2,且满足A 2P 2:P 1A 1=3:4.在Rt △PCP 2中,设PC=a ,由△CA 2P 2∽△CA 1P 1得CP 2=3a/4,则PP2=5a/4。
费马点最值问题一.模型例题(共4小题)1.问题的提出:如果点P 是锐角ABC ∆内一动点,如何确定一个位置,使点P 到ABC ∆的三顶点的距离之和PA PB PC ++的值为最小?问题的转化:把APC ∆绕点A 逆时针旋转60度得到△AP C '',连接PP ',这样就把确定PA PB PC ++的最小值的问题转化成确定BP PP P C +'+''的最小值的问题了,请你利用图1证明:PA PB PC BP PP P C ++=+'+''.问题的解决:当点P 到锐角ABC ∆的三顶点的距离之和PA PB PC ++的值为最小时,请你用一定的数量关系刻画此时的点P 的位置120APB APC ∠=∠=︒.问题的延伸:如图2是有一个锐角为30︒的直角三角形,如果斜边为2,点P 是这个三角形内一动点,请你利用以上方法,求点P 到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:60PAP '∠=︒,PA P A '=,APP '∴∆是等边三角形,PP PA '∴=,PC P C '= ,PA PB PC BP PP P C ∴++=+'+''.问题的解决:满足:120APB APC ∠=∠=︒时,PA PB PC ++的值为最小;理由是:如图2,把APC ∆绕点A 逆时针旋转60度得到△AP C '',连接PP ',由“问题的转化”可知:当B 、P 、P '、C '在同一直线上时,PA PB PC ++的值为最小,120APB ∠=︒ ,60APP '∠=︒,180APB APP '∴∠+∠=︒,B ∴、P 、P '在同一直线上,由旋转得:120AP C APC ''∠=∠=︒,60AP P '∠=︒ ,180AP C AP P '''∴∠+∠=︒,P ∴、P '、C '在同一直线上,B ∴、P 、P '、C '在同一直线上,∴此时PA PB PC ++的值为最小,故答案为:120APB APC ∠=∠=︒;问题的延伸:如图3,Rt ACB ∆中,2AB = ,30ABC ∠=︒,1AC ∴=,BC =把BPC ∆绕点B 逆时针旋转60度得到△BP C '',连接PP ',当A 、P 、P '、C '在同一直线上时,PA PB PC ++的值为最小,由旋转得:BP BP '=,PBP '∠=,PC P C ''=,BC BC '=,BPP ∴∆'是等边三角形,PP PB '∴=,30ABC APB CBP APB C BP ''∠=∠+∠=∠+∠=︒ ,90ABC '∴∠=︒,由勾股定理得:AC '==,PA PB PC PA PP P C AC ''''∴++=++==则点P .2.如图,ABC ∆中,AB AC =,点P 为ABC ∆内一点,120APB BAC ∠=∠=︒.若4AP BP +=,则PC 的最小值为()A .2B .23C .5D .3【解答】解:把APB ∆绕点A 逆时针旋转120︒得到△AP C ',作AD PP ⊥'于D ,则AP AP =',120PAP ∠'=︒,120AP C APB ∠'=∠=︒,30AP P ∴∠'=︒,3PP ∴'=,90PP C ∠'=︒,4AP BP += ,4BP PA ∴=-,在Rt △PP C '中,22222(3)(4)4(1)12PC P P P C PA PA PA ='+'+--+,则PC 1223=,故选:B .3.如图,2的等边ABC ∆,平面内存在点P ,则3PA PB PC +的取值范围为大于22.【解答】解:如图,将BPC ∆绕点B 顺时针旋转120︒,得△BP C '',连接PP ',过点B 作BD PP ⊥'于点D ,ABC ∆ 是等边三角形,60ABC ∴∠=︒,AB BC BC =='=,AC AB BC ∴'=+'=120CBC PBP ∠'=∠'=︒ ,180ABC ABC CBC ∴∠'=∠+∠'=︒,∴点A ,B ,C '在同一条直线上,BP BP =' ,120PBP ∠'=︒,BD PP ⊥',30BPP BP P ∴∠'=∠'=︒,PD ∴=,2PP PD ∴'==,PA PP PC PA PC AC ∴+'+=++>',因为等边三角形的边长为PA PC ∴+的取值范围为大于等于故答案为:大于等于.4.问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,ABC ∆是边长为1的等边三角形,P 为ABC ∆内部一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将BPA ∆绕点B 逆时针旋转60︒至△BP A '',连接PP '、A C ',记A C '与AB 交于点D ,易知1BA BA BC '===,120A BC A BA ABC ''∠=∠+∠=︒.由BP BP '=,60P BP '∠=︒,可知△P BP '为正三角形,有PB P P '=.故PA PB PC P A P P PC A C '''++=++.因此,当A '、P '、P 、C 共线时,PA PB PC ++有最小值是学以致用:(1)如图3,在ABC ∆中,30BAC ∠=︒,4AB =,3CA =,P 为ABC ∆内部一点,连接PA 、PB 、PC ,则PA PB PC ++的最小值是5.(2)如图4,在ABC ∆中,45BAC ∠=︒,3AB CA ==,P 为ABC ∆内部一点,连接PA 、PB 、PC ,PB PC ++的最小值.(3)如图5,P 是边长为2的正方形ABCD 内一点,Q 为边BC 上一点,连接PA 、PD 、PQ ,求PA PD PQ ++的最小值.【解答】解:(1)如图3中,将APC ∆绕点A 逆时针旋转60︒得到AFE ∆,易知AFP ∆是等边三角形,90EAB ∠=︒,在Rt EAB ∆中,5BE ==,PA PB PC EF FP PB BE ++=++ ,5PA PB PC ∴++,PA PB PC ∴++的最小值为5.故答案为5.(2)如图4中,将APB ∆绕点A 逆时针旋转90︒得到AFE ∆,易知AFP ∆是等腰直角三角形,135EAB ∠=︒,作EH BA ⊥交BA 的延长线于H .在Rt EAH ∆中,90H ∠=︒ ,45EAH ∠=︒,AE AB ==2EH AH ∴==,在Rt EHC ∆中,EC ==PB PC FP EF PC CE ++=++,∴PB PC ++,∴PB PC ++(3)如图5中,将APD∆是等边三角形,∆绕点A逆时针旋转60︒得到AFE∆,则易知AFP作EH BC⊥于H,交AD于G.,PA PD PQ EF FP PQ EH++=++易知sin60=⋅︒=2EG AE==,GH AB∴=+EH2∴++,PA PD PQ2∴++2+.PA PD PQ二.同步练习(共20小题)5.法国数学家费马提出:在ABC∆内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA PB PC∆中,费马点P满足++的值为费马距离.经研究发现:在锐角ABCPC=,60∠=︒,则ABCPA=,4∆的费马点,且3APB BPC CPA120∠=∠=∠=︒,如图,点P为锐角ABC费马距离为7+【解答】解:如图:120APB BPC CPA∠=∠=∠=,60ABC∠=︒,1360∴∠+∠=︒,1260∠+∠=︒,2460∠+∠=︒,14∴∠=∠,23∠=∠,BPC APB∴∆∆∽∴PC PB PB PA=,即212PB=PB∴=.7PA PB PC∴++=+故答案为:7+.6.在ABC∆中,90ACB∠=︒,点P为ABC∆内一点.(1)如图1,连接PB,PC,将BCP∆沿射线CA方向平移,得到DAE∆,点B,C,P的对应点分别为点D,A,E,连接CE.如果BP CE⊥,3BP=,6AB=,则CE=(2)如图2,连接PA,PB,PC,当8AC BC==时,求PA PB PC++的最小值.【解答】解:(1)如图1,连接BD、CD,BCP ∆ 沿射线CA 方向平移,得到DAE ∆,//BC AD ∴且BC AD =,90ACB ∠=︒ ,∴四边形BCAD 是矩形,6CD AB ∴==,3BP = ,3DE BP ∴==,BP CE ⊥ ,//BP DE ,DE CE ∴⊥,∴在Rt DCE ∆中,CE ===;故答案为:(2)如图2所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,连接BN .由旋转可得,AMN ABP ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当8AC BC ==时,AB =,当C 、P 、M 、N 四点共线时,由CA CB =,NA NB =可得CN 垂直平分AB ,12AQ AB CQ ∴==,NQ ==,∴此时CN CP PM MN PA PB PC =++=++=+.即PA PB PC ++的最小值为+.7.如图,在ABC ∆中,3AB =,2AC =,60BAC ∠=︒,P 为ABC ∆内一点,则PA PB PC ++的最小值为【解答】解:如图,将ABP ∆绕着点A 逆时针旋转60︒,得到AEH ∆,连接EP ,CH ,过点C 作CN AH ⊥,交HA 的延长线于N ,ABP AHE ∴∆≅∆,BAP HAE ∴∠=∠,AE AP =,3AH AB ==,60BAH ∠=︒,60HAB EAP ∴∠=∠=︒,AEP ∴∆是等边三角形,AE AP EP ∴==,AP BP PC PC EP EH ∴++=++,∴当点H ,点E ,点P ,点C 共线时,PA PB PC ++有最小值HC ,18060CAN BAH BAC ∠=︒-∠-∠=︒ ,CN AN ⊥,30ACN ∴∠=︒,112AN AC ∴==,CN ==,4HN AH AN ∴=+=,HC ∴=,PA PB PC ∴++,8.如图,ABC ∆中,30ABC ∠=︒,5AB =,6BC =,P 是ABC ∆内部的任意一点,连接PA 、PB 、PC ,则PA PB PC ++【解答】解:如图,以BP 为边作等边三角形BPD ,将BPC ∆绕点B 顺时针旋转60︒,得到BDC '∆,连接AC ',BPD ∆ 是等边三角形,BP BD DP ∴==,60PBD ∠=︒,将BPC ∆绕点B 顺时针旋转60︒,PC C D '∴=,PBC DBC '∠=∠,6BC BC '==,603090ABC ABP PBD DBC PBD ABC PBC ''∴∠=∠+∠+∠=∠+∠+∠=︒+︒=︒,PA PB PC PA PD DC '++=++ ,∴当点A ,点P ,点D ,点C '共线时,PA PB PC ++有最小值为PC ',PC '∴===,9.如图,在ABC ∆中,90ACB ∠=︒,点P 为ABC ∆内一点,连接PA 、PB 、PC ,当3AC =,6AB =时,则PA PB PC ++的最小值是【解答】解:如图所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到ANM ∆,连接BN .由旋转可得,AMN APB ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当3AC =,6AB =时,BC =,1sin 2ABC ∴∠=,30ABC ∴∠=︒,60ABN ∠=︒ ,90CBN ∴∠=︒当C 、P 、M 、N 四点共线时,PA PB PC ++的值最小,最小值CN ===,故答案为:.10.已知,如图在ABC ∆中,30ACB ∠=︒,5BC =,6AC =,在ABC ∆内部有一点D ,连接DA 、DB 、DC ,则DA DB ++【解答】解:如图,过点C 作CE CD ⊥,且CE CD =,连接DE ,将ADC ∆绕点C 逆时针旋转90︒得到FEC ∆,连接FB ,过点F 作FH BC ⊥,交BC 的延长线于H ,CE CD ⊥ ,CE CD =,DE ∴=,将ADC ∆绕点C 逆时针旋转90︒得到FEC ∆,EF AD ∴=,90ACF ∠=︒,6CF AC ==,DA DB DB EF DE ∴++=++,∴当点F ,点E ,点D ,点B 共线时,DA DB ++有最小值为FB ,18060FCH ACF ACB ∠=︒-∠-∠=︒ ,30CFH ∴∠=︒,132CH CF ∴==,FH ==,BF ∴==11.如图,在ABC ∆中,30BAC ∠=︒,AC =,8AB =,点D 在ABC ∆内,连接DA 、DB 、DC ,则DC DB ++的最小值是【解答】解:如图,将ADB ∆绕点A 顺时针旋转120︒得到AEF ∆,连接DE ,CF ,过点F 作FH CA ⊥交CA的延长线于H .AD AE = ,120DAE ∠=︒,BD EF =,DE ∴=,DC DB DA DC DE EF ∴++=++,CD DE EF CF ++ ,在Rt ABC ∆中,90ACB ∠=︒,8AB =,30BAC ∠=︒,cos30AB AB ∴=⋅︒=在Rt AFH ∆中,90H ∠=︒,8AF AB ==,30FAH ∠=︒,142FH AF ∴==,AH ==,CH AC AH ∴=+=,CF ∴===,CD DB ∴+,CF ∴的最小值为.故答案为:.12.如图,ABC ∆中,30ABC ∠=︒,4AB =,5BC =,P 是ABC ∆内部的任意一点,连接PA ,PB ,PC ,则PA PB PC ++【解答】解:如图,将ABP ∆绕着点B 逆时针旋转60︒,得到DBE ∆,连接EP ,CD ,ABP DBE∴∆≅∆ABP DBE ∴∠=∠,4BD AB ==,60PBE ∠=︒,BE PE =,AP DE =,BPE ∴∆是等边三角形EP BP∴=AP BP PC PC EP DE∴++=++∴当点D ,点E ,点P ,点C 共线时,PA PB PC ++有最小值CD30ABC ABP PBC∠=︒=∠+∠ 30DBE PBC ∴∠+∠=︒90DBC ∴∠=︒CD ∴==,13.如图,P 为正方形ABCD 内的动点,若2AB =,则PA PB PC ++【解答】解:将BPC ∆绕点B 顺时针旋转60︒,得到△BP C '',BP BP '∴=,60PBP '∠=︒,BPC ∆≅△BP C '',BPP '∴∆是等边三角形,PC P C ''=,PBC P BC ''∠=∠,2BC BC '==,BP PP '∴=,PA PB PC AP PP P C '''∴++=++,∴当AP ,PP ',P C ''在一条直线上,PA PB PC ++有最小值,最小值是AC '的长,60150ABP PBP P BC ABP PBC '''∠+∠+∠=︒+∠+∠=︒ ,30EBC ∴∠=︒,1EC '∴=,BE '==,2AE ∴=+,AF ∴===,14.如图,在边长为6的正方形ABCD 中,点M ,N 分别为AB 、BC 上的动点,且始终保持BM CN =.连接MN ,以MN 为斜边在矩形内作等腰Rt MNQ ∆,若在正方形内还存在一点P ,则点P 到点A 、点D 、点Q 的距离之和的最小值为3+【解答】解:设BM x =,则6BN x =-,222MN BM BN =+ ,2222(6)2(3)18MN x x x ∴=+-=-+,∴当3x =时,MN 最小,此时Q 点离AD 最近,3BM BN == ,Q ∴点是AC 和BD 的交点,22AQ DQ AD ∴===,过点Q 作QM AD '⊥于点M ',在ADQ ∆内部过A 、D 分别作30M DP M AP ∠'=∠'=︒,则120APD APQ DPQ ∠=∠=∠=︒,点P 就是费马点,此时PA PD PQ ++最小,在等腰Rt AQD ∆中,AQ DQ ==,QM AD '⊥,232AM QM AQ ∴='==,故cos30AM PA '︒=,解得:PA =PM '=故3QP =PD =,则233PA PD PQ ++=⨯+=+,∴点P 到点A 、点D 、点Q 的距离之和的最小值为3+,故答案为3+.15.如图,点D 为等边三角形ABC 内一点,且120BDC ∠=︒,则AD BD 的最小值为32.【解答】解:如图,将BCD ∆绕点C 顺时针旋转60︒得到ACE ∆,连接DE ,过点A 作AH DE ⊥于H .CD CE = ,60DCE ∠=︒,DCE ∴∆是等边三角形,60EDC DEC ∴∠=∠=︒,120BDC AEC ∠=∠=︒ ,60AED ∴∠=︒,BD AE = ,∴AD AD BD AE=,AH DE ⊥ ,AD AH ∴,∴ADAH BD AE,90AHE ∠=︒ ,60AEB ∠=︒,∴sin 60AH AE =︒=,∴AD BD ,∴AD BD 的最小值为32.16.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为4+【解答】解:将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形,AM MM ∴=',MA MD ME D M MM ME ∴++='+'+,D M ∴'、MM '、ME 共线时最短,由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得4D E D G GE '='+=+,MA MD ME ∴++的最小值为4+17.如图,在直角三角形ABC ∆内部有一动点P ,90BAC ∠=︒,连接PA ,PB ,PC ,若6AC =,8AB =,求PA PB PC ++的最小值【解答】解:如图,将ACP ∆绕点C 顺时针旋转60︒得到ECF ∆,连接PF ,BE ,作EH BA ⊥交BA 的延长线于H .由旋转的旋转可知:PA EF =,PCF ∆,ACE ∆是等边三角形,PF PC ∴=,PA PB PC EF FP PB ∴++=++,EF FP PB BE ++ ,∴当B ,P ,F ,E 共线时,PA PB PC ++的值最小,90BAC ∠=︒ ,60CAE ∠=︒,180906030HAE ∴∠=︒-︒-︒=︒,EH AH ⊥ ,6AE AC ==,132EH AE ∴==.AH ==,BE ∴===,PA PB PC ∴++的最小值为故答案为18.若点P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆的费马点.当三角形的最大角小于120︒时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点”.即PA PB PC ++最小.(1)如图1,向ABC ∆外作等边三角形ABD ∆,AEC ∆.连接BE ,DC 相交于点P ,连接AP .①证明:点P 就是ABC ∆费马点;②证明:PA PB PC BE DC ++==;(2)如图2,在MNG ∆中,MN =,75M ∠=︒,3MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是【解答】(1)证明:①如图11-中,作AM CD ⊥于M ,AN BE ⊥于N 设AB 交CD 于O .ADB ∆ ,ACE ∆都是等边三角形,AD AB ∴=,AC AE =,60DAB CAE ∠=∠=︒,DAC BAE ∴∠=∠,()ADC ABE SAS ∴∆≅∆,CD BE ∴=,DAC ABE S S ∆∆=,ADC ABE ∠=∠,AM CD ⊥ ,AN BE ⊥,∴1122CD AM BE AN ⋅⋅=⋅⋅,AM AN ∴=,APM APN ∴∠=∠,AOD POB ∠=∠ ,60OPB DAO ∴∠=∠=︒,60APN APM ∴∠=∠=︒,120APC BPC APC ∴∠=∠=∠=︒,∴点P 是就是ABC ∆费马点.②在线段PD 上取一点T ,使得PT PA =,连接AT .60APT ∠=︒ ,PT PA =,APT ∴∆是等边三角形,60PAT ∴∠=︒,AT AP =,60DAB TAP ∠=∠=︒ ,DAT BAP ∴∠=∠,AD AB = ,()DAT BAP SAS ∴∆≅∆,PB DT ∴=,PD DT PT PA PB ∴=+=+,PA PB PC PD PC CD BE ∴++=+==.(2)解:如图2:以MG 为边作等边三角形MGD ∆,以OM 为边作等边OME ∆.连接ND ,作DF NM ⊥,交NM 的延长线于F.MGD ∆ 和OME ∆是等边三角形OE OM ME ∴==,60DMG OME ∠=∠=︒,MG MD =,GMO DME∴∠=∠在GMO ∆和DME ∆中,OM ME GMO DME MG MD =⎧⎪∠=∠⎨⎪=⎩,()GMO DME SAS ∴∆≅∆,OG DE∴=NO GO MO DE OE NO∴++=++∴当D 、E 、O 、N 四点共线时,NO GO MO ++值最小,75NMG ∠=︒ ,60GMD ∠=︒,135NMD ∴∠=︒,45DMF ∴∠=︒,3MG = 322MF DF ∴==,3211222NF MN MF ∴=+==,ND ∴=MO NO GO ∴++,,19.问题提出(1)如图①,在ABC ∆中,2BC =,将ABC ∆绕点B 顺时针旋转60︒得到△A B C ''',则CC '=2;问题探究(2)如图②,在ABC ∆中,3AB BC ==,30ABC ∠=︒,点P 为ABC ∆内一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值,并说明理由;问题解决(3)如图③,在四边形ABCD 中,//AD BC ,6AB =,4AD =,60ABC BCD ∠=∠=︒.在四边形ABCD 内部有一点,满足120APD ∠=︒,连接BP 、CP ,点Q 为BPC ∆内的任意一点,是否存在一点P 和一点Q ,使得PQ BQ CQ ++有最小值?若存在,请求出这个最小值;若不存在,请说明理由.【解答】解:(1)如图①,由旋转的性质可知:BCC ∆'是等边三角形,2CC BC ∴'==,故答案为2.(2)如图②,将ABP ∆绕点B 逆时针旋转60︒得到BFE ∆,连接PF ,EC .由旋转的性质可知:PBF ∆是等边三角形,PB PF ∴=,PA EF = ,PA PB PC PC PF EF ∴++=++,PC PF EF EC ++ ,∴当P ,F 在直线EC 上时,PA PB PC ++的值最小,易证3BC BE BA ===,90CBE ∠=︒,EB BC ⊥ ,EC ∴==,PA PB PC ∴++的最小值为.(3)(3)如图③1-中,将PBQ ∆绕点B 逆时针旋转60︒得到EBG ∆,则PQ EG =,BQG ∆是等边三角形,BQ QG ∴=,PQ EG =,PQ BQ CQ EG GQ QC EC ∴++=++,EC ∴的值最小时,QP QB QC ++的值最小,如图③2-中,延长BA 交CD 的延长线于J ,作ADJ ∆的外接圆O ,将线段BO ,BP 绕点B 逆时针旋转60︒得到线段BO ',BE ,连接EO ',OB ,OP .易证()BEO BPO SAS ∆'≅∆,EO OP ∴'=,180APD AJD ∠+∠=︒ ,A ∴,P ,D ,J 四点共圆,OP ∴=,433EO ∴'=,∴点E 的运动轨迹是以O '为圆心,433为半径的圆,∴当点E 在线段CO '上时,EC 的值最小,最小值CO EO ='-',连接OO',延长OO'到R,使得O R OO'=',连接BR,则90OBR∠=︒,作RH CB⊥交CB的延长线于H,O T CH'⊥于T,OM BC⊥于M.在Rt OBM∆中,5BM=,OM=1433OB∴=,14BR∴==,由BHR OMB∆∆∽,∴RH BRBM OB=,RH∴=,////HR O T OM',OO RO'=',TM TH∴=,2RH OMO T+∴'==,3BT∴==,3CO∴'==,CO EO∴'-'=.QP QB QC∴++的最小值为.20.如图1,在ABC∆中,90ACB∠=︒,点P为ABC∆内一点.(1)连接PB,PC,将BCP∆沿射线CA方向平移,得到DAE∆,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP CE⊥,3BP=,6AB=,求CE的长.(2)如图3,连接PA ,PB ,PC ,求PA PB PC ++的最小值.小慧的作法是:以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,那么就将PA PB PC ++的值转化为CP PM MN ++的值,连接CN ,当点P 落在CN 上时,此题可解.请你参考小慧的思路,在图3中证明PA PB PC CP PM MN ++=++.并直接写出当4AC BC ==时,PA PB PC ++的最小值.【解答】解:(1)①补全图形如图所示;②如图,连接BD 、CDBCP ∆ 沿射线CA 方向平移,得到DAE ∆,//BC AD ∴且BC AD =,90ACB ∠=︒ ,∴四边形BCAD 是矩形,6CD AB ∴==,3BP = ,3DE BP ∴==,BP CE ⊥ ,//BP DE ,DE CE ∴⊥,∴在Rt DCE ∆中,223692733CE CD DE =-=-==;(2)证明:如图所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,连接BN .由旋转可得,AMN ABP ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当4AC BC ==时,AB =,当C 、P 、M 、N 四点共线时,由CA CB =,NA NB =可得CN 垂直平分AB ,12AQ AB CQ ∴==,NQ ==,∴此时CN CP PM MN PA PB PC =++=++=+.21.(1)阅读材料:如图(1),四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM 、CM ,①求证:AMB ENB ∆≅∆;②当M 点在何处时,AM CM +的值最小;③当M 点在何处时,AM BM CM ++的值最小,并说明理由;(2)根据阅读材料所提供的数学思想和方法,完成下面的题目:如图(2),A 、B 、C 、D 四个城市恰好为一个正方形的四个顶点,要建立一个公路系统,使每两个城市之间都有公路相通,并使整个公路系统的总长为最短,应当如何修建?请画出你的设计图.【解答】解:(1)① 四边形ABCD 是正方形,ABE ∆是等边三角形,AB BC BE ∴==,60ABE ∠=︒,将BM 绕点B 逆时针旋转60︒得到BN ,BN BM ∴=,60MBN ∠=︒,ABE MBN ∴∠=∠,EBN ABM ∴∠=∠,且AB BE =,MB NB =,()AMB ENB SAS ∴∆≅∆;②当M 点落在BD 的中点时,A 、M 、C 三点共线时,AM CM +的值最小;③如图1,连接CE ,当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,理由如下:连接MN ,由(1)知,AMB ENB ∆≅∆,AM EN ∴=,60MBN ∠=︒ ,MB NB =,BMN ∴∆是等边三角形,BM MN ∴=,AM BM CM EN MN CM ∴++=++,根据“两点之间线段最短”,得EN MN CM EC ++=最短,∴当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,即等于EC 的长;(2)如图2,作等边ABQ ∆和等边CDP ∆,等边CEH ∆,同理可证CHP CED ∆≅∆,则CH CE =,PH DE =,DE CE PH HE ∴+=+,∴点H ,点P ,点E 三点共线时,DE CE +的值最小值为PE ,同理,AF BF +的最小值为FQ ,DE CE EF AF BF PE FE FQ ∴++++++,∴点P ,点E ,点F ,点Q 共线时,并使整个公路系统的总长为最短,即最短距离为PQ ,∴设计图:(30)EDC ECD FAB FBA ∠=∠=∠=∠=︒22.已知,在ABC ∆中,30ACB ∠=︒(1)如图1,当2AB AC ==,求BC 的值;(2)如图2,当AB AC =,点P 是ABC ∆内一点,且2PA =,21PB =3PC =,求APC ∠的度数;(3)如图3,当4AC =,7()AB CB CA >,点P 是ABC ∆内一动点,则PA PB PC ++的最小值为43.【解答】解:(1)如图1中,作AP BC ⊥于P .AB AC = ,AP BC ⊥,BP PC ∴=,在Rt ACP ∆中,2AC = ,30C ∠=︒,cos303PC AC ∴=︒=2BC PC ∴==.(2)如图2中,将APB ∆绕点A 逆时针旋转120︒得到QAC ∆.AB AC = ,30C ∠=︒,120BAC ∴∠=︒,2PA AQ ∴==,PB QC ==,120PAQ ∠=︒ ,PQ ∴=222PQ PC QC ∴+=,90QPC ∴∠=︒,30APQ ∠=︒ ,3090120APC ∴∠=︒+︒=︒.(3)如图3中,将BCP ∆绕点C 逆时针旋转60︒得到△CB P '',连接PP ',AB ',则90ACB ∠'=︒.PA PB PC PA PP P B ++=+'+'' ,∴当A ,P ,P ',B '共线时,PA PB PC ++的值最小,最小值AB ='的长,由AB =4AC =,30C ∠=︒,可得BC CB ='=,AB ∴'=.23.阅读下列材料:小华遇到这样一个问题,如图1,ABC∆内部有一点P,连BC=,5AC=,在ABCACB∆中,30∠=︒,6接PA、PB、PC,求PA PB PC++的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将APC∆,连接PD、BE,则BE的长即为所求.∆绕点C顺时针旋转60︒,得到EDC(1)请你写出图2中,PA PB PC++(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,60∠=︒,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于ABC++最小值的线段(保留画图痕迹,画出一条即可);PA PB PC②若①中菱形ABCD的边长为4,请直接写出当PA PB PC++值最小时PB的长.【解答】解:(1)如图2. 将APC∆绕点C顺时针旋转60︒,得到EDC∆,∴∆≅∆,APC EDC∠=︒,ACP ECD==,60PCD∴∠=∠,5AC EC∴∠+∠=∠+∠,ACP PCB ECD PCB∴∠+∠=∠=︒,30ECD PCB ACBBCE ECD PCB PCD∴∠=∠+∠+∠=︒+︒=︒.306090在Rt BCEBC=,5,6CE=,∆中,90∠=︒BCE∴==BE即PA PB PC++(2)①将APC∆,连接PE、DE,∆绕点C顺时针旋转60︒,得到DEC则线段BD 等于PA PB PC ++最小值的线段;②如图31-中,当B 、P 、E 、D 四点共线时,PA PB PC ++值最小,最小值为BD . 将APC ∆绕点C 顺时针旋转60︒,得到DEC ∆,APC DEC ∴∆≅∆,CP CE ∴=,60PCE ∠=︒,PCE ∴∆是等边三角形,PE CE CP ∴==,60EPC CEP ∠=∠=︒.菱形ABCD 中,1302ABP CBP ABC ∠=∠=∠=︒,603030PCB EPC CBP ∴∠=∠-∠=︒-∠︒=︒,30PCB CBP ∴∠=∠=︒,BP CP ∴=,同理,DE CE =,BP PE ED ∴==.连接AC ,交BD 于点O ,则AC BD ⊥.在Rt BOC ∆中,90BOC ∠=︒ ,30OBC ∠=︒,4BC =,cos 4BO BC OBC ∴=∠=⨯2BD BO ∴==,13BP BD ∴==即当PA PB PC ++值最小时PB24.已知抛物线2142y x bx =-++的对称轴为1x =,与y 交于点A ,与x 轴负半轴交于点C ,作平行四边形ABOC 并将此平行四边形绕点O 顺时针旋转90︒,得到平行四边形A B O C ''''.(1)求抛物线的解析式和点A 、C 的坐标;(2)求平行四边形ABOC 和平行四边形A B O C ''''重叠部分△OC D '的周长;(3)若点P 为AOC ∆内一点,直接写出PA PC PO ++的最小值(结果可以不化简)以及直线CP的解析式.【解答】解:(1)由已知得,112()2bx =-=⨯-,则1b =,抛物线的解析式为2142y x x =-++,(0,4)A ∴,令0y =,得21402x x -++=,12x ∴=-,24x =.(2)在ABCD 中,90OAB AOC ∠=∠=︒,则//AB CO,OB ∴==2OC OC '==,OC D OCA B ∴∠'=∠=∠,C OD BOA ∠'=∠,∴△C OD BOA '∆∽,∴C OD BOA C OC C OB '∆'=== AOB ∆的周长为6+,∴△C OD '的周长为565(6255+⨯=+;(3)此点位费马点,设三角形AOB 的三边为a ,b ,c ,2OC = ,4OA =,AC ==,PA PB PC ++==.直线CP解析式为1)2y x =-+-.。
初中数学几何模型
模型55费马点模型础模型
图示
B
P
C A
△ABC的最大内角小于120°
问题P是AARC内一点,当点P在何处时,PA+PB+PC的和最小
结论
当PA+PB+PC的和最小时,点P满足∠APB=∠BPC=
∠APC=120°
结论分析
结论:当 PA+PB+PC 的和最小时,P 点满足∠APB=∠BPC=
∠APC=120°
证明:如图,将△CBP 绕点C 逆时针旋转60°得到△CFE, 连接PE, BF,
∴△CBP ≌△CFE,PB=EF,CP=CE,CB=CF.
又∵∠PCE=∠BCF=60°,
∴△BCF,△CEP 均为等边三角形,
158②怎么用
1. 找模型
当三角形内有一动点,求该动点到三角形三个顶点距离之和的最小值,考虑“费马点”模型
2.用模型
以三角形的任意一边向外旋转,连接旋转前后的对应点,根据两点之间线段最短得出费马点的位置,从而解决线段最值问题
满分技法
证明过程是把三角形内一点到三个顶点的距离之和转化为一条折线,月折线的最远端两个端点是固定的,只有折线成为直线段时距离之和最小.
费马点
皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学. 费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”“费马大定理”等.
今天的问题不是费马提出来的,而是他解决的,故而叫费马点.
基。
旋转中的最值模型(费马点模型)【知识点归纳】费马点模型:如图,在△ABC内部找到一点P,使得PA+PB+PC的值最小.当点P满足∠APB=∠BPC=∠CPA=120º,则PA+PB+PC的值最小,P点称为三角形的费马点.特别地,△ABC中,最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A(这种情况一般不考,通常三角形的最大顶角都小于120°)费马点的性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
费马点最小值解法:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值证明过程:将△APC边以A为顶点逆时针旋转60°,得到AQE,连接PQ,则△APQ为等边三角形,PA=PQ。
即PA+PB+PC=PQ+PB+PC,当B、P、Q、E四点共线时取得最小值BE【例题精讲】例1.(等边三角形费马点)如图,在ABC V 中,3AB =,2AC =,60BAC Ð=°,P 为ABC V 内一点,则PA PB PC ++的最小值为 .【点睛】本题考查了全等三角形判定与性质,旋转的性质,以及等边三角形的性质和求线段最值的问题,掌握做辅助线是解题的关键.例2.(直角三角形费马点)如图,已知Rt △ABC 中,∠ABC =90°,∠ACB =30°,斜边AC =4,点P 是三角形内的一动点,则PA +PB +PC 的最小值是 .∵∠90,30ABC ACB °°=Ð=,AC 2,AB \=结AD,BE,CE.若AB=DE=BC=10,∠ABC=75°,则AD+BE+CE的最小值为.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称的性质,通过构造平行四边形、旋转例4.(加权费马点)如图,Rt ABC △中,30CAB Ð=°,3BC =,点P 为ABC V 内一点,连接,,PA PB PC ,则PC PB +的最小值为 .++++的最小值为.AP BP PQ QC QD∴AP BP PQ CQ DQ ++++B P P P PQ QQ Q C ¢¢¢¢¢¢=++++,∴当,,,,,B P P Q Q C ¢¢¢¢六点共线时AP BP PQ CQ ++++连接,¢¢BB CC ,∵AB AB ¢=,60B AB ¢Ð=°,∴ABB ¢V 是等边三角形,∴1AB BB ¢¢==,∴B ¢在AB 的垂直平分线上,例6.(培优综合)在ABCD Y 中,45ABC Ð=°,连接AC ,已知AB AC ==E 在线段AC 上,将线段DE 绕点D 顺时针旋转 90° 为线段DF .(1)如图1,线段AC 与线段BD 的交点和点E 重合,连接EF ,求线段EF 的长度;(2)如图2,点G 为DC 延长线上一点,使得GC EC =,连接FG 交AD 于点H ,求证:CD =;(3)如图3,在(2)的条件下,平面内一点P ,当HP CP +最小时,求HPB △的面积.∵45BAC Ð=°,AB AC ==∴45ACB ABC Ð=Ð=°,BAC Ð∴2222BC AB ==´=,∵ABCD Y ,∴45DCG ABC Ð=Ð=°,CD∵90BAC Ð=°,AB CD ∥,∴AC GD ^,90GCA ECD Ð=Ð=°,又∵GC EC =,AC DC =,∴()SAS GCA ECD V V ≌,∴GA ED =,GAC EDC Ð=Ð,∵ED FD =,ED FD ^,∴GA FD =,90AGC GDF Ð+Ð=°-Ð由旋转的性质可得,2BC BC ¢==,∵AD BC ∥,∴90AIB Ð=°,45IAB ABC Ð=Ð=°,∴222122IB IA AB ===´=,在Rt IC H ¢V 中,12IC IB BC ¢¢=+=+22223213C H IC IH ¢¢=+=+=,∵1122BC H S C H BJ BC IH ¢¢¢=⋅=⋅V ,即:在Rt IBH V 中,221BH IB IH =+=在Rt BJH V 中,22JH BH BJ =-=【课后训练】1.如图,在ABC V 中,90,5,BAC AB AC Ð==°=P 为ABC V 内部一点,则点P 到ABC V 三个顶点之和的最小值是 .∴BAP HAE Ð=Ð,AE AP =,AH AB ==∴60HAB EAP Ð=Ð=°,∴AEP △是等边三角形,∴AE AP EP ==,∴AP BP PC EP EH PC ++=++,∴当点H 、E 、P 、C 共线时,AP BP PC ++∵18018060NAC BAH BAC Ð=°-Ð-Ð=°-条动线段MN BC ∥,且MN =,则AN BM CN ++的最小值为 .【点睛】本题考查了平行四边形的判定与性质,旋转变换,的一半,等边三角形的判定与性质,勾股定理,两点之间线段最短等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题..如图,点M 是矩形ABCD 内一点,且,,MA MD MN ,则MA MD MN ++的最小值为 .【答案】7532+根据旋转的性质有:ADD ¢\△为等边三角形,同理AMM ¢V 为等边三角形,AM AM MM ¢==\MA MD MN +\+=\当线段M D ¢¢、MM 在矩形ABCD 中,D 即可知四边形ABEF 是矩形,ADD ¢QV 为等边三角形,\12AF FD AD ===\2D F D A AF ¢¢=-4.如图,P为正方形ABCD内的动点,若AB=2,则PA+PB+PC的最小值为.(1)如图1,已知150AOB Ð=°,120BOC Ð=°,将BOC V 绕点C 按顺时针方向旋转60°得ADC △.①DAO Ð的度数是 ;②用等式表示线段OA ,OB ,之间的数量关系,并证明;(2)设AOB a Ð=,BOC b Ð=.①当a ,b 满足什么关系时,OA OB OC ++有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边ABC V 的边长为1,直接写出OA OB OC ++的最小值.QV ADC BOC \≌△△,OCD ÐCD OC \=,ADC BOC Ð=ÐOCD \△是等边三角形,OC OD CD \==,COD Ð=150AOB Ð=°Q ,120BOC Ð=90AOC \Ð=°,\O C OC ¢\=,O A OA ¢¢=,A C BC ¢=,A O C AOC ¢¢Ð=Ð.(1)如图1, 连接DE BE 、, 若5,3BCE ABE S S ==V V ,求BED S V ;(2)如图2, 若,DM BC DM BM ^=, 延长BE 交DM 于点N , 且NM MC =, 求证:AD DN =-;(3)如图3,若4,90AD AB ABD ==Ð=°,P 为BCD △内一点,请直接写出PD PC PB ++的最小值.∵,DM BC DM BM ^=,∴BDM V 是等腰直角三角形,∴222BD BM DM DM =+=∴BD BF =,∴45F BDM CBD Ð=Ð=Ð=∴90DBF Ð=°,∴2DF BD =,∴4CH BC ==,DCH BCD BCH Ð=Ð+Ð∴PG PC =,∴PD PC PB PD PG GH DH ++=++³即当点D ,P ,G ,H 四点共线时,PD 在Rt DCH △中,22DH CD CH =+=即PD PC PB ++的最小值为27.【点睛】本题主要考查了等边三角形的判定和性质,平行四边形的性质,勾股定理,图形的形ACFG ,点D 恰好在线段GF 上.(1)若AB的长度比BC少4,8V的面积;AC=,求ABC(2)求证:BG DG-;(3)已知点P是ABCV的顶点和边重合,在(1)的条件下,请直V内一动点,且P不与ABC接写出PA PB++的最小值.∵90BED HEG Ð=Ð=°,∴BED HED HEG Ð-Ð=Ð-即BEH DEG Ð=Ð,∵EMG BED EBG =Ð+Ð=∠∴EBG GDE Ð=Ð,∵90BAC Ð=°,∴1122ABC S AB AC BC AG =´=´△,∴6824105AB AC AG BC ´´===,针旋转90°交DC 的延长线于点F ,求证:AE CF =;(2)边长4AB =把边AB 沿BE 翻折.①如图2,若点P 落在对角线BD 上,则AE = ;②如图3,点G 在边CD 上,1DG =,连接AG 、BG ,当点P 落在ABG V 内部时(不含边上),线段AE 长度的取值范围为 ;(3)如图4,点M 是正方形ABCD 内一点,连接MA 、MC ,若5AB =,求MA MC +最小值;(4)如图5,点M 是矩形ABCD 内一点,连接,,MA MB MC ,若AB =4BC =,则MA MB MC ++最小值为 .当点P 落到BG 上,连接由折叠的性质可得,∴=EPG EDG ÐÐ∵1DG =,(3)①当A 、M AM MC AC +>,②当点A 、M 、C ∵AB BC =,ABC Ð(4)如图,将V ∴A M AM ¢¢=,BM 又∵60M BM ¢Ð=°∴M BM ¢V 是等边三角形,【点睛】本题考查正方形的性质、折叠的性质、旋转的性质、全等三角形的判定与性质、等腰直角三角形的性质与判定、勾股定理、等边三角形的判定与性质、切线的性质,熟练掌握相关性质是解题的关键.。
【费马点】平面内,到三角形的三个顶点的距离之和最小的点称为费马点【结论】如图所示,△ABC 的三个内角均不大于120°,P 为三角形内一点,当点P 与△ABC 三个顶点的连线夹角均为120°时,PA +PB +PC 的值最小.(PA +PB +PC=AD=BE=CF ) 【费马点作法】如图,以△ABC 的三边向外分别作等边三角形,然后把外面的三个顶点与原三角形的相对顶点相连,交于点P ,点P 就是原三角形的费马点.【证明】如图,将△ABP 绕点B 逆时针旋转60°,得到△A 'BP ',连接P P ',则△BPP 是等边三角形,所以PB =PP '. 由旋转的性质可得P A +PB +PC =P 'A '+PP '+PC >A 'C 因此,当A '、P '、P 、C 四点共线时,P A 十PB 十PC 的值最小.因为△BPP '是等边三角形,即∠BPP '=60°, 所以∠BPC =120°.因为∠APB =∠A 'P 'B ,∠BP 'P =60°, 所以∠APB =180°-60°=120°,则∠CP A =360°-120°-120°=120°, 故∠BPC =∠APB =∠CP A =120°.CBAPPDFECBAA'P'ABCP费马点结论:1) 对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点; 2) 对于有一个角超过120°的三角形,费马点就是这个内角的顶点. 费马问题解决问题的方法是运用旋转变换.1) 利用旋转把三条共点线段转化成折线段, 2) 利用两点之间线段最短 构造直角三角形,利用勾股定理 模型巧记求到三角形三个顶点距离和的最小值,只需要以三角形的一条边为边作等边三角形,那么原三角形的第三个顶点和等边三角形的第三个顶点的距离就是最小值 例1、P 是边长是2的等边△ABC 内的一点, 求PA+PB+PC 的最小值【分析】把△APC 绕A 逆时针旋转60°,得到△AP'C',连接PP' 易知△APP'是等边三角形∴PC=P'C∴∠CAC'=60°∴P A+PB+PC=PB+PP'+PC’当且仅当BPP'C '共线时取得最小值∵AB =2;∴AD =1;BD =3∴.C'D =3∴BC =23 点评:①用旋转把三条共点线段转化成折线段 ②利用两点之间线段最短③构造直角三角形,利用勾股定理例2、P 是边长是1的正方形ABCD 内的一点, 求PA+PB+PC 的最小值【分析】把△APB 绕B 逆时针旋转,得到△BP'A',连接PP' ∴△BPP '是等边三角形 ∴BP=BP ' ∴∠PBP '=60°∴P A+PB+PC=P'A'+PP'+PC ,当且仅当CPP'A'共线时取得最小值∵AB =AB '=1;A'P'PCBA∴A'M =12;BM =32;∴CM =232;CA '=622例3、P 是△ABC 内的一点,BC=6,AC=5,∠ACB =30°, 求P A+PB+PC 的最小值 【分析】把△APC 绕C 顺时针旋转60°,得到△CP'A',连接PP' ∴△CPP '是等边三角形 ∴CP=PP'∴∠PCP '=60°∴P A+PB+PC=P 'A'+PB+PP '当且仅当BPP ’A ’共线时取得最小值 ∵CA=CA '=5;CB=6,∠ACB =30° ∴∠A 'CB =60° ∴A 'B =61什么是加权费马点问题?标准的费马点问题式中的三条线段的系数全为1。